
Chapter 14Chapter 14Chapter 14Chapter 14
Testing Tactics Testing Tactics

Moonzoo Kim
CS Division of EECS Dept.

KAISTKAIST
moonzoo@cs.kaist.ac.kr

http://pswlab.kaist.ac.kr/courses/CS350-07

CS350 Intro. to SE
Spring 2008 7

Overview of Ch14. Testing TacticsOverview of Ch14. Testing TacticsOverview of Ch14. Testing TacticsOverview of Ch14. Testing Tactics
14.1 Software Testing Fundamentals14.1 Software Testing Fundamentals
14 214 2 BlackboxBlackbox and Whiteand White Box TestingBox Testing14.2 14.2 BlackboxBlackbox and Whiteand White--Box TestingBox Testing
14.3 White14.3 White--Box TestingBox Testing
14.4 Basis Path Testing14.4 Basis Path Testinggg

Glow Graph NotationGlow Graph Notation
Independent Program PathsIndependent Program Paths
Deriving Test CasesDeriving Test CasesDeriving Test CasesDeriving Test Cases
Graph MatricesGraph Matrices

14.5 Control Structure Testing14.5 Control Structure Testing
Condition TestingCondition TestingCondition TestingCondition Testing
Data Flow TestingData Flow Testing
Loop TestingLoop Testing

CS350 Intro. to SE
Spring 2008 8

TestabilityTestabilityTestabilityTestability
OperabilityOperability

it operates cleanlyit operates cleanly
ObservabilityObservabilityObservabilityObservability

the results of each test case are readily observedthe results of each test case are readily observed
ControllabilityControllability

the degree to which testing can be automated and the degree to which testing can be automated and

Modular design Modular design
provides good provides good
t t bilitt t bilitg gg g

optimizedoptimized
DecomposabilityDecomposability

testing can be targetedtesting can be targeted

testabilitytestability
Let’s think about Let’s think about
embedded SWembedded SW

SimplicitySimplicity
reduce complex architecture and logic to simplify reduce complex architecture and logic to simplify
teststests

StabilityStability

mobile phone mobile phone
softwaresoftware
Linux kernelLinux kernelStabilityStability

few changes are requested during testingfew changes are requested during testing
UnderstandabilityUnderstandability

of the designof the design

Linux kernelLinux kernel

CS350 Intro. to SE
Spring 2008 9

gg

What is a “Good” Test?What is a “Good” Test?What is a Good Test?What is a Good Test?

A good test has a A good test has a high probability high probability of finding an errorof finding an error
A good test is A good test is notnot redundant.redundant.gg
A good test should be “best of breed” A good test should be “best of breed”
A good test should be neither too simple nor too complexA good test should be neither too simple nor too complexA good test should be neither too simple nor too complexA good test should be neither too simple nor too complex

CS350 Intro. to SE
Spring 2008 10

Designing Unique TestsDesigning Unique Tests (pg423)(pg423)
VinodVinod:: So let's see you note thatSo let's see you note thatThe scene: The scene:

Vinod'sVinod's cubical.cubical.

The players: The players:

VinodVinod: : So let s see ... you note that So let s see ... you note that
the correct password will be 8080, the correct password will be 8080,
right?right?
EdEd:: Uh huhUh huhVinodVinod, , EdEd

members of the members of the SafeHomeSafeHome software software
engineering team.engineering team.

The conversation:The conversation:

EdEd: : Uh huh.Uh huh.
VinodVinod: : And you specify passwords And you specify passwords
1234 and 6789 to test for errors in 1234 and 6789 to test for errors in
recognizing invalid passwords?recognizing invalid passwords?The conversation:The conversation:

VinodVinod: : So these are the test So these are the test
cases you intend to run for the cases you intend to run for the
password validationpassword validation operationoperation

recognizing invalid passwords?recognizing invalid passwords?
EdEd: : Right, and I also test passwords Right, and I also test passwords
that are close to the correct that are close to the correct
password see 8081 and 8180password see 8081 and 8180password validation password validation operation.operation.

EdEd: : Yeah, they should cover Yeah, they should cover
pretty much all possibilities for the pretty much all possibilities for the
kinds of passwords a user mightkinds of passwords a user might

password, see ... 8081 and 8180.password, see ... 8081 and 8180.
VinodVinod: : Those are okay, but I don't Those are okay, but I don't
see much point in running both the see much point in running both the
1234 d 6789 i t Th '1234 d 6789 i t Th 'kinds of passwords a user might kinds of passwords a user might

enter.enter.
1234 and 6789 inputs. They're 1234 and 6789 inputs. They're
redundant . . . test the same thing, redundant . . . test the same thing,
don't they?don't they?

