Chapter 14
Testing Tactics

Moonzoo Kim

CS Division of EECS Dept.
KAIST

msr CS350 Intro. to SE
Spring 2008

Overview of Chl4. Testing Tactics

14.1 Software Testing Fundamentals
14.2 Blackbox and White-Box Testing
14.3 White-Box Testing

14.4 Basis Path Testing
Glow Graph Notation
Independent Program Paths
Deriving Test Cases
Graph Matrices

14.5 Control Structure Testing
Condition Testing
Data Flow Testing
Loop Testing

msr CS350 Intro. to SE
Spring 2008

Testability

Operability
m it operates cleanly
Observability

= the results of each test case are readily observed Modular design
Controllability | | provides good

= the degree to which testing can be automated and .-
Decomposability Let’s think about

= testing can be targeted embedded SW
Simplicity | - = mobile phone

= reduce complex architecture and logic to simplify

tosts software

Stability = Linux kernel

= few changes are requested during testing

Understandability
= of the design

m CS350 Intro. to SE

e SPring 2008

What is a “Good” Test?

A good test has a high probability of finding an error

A good test is not redundant.

A good test should be “best of breed”

A good test should be neither too simple nor too complex

msr CS350 Intro. to SE
Spring 2008

10

——

Designing Unique Tests (pg423)

The scene:
» Vinod's cubical.

The players:
m Vinod, Ed

members of the SafeHome software
engineering team.

The conversation:

Vinod: So these are the test
cases you intend to run for the
password validation operation.

Ed: Yeah, they should cover
pretty much all possibilities for the
kinds of passwords a user might
enter.

iro. to SiE
ring 2003

Vinod: So let's see ... you note that
the correct password will be 8080,
right?

Ed: Uh huh.

Vinod: And you specify passwords
1234 and 6789 to test for errors in
recognizing invalid passwords?

Ed: Right, and | also test passwords
that are close to the correct
password, see ... 8081 and 8180.

Vinod: Those are okay, but | don't
see much point in running both the
1234 and 6789 inputs. They're
redundant . . . test the same thing,
don't they?

- —

Ed: Well, they're different values.

Vinod: That's true, but if 1234
doesn't uncover an error ... in
other words ... the password
validation operation notes that it's
an invalid password, it is not likely
that 6789 will show us anything
new.

Ed: | see what you mean.

Vinod: I'm not trying to be picky
here ... it's just that we have
limited time to do testing, so it's a
good idea to run tests that have a
high likelihood of finding new
errors.

iro. to SiE
ring 2003

Ed: Not a problem ... I'll give this a
bit more thought.

Test Case Design

"Bugs lurk in corners
and congregate at
boundaries ..."

Boris Beizer

‘\
OBJECTIVE to uncover errors
CRITERIA in a complete manner

CONSTRAINT with a minimum of effort and time

msr CS350 Intro. to SE
Spring 2008 13

XAt

Software Testing

. Methods -

CS350 Intro. to SE
Spring 2008

14

White-Box Testing

G

s

(&
=~

e —

... our goal is to ensure that all
statements and conditions have

been executed at least once ...
(statement coverage, branch coverage,

path coverage, etc)

msr CS350 Intro. to SE
Spring 2008 15

Why Statement/Branch/Path Coverage?

d logic errors and incorrect assumptions
are inversely proportional to a path's
execution probability

1 we often believe that a path is not
likely to be executed; in fact, reality is
often counter intuitive

1 typographical errors are random; it's
likely that untested paths will contain
some

msr CS350 Intro. to SE
Spring 2008 16

Exhaustive Path Testing

L

S

ﬁ%é T

=2 =2 B2 B2
— 1 — 1

¢

loop <20 X

There are 101 4 possible paths! If we execute one
test per millisecond, it would take 3,170 years to

test this program!!

However, model checking techniques can analyze more

KAIST csomo.ose than 104 test scenarios systematically in a modest time.

== Spring 2008

17

KAIST

Selective Path Testing

Selected path =
é |
i i | i loop <20 X
1 1

CS350 Intro. to SE
Spring 2008

18

Example

Int factorial(unsigned char n) {
unsigned char fact=1,i=0;
If(n == 0) fact=1,; // 0!=1
for(i=1; i <= n; i++)

fact = fact * I;
return fact;
Statement <= Branch <= Path
Coverage coverage coverage

msr CS350 Intro. to SE
Spring 2008

no

no

fact=1, i=0

fact=fact * i
I++;

return fact

19

Why More than Path Coverage?

