Propositional Calculus - Natural deduction

Moonzoo Kim CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Natural deduction

- In natural deduction, similar to other deductive proof systems such as G and H, we have a collection of proof rules.
 - Natural deduction does not have axioms.
- Suppose we have premises .and $\phi_1, \phi_2, ..., \phi_n$ and would like to prove a conclusion ψ . The intention is denoted by

$$\phi_{\scriptscriptstyle 1},\phi_{\scriptscriptstyle 2},\ldots,\phi_{\scriptscriptstyle n}\vdash\psi$$

We call this expression a sequent; it is valid if a proof for it can be found

Def: A logical formula ϕ with valid sequent $\vdash \phi$ is theorem

Proof rules (1/3)

- Λi says: to prove φ ∧ ψ, you must first prove φ and ψ separately and then use the rule ∧ i.
- A e₁ says: to prove φ, try proving φ ∧ ψ and then use the rule ∧ e₁. Actually this does not sound like very good advice because probably proving φ ∧ ψ will be harder than proving φ alone. However, you might find that you already have φ ∧ ψ lying around, so that's when this rule is useful.

Proof rules (1/3)

- $\forall i_1$ says: to prove $\phi \lor \psi$, try proving ϕ . Again, in general it is harder to prove ϕ than it is to prove $\phi \lor \psi$, so this will usually be useful only if you have already managed to prove ϕ .
- \vee e has an excellent procedural interpretation. It says: if you have $\phi \lor \psi$, and you want to prove some χ , then try to prove χ from ϕ and from ψ in turn
 - In those subproofs, of course you can use the other prevailing premises as well

KAI5

Some useful derived rules

- At any stage of a proof, it is permitted to introduce any formula as assumption, by choosing a proof rule that opens a box. As we saw, natural deduction employs boxes to control the scope of assumptions.
- When an assumption is introduced, a box is opened. Discharging assumptions is achieved by closing a box according to the pattern of its particular proof rule.

$p \land \neg q \rightarrow r, \ \neg r, \ p \vdash q$

1	$p \land \neg q \rightarrow r$	premise
2	\neg r	premise
3	р	premise
4	$\neg q$	assumption
5	$p \wedge \neg q$	∧i 3,4
6	r	→e 1,5
7	<u> </u>	¬e 6, 2
8	$\neg \neg q$	¬i 4—7
9	q	

$$p \to q \vdash \neg p \lor q$$

Example 2

1	$p \rightarrow q$	premise
2	$\neg p \lor p$	LEM
3	$\neg p$	assumption
4	$\neg p \lor q$	$\vee i_1 3$
5	р	assumption
6	q	→e 1,5
7	$\neg p \lor q$	∨i ₂ 6
8	$\neg p \lor q$	∨e 2, 3–4, 5–7

Example 3 (Law of Excluded Middle)

Proof Tips

- First, write down premises at the top of the paper
- Second, write down a conclusion at the bottom of the paper
- Third, look at the structure of the conclusion and try to find compatible proof rules backwardly
 - Pattern matching works, although not all the time.