CS350 Intro. to SE
Spring 2008 11CS350 Intro. to SE
Spring 2008 11

EdEd: : Well, they're different values.Well, they're different values.
VinodVinod: : That's true, but if That's true, but if 12341234
doesn't uncover an error ... in doesn't uncover an error ... in

EdEd: : Not a problem ... I'll give this a Not a problem ... I'll give this a
bit more thought.bit more thought.

other words ... the other words ... the password password
validation validation operation notes that it's operation notes that it's
an invalid password, it is not likely an invalid password, it is not likely
th tth t 67896789 ill h thiill h thithat that 67896789 will show us anything will show us anything
new.new.
EdEd: : I see what you mean.I see what you mean.
VinodVinod: : I'm not trying to be picky I'm not trying to be picky
here ... here ... it's just that we have it's just that we have
limited time to do testinglimited time to do testing, so it's a , so it's a
good idea to run tests that have a good idea to run tests that have a
high likelihood of finding new high likelihood of finding new
errors.errors.

CS350 Intro. to SE
Spring 2008 12CS350 Intro. to SE
Spring 2008 12

Test Case DesignTest Case Design

"Bugs lurk in corners "Bugs lurk in corners
and congregate at and congregate at
boundaries ..."boundaries ..."

Boris BeizerBoris BeizerBoris BeizerBoris Beizer

OBJECTIVEOBJECTIVE to uncover errorsto uncover errorsOBJECTIVEOBJECTIVE

CRITERIACRITERIA

to uncover errorsto uncover errors

in a complete mannerin a complete manner

CONSTRAINTCONSTRAINT with a minimum of effort and timewith a minimum of effort and time

CS350 Intro. to SE
Spring 2008 13

Software TestingSoftware Testinggg

white-box
methods

black-box
methods

Methods

Strategies

CS350 Intro. to SE
Spring 2008 14

WhiteWhite--Box TestingBox TestingWhiteWhite Box TestingBox Testing

... our goal is to ensure that ... our goal is to ensure that allallgg
statementsstatements and and conditionsconditions have have
been executed at least been executed at least onceonce
(statement coverage (statement coverage branch branch coverage coverage

CS350 Intro. to SE
Spring 2008 15

(statement coverage, (statement coverage, branch branch coverage, coverage,
path coverage, etcpath coverage, etc))

Why Why Statement/Branch/Path Statement/Branch/Path Coverage?Coverage?

logic errors and incorrect assumptions logic errors and incorrect assumptions
 i l ti l t th' i l ti l t th' are inversely proportional to a path's are inversely proportional to a path's

execution probabilityexecution probability

we often we often believebelieve that a path is not that a path is not
likely to be executed; in fact, reality is likely to be executed; in fact, reality is
often counter intuitiveoften counter intuitiveoften counter intuitiveoften counter intuitive

typographical errors are random; it's typographical errors are random; it's
likely that untested paths will contain likely that untested paths will contain likely that untested paths will contain likely that untested paths will contain
some some

CS350 Intro. to SE
Spring 2008 16

Exhaustive Exhaustive Path TestingPath Testing

loop < 20 Xloop < 20 X

There are 10 possible paths! If we execute oneThere are 10 possible paths! If we execute one
test per millisecond, it would take 3,170 years totest per millisecond, it would take 3,170 years to
test this program!!test this program!!

1414

CS350 Intro. to SE
Spring 2008 17

p gp g
However, model checking techniques can analyze more However, model checking techniques can analyze more
than 10than 1014 14 test scenarios systematically in a modest time. test scenarios systematically in a modest time.

