Predicate Calculus - Semantics 3/4

Moonzoo Kim CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Example: finite automata

For an interpretation $\mathcal{I} = (\mathcal{D}, \mathcal{R}, \mathcal{F}, \mathcal{C})$ where

- D = {a,b,c}
- R= {Trans, Final, Equality} where
 - Trans = {(a,a),(a,b),(a,c),(b,c),(c,c)}
 - Final = $\{b,c\}$
 - Equality={(a,a),(b,b),(c,c)}
- *F*={}
- C={a}

• Formulas for \mathcal{I} where $R^{\mathcal{I}}$ =Trans, $F^{\mathcal{I}}$ =Final, $=\mathcal{I}$ =Equality, $i^{\mathcal{I}}$ =a

- $\mathcal{I} \vDash \exists y \mathsf{R}(i,y)$
- *I* ⊨ ¬F(i)
- $\mathcal{I} \nvDash \forall x \forall y \forall z \ (\mathsf{R}(x,y) \land \mathsf{R}(x,z) \rightarrow y = z)$
- $\mathcal{I} \models \forall x \exists y \ \mathsf{R}(x,y)$

A formula represents a set of models

- A formula ϕ describes characteristics of target structures in a compact way.
 - ex. deterministic automata, partial order sets, binary trees, relational database, etc
- In other words, a formula ϕ designates a set of models (i.e., interpretations) that satisfies ϕ
 - $\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$ represents all deterministic graphs
 - $\forall x \forall y \forall z \ (R(x,y) \land R(y,z) \rightarrow R(x,z))$ represents all transitive graphs.
- Validity, satisfiability, and provability of a predicate formula is all undecidable. However, checking formulas on concrete interpretations is practical
 - ex. SQL queries over relational database
 - ex. XQueries over XML documents
 - ex. Model checking of a program

Example: partial order set (POSET)

 \mathcal{U}_{3}

а

- Def. U is a partially ordered set (poset) if U is a model of
 - $\forall xyz (p(x,y) \land p(y,z) \rightarrow p(x, z))$
 - $\quad \forall xy \ (p(x,y) \land p(y,x) \leftrightarrow q(x, y))$
 - $p^{\mathcal{U}} = \leq$, $q^{\mathcal{U}} = =$, then
 - $\forall xyz (x \le y \le z \rightarrow x \le z)$
 - $\forall xy (x \le y \le x \leftrightarrow x = y)$
- $\quad \mathcal{U}_1 \vDash \exists x \; \forall y \; (x \leq y)$
 - i.e., \mathcal{U}_1 has a least element
- *U*₃⊨ ∀x¬∃y (x < y)
 - i.e., in \mathcal{U}_3 no element is strictly less than another element \wedge

 \mathcal{U}_{2}

- Note that $x \le y \ge x \le y \land \neg(x = y)$
- Def. \mathcal{U} is a totally ordered set if \mathcal{U} is a poset and $\mathcal{U} \vDash \forall x \forall y (x \le y \lor y \le x)$
- Def. \mathcal{U} is densely ordered if $\mathcal{U} \vDash \forall x \ \forall y \ (x < y \rightarrow \exists z \ (x < z \land z < y))$
- We can distinguish U_3 and U_4 by A(x)
 - $= \forall y \ (y \neq x \rightarrow \neg (y \leq x) \land \neg (x \leq y))$
 - $\mathcal{U}_4 \vDash \forall x \ \forall y \ (A(x) \land A(y) \rightarrow x = y)$

 \mathcal{U}_4

4

•
$$\mathcal{U}_3 \vDash \neg \forall x \ \forall y \ (A(x) \land A(y) \rightarrow x = y)$$

Exercise: POSET (cont.)

Define formulas for

- x is the maximum (the largest element in a target domain)
 - $\forall y \ y \leq x$
- x is maximal (not smaller than any other elements)
 - $\neg \exists y \ x < y \equiv \forall y \ \neg (x < y)$
 - Note the difference between $\forall y \ y \le x$ and $\forall y \neg (x < y)$.
 - For totally ordered set, these two formulas are same, but for POSET, they are different.
- There is no element between x and y
 - $\neg \exists z ((x \leq z \land z \leq y) \lor (y \leq z \land z \leq x))$
- x is an immediate successor of y
 - $(x > y) \land \neg \exists z (y \le z \land z \le x)$
- z is the infimum of x and y (the greatest element less than or equal to x and y)
 - $\forall st ((s \le x \land t \le y) \rightarrow (s \le z \land t \le z) \land (z \le x \land z \le y))$
- Give a formula ϕ s.t. $\mathcal{U}_2 \vDash \phi$ and $\mathcal{U}_4 \vDash \neg \phi$
- Let $\phi = \exists x \forall y \ (x \leq y \lor y \leq x)$. Find posets \mathcal{U}_1 and \mathcal{U}_2 s.t. $\mathcal{U}_1 \vDash \phi$ and $\mathcal{U}_2 \vDash \neg \phi$

Example: arithmetic

- Def. A Peano structure U = (N, {=}, {S,+,*}, {0}) is a model of
 - 1. $\forall x (\neg (0 = S(x)))$
 - 2. $\forall x \forall y (S(x) = S(y) \rightarrow x = y)$
 - 3. $\forall x (x + 0 = x)$
 - 4. $\forall x \forall y (x+S(y) = S(x+y))$
 - 5. $\forall \mathbf{x} (\mathbf{x} * \mathbf{0} = \mathbf{0})$
 - 6. $\forall x \forall y (x^*S(y) = x^*y + x)$
 - 7. $\phi(\mathbf{0}) \land \forall \mathbf{x}(\phi(\mathbf{x}) \rightarrow \phi(\mathbf{S}(\mathbf{x})) \rightarrow \forall \mathbf{x}\phi(\mathbf{x}))$
 - mathematical induction
- These 7 formulas do not have "≤" or "<" but these predicate can be expressed by
 - x < y ::= ∃ z (x +S(z) = y)
 - $x \le y ::= x \le y \lor x=y$

- Example
 - The set of even numbers
 - E(x) ::= ∃ y (x = y + y)
 - The divisibility relation
 - x|y ::= ∃ z (x*z = y)
 - The set of prime numbers
 P(x) ::=

 $\forall y \forall z \ (x = y^*z \rightarrow y = 1 \lor z = 1) \land x \neq 1$