A flow graph does not reflect a real imperative program

A state of a real imperative program consists of values of
variables while graph theory considers a node as a simple entity

// Only one path exists
/Il Suppose we use a test case of x=0, and y=0
Int adder(int x, inty) { return 0;}

Most complicated error is caused from loop construct
Coverage test does not consider loop

Therefore, statement/branch/path coverage testing
should not be considered as complete test

Dijkstra said that testing cannot show the absence of a bug, but

a presence of a bug in this sense
msr CS350 Irltro. to SE
Spring 2008

20

Tragic Accidents due to Software Bugs

We need more rigorous and complete analysis methods than testing!!!

corolt Explores has encount anderds o
‘e ane 300y for the inconvenience.

eigh be oat
¥ Bestart Miciosolt Intemet Explores
Please bl Microsoft about this problem.

i have erasted sendta e
Microsolt Intemet Exploser. We vl treat this ieport as confidential and
OO,

To see what data this ence seport contains, cick hare,

fmsire e

Model Checking Basics

Specify requirement properties and build a system model

m Similar to a test oracle and a target software under testing (SUT) In
testing

Generate all possible states (containing values of variables)
from the model and then check whether given requirement
properties are satisfied within the state space

OK

System >
model \7\4
odel Checking /

(state exploration) of

Requirement ' — %er
properties N@~-0 Q) example(s)

Model Checking Basics (cont.)

Undergraduate foundational CS classes contribute this area

SE

CS204 Discrete mathematics
CS300 Algorithm

CS320 Programming language
CS322 Automata and formal language
CS350 Introduction to software engineering
CS402 Introduction to computational logic

System
model

Requirement
properties

Req. Logic

System | —
spec.

Spec. 0@ -G Q)

Model checking
techniques can help

analyze more than
101000 test scenarios
systematically

\Atitomata Alw OK

Model or
Checking

Counter
example(s)

An Example of Model Checking %2
(checking every possible values of variables)

3 unsigned char x=0;
ystém | ynsigned char y=0;

Spec.
void proc_A() {// Thread 1
while(1)
\ X++;

void proc_B() {Thread 2
while(1)
if (x>y)
y++;

}

Req.

Spec always (x >=y)

y
x:0,y:0
v
x:1,y:0 » x:1,y:1
v v
X:2,y:0 M X2,y v[x:2,y12
y ! .
x:255,y10" x255’y255
x:0,y:0 X. 1 X:0,y:255 |«
-
x:1,y:0 >
v
x:2,y:0 >
! —
X:255,y:64x:255,y: 1 —[*255,y255

Over-
flow

An Example of Model Checking 2/2
(checking every possible thread scheduling)

char cnt=0,x=0,y=0,z=0;

void process() {

~charme = _pid +1; /* me is 1 or 2*/

agajn

X = me;
If (y ==0 || y==me)
else goto again;

Z =me;
If (x ==me) ;
else goto again;

y=me;

Software
; locks

A\
—_——)’

else goto again;

/* enter critical section */

cnt++; Critic_:al
assert(cnt ==1); section
cnt --;
in: utual
oto again; :
} ° ? Exclusion
Algorithm

KAIST .

Process 0 Process 1

X=2
J y==0 ||y ==

zZ=2
X==

X =

y==0 ” y == v N
y=2

A4 (Z==)

cnt++

zZ =

X==

y =

én_t; . Violation detected !!!