SelectiveSelective Path TestingPath TestingSelective Selective Path TestingPath Testing

SSSelected pathSelected path

loop < 20 Xloop < 20 X

CS350 Intro. to SE
Spring 2008 18

ExampleExample
fact=1, i=0

ExampleExample

intint factorial(unsigned char n) {factorial(unsigned char n) {

n==0
no

yesintint factorial(unsigned char n) {factorial(unsigned char n) {
unsigned char fact=1,i=0;unsigned char fact=1,i=0;
if(n == 0) fact=1;if(n == 0) fact=1; // 0!=1// 0!=1

fact=1

y

if(n 0) fact 1; if(n 0) fact 1; // 0! 1// 0! 1
for(for(ii=1; =1; ii <= n; <= n; ii++) ++)

fact = fact *fact = fact * ii;;
i=1

fact fact fact fact ii;;
return fact;return fact;

}}
i <= n

yes
no}}

fact=fact * i
i++;

yes

Statement <= Branch <= Path
Coverage coverage coverage

CS350 Intro. to SE
Spring 2008 19

return fact

Coverage coverage coverage

Why More than PathWhy More than Path Coverage?Coverage?Why More than PathWhy More than Path Coverage?Coverage?
A flow graph does A flow graph does notnot reflect a real imperative programreflect a real imperative program

A state of a real imperative program consists ofA state of a real imperative program consists of valuesvalues ofofA state of a real imperative program consists of A state of a real imperative program consists of valuesvalues of of
variablesvariables while graph theory considers a node as a simple entitywhile graph theory considers a node as a simple entity

// Only one path exists// Only one path exists
// Suppose we use a test case of x=0, and y=0// Suppose we use a test case of x=0, and y=0
intint adder(adder(intint x, x, intint y) { return 0;y) { return 0;}}

Most Most complicated error is caused from loop constructcomplicated error is caused from loop construct
Coverage test does not consider loopCoverage test does not consider loop

Therefore, Therefore, statement/branch/path coverage statement/branch/path coverage testing testing
should should notnot be be considered as considered as complete testcomplete test

Dijk tDijk t id th t t ti t h th b f b b tid th t t ti t h th b f b b t
CS350 Intro. to SE
Spring 2008 20

DijkstraDijkstra said that testing cannot show the absence of a bug, but said that testing cannot show the absence of a bug, but
a presence of a bug in this sense a presence of a bug in this sense

Tragic Accidents due to Tragic Accidents due to Software Software BugsBugs
We need more rigorous and complete analysis methods than testing!!!

21

Model Checking BasicsModel Checking Basics
Specify Specify requirement properties requirement properties and build and build a system a system modelmodel

Similar to a test oracle and a target software under testing (SUT) in Similar to a test oracle and a target software under testing (SUT) in
testingtestingtestingtesting

Generate Generate all possible all possible states states (containing values of variables) (containing values of variables)
fromfrom the model and then check whether given requirementthe model and then check whether given requirementfrom from the model and then check whether given requirement the model and then check whether given requirement
properties are satisfied within the state spaceproperties are satisfied within the state space

OKSystem
model

C

or
model

Requirement

Model Checking
(state exploration)

22

Counter
example(s)

Requirement
properties (Φ Ω)

Model Checking Basics (cont.)Model Checking Basics (cont.)

Undergraduate foundational CS classes contribute this areaUndergraduate foundational CS classes contribute this area
CS204 Discrete mathematicsCS204 Discrete mathematics M d l h ki M d l h ki CS204 Discrete mathematicsCS204 Discrete mathematics
CS300 AlgorithmCS300 Algorithm
CS320 Programming language CS320 Programming language
CS322 Automata and formal languageCS322 Automata and formal language

Model checking Model checking
techniques techniques can helpcan help
analyze more than analyze more than CS322 Automata and formal languageCS322 Automata and formal language

CS350CS350 Introduction to software engineeringIntroduction to software engineering
CS402 Introduction to computational logic CS402 Introduction to computational logic

yy
10101000 1000 test scenarios test scenarios
systematicallysystematically

SE

OKSystem
model

System
spec

PL

Automata, Algorithm

or
model spec.

Model
Checking

23

Counter
example(s)

Requirement
properties

Req.
spec.

