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Natural deduction

Proofs in the natural deduction for predicate

logic are similar to those for propositional logic

= We have new proof rules for dealing with V,d and with
the equality (=) symbol

= As in the natural deduction for propositional logic, the
additional rules for the quantifiers and equality will
come in two flavors
iIntroduction and elimination rules
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Example 1
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Example 3 (Law of Excluded Middle)
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The proof rules for V and 3
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VX e, VX |

vx e
If VX ¢ Is true, then you could replace the

X in ¢ by any term t
t must be free for x in ¢ \v/x ¢
EXx. Let ¢ =3y (x<Yy)
Suppose that we replace x with y, i.e., ¢[t / X]
oly/x]=3y (y <y)
very different meaning!

VXe

VX I

If, starting with a ‘fresh’ variable Xx,, you Xy
are able to prove some formula ¢[X,/X]
with X, In it, then (because X, is fresh)

you can derive VX ¢
X, [ X
X, does not occur outside the box ¢[ 0 ]
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Example

VX (P(X)— Q(X)), VX P(X) FV x Q(x)

@ vV X (P(X)— Q(X)) Premise
@ vV X P(X) Premise
31Xy P(Xg)— Q(Xp) Vxel
) P(Xo) VXxe?2
5 Q(Xo) —e 3,4
6 VX Q(X) VX135
m.sl‘ Intro. to Log 9



3 X1

It simply says that we can
deduce 4 x ¢ whenever we

have ¢[t/x] for some term t
t must be free for x in ¢

dx e

We know d X ¢ Is true, SO ¢ IS
true for at least one value of x

So we do a case analysis over
all those possible values, writing
X_0 as a generic value
representing them all
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Example

V X (P(X) = Q(X)), dx P(X) - dx Q(X)
@ VX (P(X)— Q(x)) Premise

@ Ix P(X) Premise

3 Xg P(Xq) Assumption
@ P(Xo)— Q(Xo) vxel

® Q(XO) —e 4,3

® 3Ix Q(X) X 15

@ Ax Q(X) JIx e 2,3-6
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