Predicate Calculus
- Undecidability of predicate calculus

Moonzoo Kim
CS Dept. KAIST

moonzoo@cs.kaist.ac.kr
Can you tell whether or not the following program halts?

/* Fermat's last theorem: for n > 2, there exists no positive integers x,y,z s.t. x^n + y^n = z^n */
main() {
 Nat n, total, x, y, z;
 scanf("%d",&n);
 total=3;
 while(1) { /* loop invariant: total = x + y + z */
 for(x=1; x<= total-2; x++) {
 for(y=1; y <= total-x-1; y++) {
 z= total - x -y;
 if(x^n + y^n == z^n) halt;
 }
 }
 total++;
 }
}
It is **undecidable** to check whether a Turing machine (TM) will halt if started on a blank tape (halting problem).

To prove the undecidability of predicate logic, we give an algorithm which produces a formula A_{TM} in the predicate calculus for every Turing machine, s.t. A_{TM} is valid iff a Turing machine halts.

- Note that we do **not** make a Turing machine M for every predicate formula, since it is enough to show that checking some predicate formulas is undecidable.

- If we have such an algorithm, it is clear that validity check of predicate formula is at least as hard as halting problem (i.e., undecidable).
To simplify the proof of the transformation algorithm, we work with two-register machines (TRM) rather than directly with Turing machine.

- i.e., we will show there exists such A_{TRM} for a two-register machine.
- Thm 5.42 Given a Turing machine that computes a function f, a two-register machine can be constructed to compute the same function f.

\[
TM \text{ halts} \iff TRM \text{ halts}
\]

\[
TRM \text{ halts} \iff A_{TRM} \text{ is valid}
\]
Def 5.41 A two-register machine M consists of two registers x and y which can hold natural numbers, and a program $P = (L_0, \ldots, L_n)$ which is a list of instructions. L_n is the instruction \texttt{halt}, and for $0 \leq i < n$, L_i is one of:

- $x := x + 1$
- $y := y + 1$
- if $x = 0$ then goto L_j else $x := x - 1$, $0 \leq j \leq n$
- if $y = 0$ then goto L_j else $y := y - 1$, $0 \leq j \leq n$

An execution sequence of M is a sequence of states $s_k = (L_{i_k}, x, y)$, where L_{i_k} is the current instruction at s_k, and x, y are the contents of x and y.

s_{k+1} is obtained from s_k by executing L_{i_k}.

The initial state $s_0 = (L_{i_0}, m, 0) = (L_0, m, 0)$ for some m.

If for some k, $s_k = (L_n, x, y)$, the computation of M has halted and M has computed $y = f(m)$.
/* L1 is executed m times and then this program halts */
L₀: if x=0 then goto L₂ else x:=x-1
L₁: if y=0 then goto L₀ else y:=y-1
L₂: halt

Execution where x’s initial value=2

Execution where x’s initial value=0

/* L₀ is executed infinitely, i.e., this program never halts */
L₀: x := x + 1
L₁: if y=0 then goto L₀ else y:=y-1
L₂: halt

(note that Lᵢ₀ = L₀, Lᵢ₁ = L₁, Lᵢ₂ = L₀, , Lᵢ₃ = L₁, etc)
Validity in the predicate calculus

- Thm 5.43 (Church) Validity in the predicate calculus is undecidable
 - Caution: the proof of Thm 5.43 in the textbook has several flaws…

- For every two-register machine M, we construct a formula S_M s.t. S_M is valid iff M terminates when started in the state $(L_0, 0, 0)$:
 - $S_M = (\land_{i=0..n-1} S_i \land p_0(0,0)) \rightarrow \exists z_1 z_2 p_n(z_1, z_2)$
 - Intuitive meaning of p_i is as follows
 - $v_I(p_i(m',m'')) = T$ iff there exists some state $s_k=(L_i,m',m'')$

- S_i is defined by cases of the instruction L_i

<table>
<thead>
<tr>
<th>L_i</th>
<th>S_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := x + 1$</td>
<td>$\forall x \forall y(p_i(x, y) \rightarrow p_{i+1}(s(x), y))$</td>
</tr>
<tr>
<td>$y := y + 1$</td>
<td>$\forall x \forall y(p_i(x, y) \rightarrow p_{i+1}(x, s(y)))$</td>
</tr>
<tr>
<td>if $x = 0$ then goto L_j else $x := x - 1$</td>
<td>$\forall x(p_i(a, x) \rightarrow p_j(a, x)) \land \forall x \forall y(p_i(s(x), y) \rightarrow p_{i+1}(x, y)))$</td>
</tr>
<tr>
<td>if $y = 0$ then goto L_j else $y := y - 1$</td>
<td>$\forall x(p_i(x, a) \rightarrow p_j(x, a)) \land \forall x \forall y(p_i(x, s(y)) \rightarrow p_{i+1}(x, y)))$</td>
</tr>
</tbody>
</table>
Example of S_M

/* y=x+1 for x <= 1 */
L_0: if x=0 then goto L_4 else x=x-1
L_1: y:=y+1
L_2: if x=0 then goto L_4 else x=x-1
L_3: y:=y+1
L_4: halt