Logic
(Φ Ω)

24An Example of Model Checking ½An Example of Model Checking ½
(checking (checking every possibleevery possible values of variables)values of variables)(g(g y py p))

System
Spec.

unsigned char x=0;
unsigned char y=0;

x:0,y:0p
void proc_A() {// Thread 1
while(1)
x++;

}

x:1,y:0

x:2,y:0

x:1,y:1

x:2,y:1 x:2,y:2}

void proc_B() {Thread 2
while(1)
if (x>y)

x:255,y:0 x:255,y:255

if (x>y)
y++;

} x:0,y:0

x:1 y:0

x:0,y:1

x:1 y:1

x:0,y:255

x:1 y:255

always (x >= y)
Req.
Spec

x:1,y:0

x:2,y:0

x:1,y:1 x:1,y:255

x:2,y:1 x:2,y:255

Over-
flow

24

always (x > y)Spec
x:255,y:0 x:255,y:1 x:255,y:255

25An Example of Model Checking 2/2An Example of Model Checking 2/2
((checking checking every possibleevery possible thread scheduling)thread scheduling)((gg y py p g)g)

char cnt=0,x=0,y=0,z=0;

void process() {
h id 1 /* i 1 2*/

Process 0 Process 1
x 2char me = _pid +1; /* me is 1 or 2*/

again:
x = me;
If (y ==0 || y== me) ;
else goto again;

Software
locks x = 1

x = 2
y==0 || y ==2
z = 2
x==2

else goto again;

z =me;
If (x == me) ;
else goto again;

y==0 || y == 1

y=2
(z==2)
cnt++

y=me;
If(z==me);
else goto again;

z = 1
x==1
y = 1
z == 1

cnt++

Vi l i d d !!!
/* enter critical section */
cnt++;
assert(cnt ==1);
cnt --; Mutual

Critical
section

z 1
cnt++

Counter

Violation detected !!!

25

goto again;
}

Mutual
Exclusion
Algorithm

Counter
Example

Model Checking HistoryModel Checking HistoryModel Checking History Model Checking History
1981 Clarke / Emerson: CTL Model Checking

Sifakis / Quielle
105

Sifakis / Quielle
1982 EMC: Explicit Model Checker

Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier

10100

1992 SMV: Symbolic Model Verifier
McMillan

1998 B d d M d l Ch ki i SAT 1010001998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

101000

26

, g, , ,

Model Checking Model Checking Example: Bubble SortExample: Bubble Sort
#include <stdio.h>
#define N 4
int main(){

•There exist at most 8 (2x2x2)
simple paths

•However, the following test
f il t d t t th b

(){
int data[N], i, j, tmp;

/* It misses the last element,
i.e., data[N-1]*/

cases fail to detect the bug
(0,1,2,3),
(0,2,1,3),
(1,0,2,3),
()

, []
1: for (i=0; i<N-1; i++) {
2: for (j=i+1; j<N-1; j++) {
3: if (data[i] > data[j]) {
4: tmp = data[i];

(1,2,0,3)
(2,0,1,3)
(2,1,0,3)

•A number of possible states is
32 4 38

p [];
data[i] = data[j];
data[j] = tmp;

}
}

(232)4 = 3.4x1038

•Suppose that 1 test takes1
microsecond total testing
takes 3.4x 1032 seconds}

}
5: /* Check the array is sorted */
}

•However, SAT based model
checking completes the
analysis in 2 seconds

27
•

Basis Path TestingBasis Path TestingBasis Path TestingBasis Path Testing
First we compute the cyclomatic First, we compute the cyclomatic
complexity:

number of simple decisions + 1 - number of simple decisions + 1

- number of edge – number of node +2

- number of enclosed areas + 1

- In this case, V(G) = 4

V(G) is the upper bound for the # of

CS350 Intro. to SE
Spring 2008 28

V(G) is the upper bound for the # of
independent paths for complete coverage

CyclomaticCyclomatic ComplexityComplexity
A number of industry studies have indicated A number of industry studies have indicated
that the higher V(G), the higher the probability that the higher V(G), the higher the probability
or errorsor errorsor errors.or errors.

mod lesmod lesmodulesmodules

V(G)V(G)

modules in this range are modules in this range are
more error pronemore error prone

CS350 Intro. to SE
Spring 2008 29

Basis Path TestingBasis Path Testing
Next, we derive the Next, we derive the
independent paths:independent paths:
(paths containing a new edge)(paths containing a new edge)11 (paths containing a new edge)(paths containing a new edge)

Si V(G) 4Si V(G) 4
22

Since V(G) = 4,Since V(G) = 4,
there are four pathsthere are four paths

P th 1 1 2 3 6 7 8P th 1 1 2 3 6 7 8

33
44

55 66

Path 1: 1,2,3,6,7,8Path 1: 1,2,3,6,7,8
Path 2: 1,2,3,5,7,8Path 2: 1,2,3,5,7,8
Path 3: 1,2,4,7,8Path 3: 1,2,4,7,8

77
Path 4: 1,2,4,7,2,4,...7,8Path 4: 1,2,4,7,2,4,...7,8

Finally, we derive testFinally, we derive test

77

88

CS350 Intro. to SE
Spring 2008 30

y,y,
cases to exercise these cases to exercise these
paths.paths.