Counter
Example

Model Checking History

1981 Clarke / Emerson: CTL Model Checking 105
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

Symbolic Model Checking 10100
Burch, Clarke, Dill, McMillan

SMV: Symbolic Model Verifier

McMillan

Bounded Model Checking using SAT 101000
Biere, Clarke, Zhu

Counterexample-guided Abstraction Refinement

Clarke, Grumberg, Jha, Lu, Veith

Model Checking Example: Bubble Sort

#include <stdio.h>
#define N 4
int main(){

int data[N], i, j, tmp;

[* It misses the last element,
I.e., data[N-1]*/
for (i=0; i<N-1; i++) {
for (j=i+1; J<N-1; j++) {
if (data[i] > datalj]) {

tmp = data]i];
datali] = data]j];
datal[j] = tmp;

}
}
; _
5: /* Check the array is sorted */
}

27

start

¥

int data[N], i, j, tmp

Y5/ N

<EL/=£1/J/N1)

yes/ 1o

yes

(i=0; i<N-1; i++)

tmp = datalil

datalil = data[j]

data[j] =tmp

*There exist at most 8 (2x2x2)
simple paths
*However, the following test
cases fail to detect the bug
(0,1,2,3),
(0,2,1,3),
(1,0,2,3),
(1,2,0,3)
(2,0,1,3)
(2,1,0,3)
*A number of possible states is
(232)4 = 3.4x10%8
*Suppose that 1 test takesl
microsecond total testing
takes 3.4x 103%? seconds
However, SAT based model
checking completes the
analysis in 2 seconds

Basis Path Testing

First, we compute the cyclomatic
i complexity:

r - number of simple decisions + 1

‘ - number of edge — number of node +2

- number of enclosed areas + 1
- In this case, V(G) = 4

V(G) is the upper bound for the # of
independent paths for complete coverage

msr CS350 Intro. to SE
Spring 2008 28

Cyclomatic Complexity

A number of industry studies have indicated
that the higher V(G), the higher the probability
or errors.

modules

modules iIn this range are
more error prone

msr CS350 Intro. to SE
Spring 2008 29

Basis Path Testing

Q Next, we derive the
independent paths:

! (paths containing a new edge)
[i l Since V(G) =4,
] .—@—. there are four paths

1:

' Path 2:
Path 3:

Path 4:

8 - -
O Finally, we derive test
cases to exercise these
KAIST CS350 Intro. to SE paths.

Spring 2008 30

—
=)
v
Q
=i
-
‘o

——

Using Cyclomatic Complexity (pg428)

The scene;
= Shakira's cubicle.

The players:
m Vinod,Shakira

members of the SafeHome software
engineering team who are working on
test planning for the security function.

The conversation:

Shakira: Look ... | know that we
should unit test al! the
components for the security
function, but there are a lot of 'em
and if you consider the number of
operations that have to be
exercised, | don't know ...

iro. to SiE
ring 2003

maybe we should forget white-box
testing, integrate everything, and
start running black-box tests.

Vinod: You figure we don't have
enough time to do component
tests, exercise the operations, and
then integrate?

Shakira: The deadline for the first
increment is getting closer than I'd
like ... yeah, I'm concerned.

Vinod: Why don't you at least run
white-box tests on the operations
that are likely to be the most error
prone?

- —

Shakira (exasperated): And
exactly how do | know which are
likely to be the most error prone?

Vinod: V of G.
Shakira: Huh?

Vinod: Cyclomatic complexity--V
of G. Just compute V(G) for each
of the operations within each of
the components and see which
have the highest values for V(G).
They're the ones that are most
likely to be error prone.

Shakira: And how do | compute V
of G?

iro. to SiE
ring 2003

Vinod: It's really easy. Here's a
book that describes how to do it.

Shakira (leafing through the
pages): Okay, it doesn't look hard.
I'll give it a try. The ops with the
highest V(G) will be the candidates
for white-box tests.

Vinod: Just remember that there
are no guarantees. A component
with a low V(G) can still be error
prone.

Shakira: Alright. But at least this'll
help me to narrow down the
number of components that have to
undergo white-box testing.

Basis Path Testing Notes

1 you don't need a flow chart,
but the picture will help when
you trace program paths

] count each simple logical test,
compound tests count as 2 or
more

1 basis path testing should be
O applied to critical modules

msr CS350 Intro. to SE

Spring 2008

Graph Matrices

A graph matrix is a square matrix whose size
(I.e., number of rows and columns) is equal to
the number of nodes on a flow graph

Each row and column corresponds to an
identified node, and matrix entries correspond to
connections (an edge) between nodes.