$S_M = (p_0(0,0) \land
(\forall x(p_0(0,x) \rightarrow p_4(0,x)) \land \forall y(p_0(s(x),y) \rightarrow p_1(x,y)))) \land
\forall x y (p_1(x,y) \rightarrow p_2(x,s(y))) \land
(\forall x(p_2(0,x) \rightarrow p_4(0,x)) \land \forall x y(p_2(s(x),y) \rightarrow p_3(x,y))) \land
\forall x y (p_3(x,y) \rightarrow p_4(x,s(y)))
\rightarrow
\exists z_1 z_2 p_4(z_1, z_2)$

- **Intuitive meaning of S_M:**
 - **Given a two-register machine M,**
 - execution of M ($\land_{i=0..n-1} S_i \land p_0(0,0)$)
 - reaches (\rightarrow)
 - the **halt** instruction ($\exists z_1 z_2 p_n(z_1, z_2)$)
TRM halts $\rightarrow A_{TRM}$ is valid (1/2)

- Suppose that the execution s_0, \ldots, s_m of M halts and let \mathcal{I} be an arbitrary interpretation for S_M. If $v_\mathcal{I}(S_i) = F$ (for $0 \leq i < n$) or $v_\mathcal{I}(p_0(0,0)) = F$, then trivially $v_\mathcal{I}(S_M) = T$.

- Thus, we assume that $(\land_{i=0..n-1} S_i \land p_0(0,0))$ is true since we need only consider interpretations that satisfy the antecedent of S_M.

- We show by induction on k that $v_\mathcal{I}(\exists z_1 z_2 p_{i_k}(z_1, z_2)) = T$.
 - p_{i_k} is the predicate associated with the label L_{i_k} in state s_k.
 - Mind the incorrect notation in the textbook where L_k and p_k is used instead of L_{i_k} and p_{i_k}.
 - For $k=0$, $v_\mathcal{I}(\exists z_1 z_2 p_{i_0}(z_1, z_2)) = v_\mathcal{I}(\exists z_1 z_2 p_0(z_1, z_2)) = T$ since $v_\mathcal{I}(p_0(0,0)) = T$ from the assumption.
TRM halts $\rightarrow A_{TRM}$ is valid (2/2)

- For $k > 0$, the result follows by induction by cases according to the instruction at $L_{i_{k-1}}$:
 - For $x := x+1$ at $L_{i_{k-1}}$:
 - $v_I(\forall xy (p_{i_{k-1}}(x,y) \rightarrow p_{i_{k-1}+1}(s(x),y))) = T$ by the assumption
 - $v_I(\exists z_1 z_2 p_{i_{k-1}}(z_1,z_2)) = T$ by the inductive hypothesis
 - From the above two facts, $v_I(\exists z_1 z_2 p_{i_{k-1}+1}(s(z_1),z_2)) = T$
 - $v_I(\exists z_1 z_2 p_{i_{k-1}+1}(s(z_1),z_2)) = v_I(\exists z_1 z_2 p_{i_k}(s(z_1),z_2)) = T$ since $p_{i_{k-1}+1} = p_{i_k}$
 - We can conclude $v_I(\exists z' z_2 p_{i_k}(z',z_2)) = T$ since $\exists x A(f(x)) \rightarrow \exists x' A(x')$.
 - By induction, this holds for all k.
 - For if $x=0$ then goto L_j else $x=x-1$ at $L_{i_{k-1}}$:
 - ...
 - By induction, this holds for all k.

- Since M halts, in the final state s_m, $L_{i_m} = L_n$ the halt instruction, so $v_I(\exists z' z_2 p_n(z',z_2)) = T$ and $v_I(S_M) = T$.
- Since I was arbitrary, S_M is valid
TRM halts $\leftrightarrow A_{TRM}$ is valid

- Suppose that S_M is valid, and consider an interpretation \mathcal{I} s.t.
 - $\mathcal{I} = (\mathcal{N}, \{P_0, \ldots, P_n\}, \{\text{succ}\}, \{0\})$ where
 - $(x, y) \in P_i$ iff (L_i, x, y) is reached by the register machine M when started in $(L_0, 0, 0)$
 - We will show that antecedent of S_M is true in \mathcal{I}. So, the conclusion of S_M is also true, which means that M reaches the halt instruction since $(x, y) \in P_i$ iff (L_i, x, y) is reached
 - The initial state is $(L_0, 0, 0)$ so $(0, 0) \in P_0$ and $v_{\mathcal{I}}(p_0(0, 0)) = T$
 - We will show that if the computation has reached L_i, then $v_{\mathcal{I}}(S_i) = T$.
 - Assume as an inductive hypothesis that if the computation has reached L_i, it has done so in a computation of length -1 in state $s_{k-1} = (L_i, x_i, y_i)$, so $(x_i, y_i) \in P_i$.
 - The proof is by cases on the instruction L_i
 - For $L_i = x := x + 1$, the computation can reach the state $s_k = (L_i, x_i, y_i) = (L_{i+1}, \text{succ}(x_i), y_i)$, so $v_{\mathcal{I}}(S_i) = T$
 - For $L_i = \text{if } x = 0 \text{ then goto } L_j \text{ else } x := x - 1$, ...so $v_{\mathcal{I}}(S_i) = T$
 - Since S_M is assumed valid, $v_{\mathcal{I}}(\exists z_1 z_2 p_n(z_1, z_2)) = T$ and $v_{\mathcal{I}}(p_n(m_1, m_2)) = T$ for some natural numbers m_1, m_2. Thus M halts and computes $m_2 = f(0)$