Using Using CyclomaticCyclomatic ComplexityComplexity (pg428)(pg428)
The scene: The scene:

Shakira'sShakira's cubicle.cubicle.

The players: The players:

maybe we should forget whitemaybe we should forget white--box box
testing, integrate everything, and testing, integrate everything, and
start running blackstart running black--box tests.box tests.

VinodVinod,,ShakiraShakira
members of the members of the SafeHomeSafeHome software software
engineering team who are working on engineering team who are working on
test planning for the security function.test planning for the security function.

VinodVinod: : You figure we don't have You figure we don't have
enough time to do component enough time to do component
tests, exercise the operations, and tests, exercise the operations, and
th i t t ?th i t t ?

p g yp g y

The conversation:The conversation:
ShakiraShakira: : Look ... I know that we Look ... I know that we
should unit test al! theshould unit test al! the

then integrate?then integrate?
ShakiraShakira: : The deadline for the first The deadline for the first
increment is getting closer than I'd increment is getting closer than I'd
lik h I' dlik h I' dshould unit test al! the should unit test al! the

components for the security components for the security
function, but there are a lot of 'function, but there are a lot of 'emem
and if you consider the number of and if you consider the number of

like ... yeah, I'm concerned.like ... yeah, I'm concerned.
VinodVinod: : Why don't you at least run Why don't you at least run
whitewhite--box tests on the operations box tests on the operations yy

operations that have to be operations that have to be
exercised, I don't know ... exercised, I don't know ...

that are likely to be the most error that are likely to be the most error
prone?prone?

CS350 Intro. to SE
Spring 2008 31CS350 Intro. to SE
Spring 2008 31

ShakiraShakira (exasperated): (exasperated): And And
exactly how do I know which are exactly how do I know which are
likely to be the most error prone?likely to be the most error prone?

VinodVinod: : It's really easy. Here's a It's really easy. Here's a
book that describes how to do it.book that describes how to do it.
ShakiraShakira (leafing through the (leafing through the

VinodVinod: : V of V of G. G.
ShakiraShakira: : Huh?Huh?
VinodVinod: : CyclomaticCyclomatic complexitycomplexity----V V

pages): pages): Okay, it doesn't look hard. Okay, it doesn't look hard.
I'll give it a try. The ops with the I'll give it a try. The ops with the
highest highest V(G) V(G) will be the candidates will be the candidates
f hitf hit b t tb t t

yy p yp y
of of G. G. Just compute Just compute V(G) V(G) for each for each
of the operations within each of of the operations within each of
the components and see which the components and see which

for whitefor white--box tests.box tests.
VinodVinod: : Just remember that there Just remember that there
are no guarantees. A component are no guarantees. A component

i h li h l V(G)V(G) ill bill bhave the highest values for V(G). have the highest values for V(G).
They're the ones that are most They're the ones that are most
likely to be error prone.likely to be error prone.

with a low with a low V(G) V(G) can still be error can still be error
prone.prone.
ShakiraShakira: : Alright. But at least this'll Alright. But at least this'll

ShakiraShakira: : And how do I compute And how do I compute V V
of of G?G?

help me to narrow down the help me to narrow down the
number of components that have to number of components that have to
undergo whiteundergo white--box testing.box testing.

CS350 Intro. to SE
Spring 2008 32CS350 Intro. to SE
Spring 2008 32

Basis Path Testing NotesBasis Path Testing Notes

you don't need a flow chart you don't need a flow chart you don t need a flow chart, you don t need a flow chart,
but the picture will help when but the picture will help when
you trace program pathsyou trace program paths

count each simple logical test, count each simple logical test,
compound tests count as 2 or compound tests count as 2 or
moremore

basis path testing should be basis path testing should be p gp g
applied to critical modulesapplied to critical modules

