msr Intro. to Logic
CS402

Temporal Logic
-NuSMV

Moonzoo Kim
CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

NuSMYV specification of the 15t mutual exclusion (1/2)
MODULE main

VAR
state : {nn,tn,cn,tt,ct,nt,nc,tc,cc};
ASSIGN
Init(state) := nn;
next(state) :=
case
(state=nn) : {tn, nt};
(state=tn) : {cn,tt};
(state=cn) : {nn,ct};
(state=tt) : {ct,tc};
(state=ct) : nt;
(state=nt) : {tt,nc};
(state=nc) : {nn,tc};
(state=tc) : tn;

1 : state;
esac;
-- safety
LTLSPEC G !(state=cc)
-- liveness

LTLSPEC G ((state=tn|state=tt|state=tc) -> F (state=cn|state=ct|state=cc))
KAIST 2

——

NuSMYV specification of the 15t mutual exclusion (2/2)

What if there are 3 processes?
= We need a more realistic
compositional model
Does this way of modeling
reflect real implementation?

= There might be no global
scheduler, which allows only 1s
process to execute 1 step only.

= For software process,
asynchronous interleaving is
more realistic

\ 57
1y |
_/

Revised mutual exclusion model in NuSMV (1/2)

This code consists of two modules,

main and prc
» main

turn determines whose turn it is to
enter the critical section if both are

trying to enter
= prc

st: the status of a process
other-st: the status of the other

FAIRNESS ¢ restrict search tree to
execution paths along which ¢ is

Infinitely often true

» i.e, limitthe search space
» FAIRNESS running enforces that
the process should execute infinitely

often

MODULE main
VAR

prl: proceas prciprz2.st, turn, 0);
pr2: process prciprl.st, turn, 1);
turn: boolean;

ASSIGN
init({turn) :
-- safety

0;

SPEC 3! {{prl.st = ¢} & (pr2.st = c)}

-- liveness

SPEC G{{prl.st = £} -» F (prl.st = c))
SPEC G({pr2.st = £t} == F (pr2.st = c))

MODULE pro{other-st,
VAR
st: {n, t, c};
ASSIGN
init(st) :
next (st) :
case
(st = n)
{st = t)
{E‘.t = t}
(st = C)
1
esac;
next (turn) :=
case

In;

turn, myturn)

: {t,n};

& (other-st = n) :
& {other-st = t) & (turn = myturn):

: {c,n};

turn = myturn & st = ¢ : lturn;

1
esac;
FAIRNESS running

: bturn;

FAIRNESS !list = |

Revised mutual exclusion model in NuSMV (2/2)

MODULE main
1 = e

FAI RNESS " (St C) prl: process prciprZ.st, turn, 0);

This prevents a process from b booteany ot teEme A

staying at critical section forever ~ ***{77

init({turn) := 0;

: . -- msafety
thIS prevents to deteCtS SIIIy SPEC G!{{prl.st = ¢} & (pr2.st = c)}
violation of liveness property -- liveness
. . SPEC G{{prl.st = £) -» F (prl.st = c}}
due to such situation SPEC G((pr2.st = t) -» F (pr2.st = c))
FAI RNESS runn I ng MODULE prci{other-st, turn, myturn)
. VAR
This prevents a process from st: (n, t, c};
. . ASSIGN
executing all the time init(st) := n;
. . next (st} :=
this prevents to detects silly case
. . . (st = I : {t,n};
violation of liveness property Iot = CiE (orheriatiarm) S
due to SUCh Situation {st = t} & {other-st = t} & (turn = myturn}: c;
(st = c) : {c,n};
1 : st;
esac;
next (turn) :=
cage
turn = myturn & st = ¢ : !turn;
1 : turn;
egac;

FAIRNESS running

msr FAIRNESS l{st =) -

Transition system

	� Temporal Logic �-NuSMV �Moonzoo Kim�CS Dept. KAIST� �moonzoo@cs.kaist.ac.kr�
	NuSMV specification of the 1st mutual exclusion (1/2)
	NuSMV specification of the 1st mutual exclusion (2/2)
	Revised mutual exclusion model in NuSMV (1/2)
	Revised mutual exclusion model in NuSMV (2/2)
	Transition system