By adding a link weight to each matrix entry, the
graph matrix can become a powerful tool for
evaluating program control structure during

testing
msr CS350 Intro. to SE

Spring 2008

34

Control Structure Testing

Condition testing

= a test case design method that exercises the
logical conditions contained in a program
module

Data flow testing

= Selects test paths of a program according to
the locations of definitions and uses of
variables in the program

msr CS350 Intro. to SE
e SPring 2008 :

Data Flow Testing

For a statement S

s DEF(S) = {X| statement S contains a definition of X}
m USE(S) = {X| statement S contains a use of X}

A definition-use (DU) chain of variable X is of the
form [X,5,S'] where S and S’ are statement, X is In

DEF(S) and USE(S’)
= [x,51,53]is a DU chain
= [y,s1,53]is NOT a DU chain

A branch is not guaranteed to be
covered by DU testing

CS350 Intro. to SE
Spring 2008

void f() {
s1: intx=10,vy;
s2: if(...){

s3: y=x+1;

}

36

Loop Testing

—

rglies
<o B

Loops }

Concatenated
Loops

m CS350 Intro. to SE

e SPring 2008

—

<
I

Unstructured
Loops

37

Loop Testing: Simple Loops

Minimum conditions—Simple Loops

1. skip the loop entirely

2. only one pass through the loop

3. two passes through the loop

4. m passes through the loop m<n
5. (n-1), n, and (n+1) passes through
the loop

where n is the maximum number
of allowable passes

CS350 Intro. to SE
KAIST 38

Spring 2008

Loop Testing: Nested Loops

Nested Loops

Start at the innermost loop. Set all outer loops to their
minimum iteration parameter values.

Test the min+1, typical, max-1 and max for the
innermost loop, while holding the outer loops at their
minimum values.

Move out one loop and set it up as in step 2, holding all
other loops at typical values. Continue this step until
the outermost loop has been tested.

Concatenated Loops

If the loops are independent of one another
then treat each as a simple loop
else* treat as nested loops

endif*

for example, the final loop counter value of loop 1 is
used to initialize loop 2.

CS350 Intro. to SE
Spring 2008

39

Xant

CS350 Intro. to SE
Spring 2008

Black-Box Testing

requirements

“events

output

40

Black-Box Testing

How is functional validity tested?
How is system behavior and performance tested?
What classes of input will make good test cases?

Is the system particularly sensitive to certain input
values?

How are the boundaries of a data class isolated?

What data rates and data volume can the system

tolerate?

What effect will specific combinations of data have
on system operation?

msr CS350 Intro. to SE
Spring 2008 41

Graph-Based Methods

To understand the
objects that are
modeled in
software and the
relationships that
connect these
objects

In this context, we
consider the term
“objects” in the broadest
possible context. It
encompasses data
objects, traditional
components (modules),
and object-oriented
elements of computer
software.

msr CS350 Intro. to SE
Spring 2008

Directed link
(link weight)

Node weight
(value

)

Undirected link

Parallel links

menu select generates
(generationtime < 1.0 sec)

. [document
window

allows editing

is represented as Attributes:

contains

background color: white

text color: default color
or preferences

document

tex
t

(b)

42

Equivalence Partitioning

L output
queries formats

m CS350 Intro. to SE

e SPring 2008

43

Sample Equivalence
Classes

Valid data
user supplied commands
responses to system prompts
file names
computational data
physical parameters

bounding values

initiation values
output data formatting
responses to error messages
graphical data (e.g., mouse picks)

Invalid data
data outside bounds of the program
physically impossible data
proper value supplied in wrong place

msr CS350 Intro. to SE
—— Spring 2008

— B

user
queries

Boundary Value Analysis

output
formats

_ _ output
input domain domain

m CS350 Intro. to SE

B R Spring 2008

45

Comparison Testing

Used only in situations in which the reliability of software
IS absolutely critical (e.g., human-rated systems)

= Separate software engineering teams develop independent
versions of an application using the same specification

= Each version can be tested with the same test data to ensure
that all provide identical output

= Then all versions are executed in parallel with real-time
comparison of results to ensure consistency

msr CS350 Intro. to SE
Spring 2008 46

Orthogonal Array Testing

Used when the number of input parameters is small and
the values that each of the parameters may take are
clearly bounded

4 ‘;o

®
\t‘ﬁ @ \Y

X—»>

X—»

One input item at a time L9 orthogonal array

mST CS350 Intro. to SE
Spring 2008 a7