CS350 Intro. to SE
Spring 2008 33

Graph MatricesGraph MatricesGraph MatricesGraph Matrices
A graph matrix is a square matrix whose size A graph matrix is a square matrix whose size
(i b f d l) i l t(i b f d l) i l t(i.e., number of rows and columns) is equal to (i.e., number of rows and columns) is equal to
the number of nodes on a flow graphthe number of nodes on a flow graph
Each row and column corresponds to an Each row and column corresponds to an
identified node, and matrix entries correspond to identified node, and matrix entries correspond to
connections (an edge) between nodes. connections (an edge) between nodes.
By adding a By adding a link weightlink weight to each matrix entry, the to each matrix entry, the
graph matrix can become a powerful tool for graph matrix can become a powerful tool for
evaluating program control structure during evaluating program control structure during

CS350 Intro. to SE
Spring 2008 34

testingtesting

Control Structure TestingControl Structure TestingControl Structure TestingControl Structure Testing

Condition testingCondition testingCondition testingCondition testing
a test case design method that exercises the a test case design method that exercises the
l i l diti t i d il i l diti t i d ilogical conditions contained in a program logical conditions contained in a program
modulemodule

Data flow testingData flow testing
selects test paths of a program according to selects test paths of a program according to p p g gp p g g
the locations of definitions and uses of the locations of definitions and uses of
variables in the programvariables in the program

CS350 Intro. to SE
Spring 2008 35

p gp g

Data Flow TestingData Flow TestingData Flow TestingData Flow Testing
For a statement S

DEF(S) = {X| statement S contains a definition of X}
USE(S) = {X| statement S contains a use of X}

A d fi iti (DU) h i f i bl X i f thA definition-use (DU) chain of variable X is of the
form [X,S,S’] where S and S’ are statement, X is in
DEF(S) and USE(S’) void f() {DEF(S) and USE(S)

[x,s1,s3] is a DU chain
[y,s1,s3] is NOT a DU chain

void f() {

s1: int x = 10, y;

s2: if (…) {

A branch is not guaranteed to be
covered by DU testing

() {

…

s3: y = x + 1;

CS350 Intro. to SE
Spring 2008 36

}

Loop TestingLoop Testingp gp g

Nested Nested

Simple Simple
looploop

LoopsLoops

ConcatenatedConcatenated
Loops Loops Unstructured Unstructured

CS350 Intro. to SE
Spring 2008 37

Loops Loops U s uc u edU s uc u ed
LoopsLoops

Loop Testing: Simple LoopsLoop Testing: Simple Loopsp g p pp g p p

Minimum conditionsMinimum conditions——Simple LoopsSimple Loopsp pp p

1. skip the loop entirely1. skip the loop entirely
2. only one pass through the loop2. only one pass through the loop2. only one pass through the loop2. only one pass through the loop
3. two passes through the loop3. two passes through the loop
4. m passes through the loop m < n4. m passes through the loop m < np g pp g p
5. (n5. (n--1), n, and (n+1) passes through 1), n, and (n+1) passes through
the loopthe loop

where n is the maximum number where n is the maximum number
of allowable passesof allowable passes

CS350 Intro. to SE
Spring 2008 38

Loop Testing: Nested LoopsLoop Testing: Nested Loops

Start at the Start at the innermost loopinnermost loop. Set all outer loops to their . Set all outer loops to their
Nested LoopsNested Loops

pp pp
minimum iteration parameter values.minimum iteration parameter values.
Test the min+1, typical, maxTest the min+1, typical, max--1 and max for the 1 and max for the
innermost loop, while holding the outer loops at their innermost loop, while holding the outer loops at their

i i li i lminimum values.minimum values.
Move out one loop and set it up as in step 2, holding all Move out one loop and set it up as in step 2, holding all
other loops at typical values. Continue this step until other loops at typical values. Continue this step until
the outermost loop has been tested.the outermost loop has been tested.the outermost loop has been tested.the outermost loop has been tested.

If the loops are independent of one another If the loops are independent of one another
then treat each as a simple loopthen treat each as a simple loop

Concatenated LoopsConcatenated Loops

then treat each as a simple loopthen treat each as a simple loop
else* treat as nested loopselse* treat as nested loops

endif* endif*

for example, the final loop counter value of loop 1 is for example, the final loop counter value of loop 1 is

CS350 Intro. to SE
Spring 2008 39

p , p pp , p p
used to initialize loop 2.used to initialize loop 2.

BlackBlack--Box TestingBox Testinggg

i ti trequirementsrequirements

outputoutput

eventseventsinputinput

CS350 Intro. to SE
Spring 2008 40

BlackBlack--Box TestingBox TestingBlackBlack Box TestingBox Testing
How is functional validity tested?How is functional validity tested?
How is system behavior and performance tested?How is system behavior and performance tested?
What classes of input will make good test cases?What classes of input will make good test cases?
I th t ti l l iti t t i i tI th t ti l l iti t t i i tIs the system particularly sensitive to certain input Is the system particularly sensitive to certain input
values?values?
How are the boundaries of a data class isolated?How are the boundaries of a data class isolated?How are the boundaries of a data class isolated?How are the boundaries of a data class isolated?
What data rates and data volume can the system What data rates and data volume can the system
tolerate?tolerate?
What effect will specific combinations of data have What effect will specific combinations of data have
on system operation?on system operation?

CS350 Intro. to SE
Spring 2008 41

GraphGraph--Based MethodsBased Methods

object
#1

Directed link

(link weight)
object

#2

To understand the To understand the
objects that are objects that are

d l d id l d i

Undirected link

Parallel links

Node weight
(value

)

modeled in modeled in
software and the software and the
relationships that relationships that
connect theseconnect these object

#
3

(a)

connect these connect these
objectsobjects

In this context, we In this context, we

new
file

menu select generates

(generation time < 1.0 sec)
document

window

,,
consider the term consider the term
“objects” in the broadest “objects” in the broadest
possible context. It possible context. It
encompasses data encompasses data

document
tex

is represented as

contains

Attributes:

background color: white
text color: default color

allows editing
of

pp
objects, traditional objects, traditional
components (modules), components (modules),
and objectand object--oriented oriented
elements of computer elements of computer

CS350 Intro. to SE
Spring 2008 42

tex
t

text color: default color
 or preferences

(b)

software.software.

Equivalence PartitioningEquivalence PartitioningEquivalence PartitioningEquivalence Partitioning

useruser
queriesqueries mousemouse

pickspicks

outputoutput
formatsformats

promptsprompts

FKFK
inputinput

datadata

CS350 Intro. to SE
Spring 2008 43

Sample Equivalence Sample Equivalence
ClassesClassesClassesClasses

user supplied commandsuser supplied commands
Valid dataValid data

pppp
responses to system promptsresponses to system prompts
file namesfile names
computational datacomputational data

physical parameters physical parameters
bounding valuesbounding values
initiation valuesinitiation values

output data formattingoutput data formattingoutput data formattingoutput data formatting
responses to error messagesresponses to error messages
graphical data (e.g., mouse picks)graphical data (e.g., mouse picks)

I lid d tI lid d t
data outside bounds of the program data outside bounds of the program
physically impossible dataphysically impossible data
proper value supplied in wrong placeproper value supplied in wrong place

Invalid dataInvalid data

CS350 Intro. to SE
Spring 2008 44

proper value supplied in wrong placeproper value supplied in wrong place

Boundary Value AnalysisBoundary Value Analysisy yy y

useruser
queriesqueries mousemouse

pickspicks

outputoutput
formatsformats

promptsprompts

FKFK
inputinput

datadata

outputoutput
domaindomaininput domaininput domain

CS350 Intro. to SE
Spring 2008 45

domaindomainpp

Comparison TestingComparison TestingComparison TestingComparison Testing

Used only in situations in which the reliability of softwareUsed only in situations in which the reliability of softwareUsed only in situations in which the reliability of software Used only in situations in which the reliability of software
is absolutely critical (e.g., humanis absolutely critical (e.g., human--rated systems)rated systems)

Separate software engineering teams develop independent Separate software engineering teams develop independent
versions of an application using the same specificationversions of an application using the same specification
Each version can be tested with the same test data to ensure Each version can be tested with the same test data to ensure
that all provide identical outputthat all provide identical outputthat all provide identical output that all provide identical output
Then all versions are executed in parallel with realThen all versions are executed in parallel with real--time time
comparison of results to ensure consistencycomparison of results to ensure consistency

CS350 Intro. to SE
Spring 2008 46

Orthogonal Array TestingOrthogonal Array TestingOrthogonal Array TestingOrthogonal Array Testing
Used when the number of input parameters is small and
th l th t h f th t t kthe values that each of the parameters may take are
clearly bounded

XY

Z

Y

Z

One input item at a time L9 orthogonal array

XY
X

CS350 Intro. to SE
Spring 2008 47

