Chapter 8
Analysis Modeling, Part 2/2

Moonzoo Kim
CS Division of EECS Dept.
KAIST

msr CS550 Intro. to SE

Spring 2007

Overview of Ch 8. Building the Analysis Model

April 10: ch 8.1-ch 8.5

8.1 Requirement Analysis

8.2 Analysis Modeling Approaches
8.3 Data Modeling Concepts

8.4 Object-Oriented Analysis

8.5 Scenario-based modeling

April 12: ch 8.6- ch 8.8
= 8.6 Flow-oriented modeling
= 8.7 Class-based modeling
= 8.8 Creating a behavioral model

mS'I‘ CS550 Intro. to SE

- Spring 2007

Flow-Oriented Modeling

*Represents how data objects are transformed at they
move through the system

A data flow diagram (DFD) is the diagrammatic form that
IS used

eConsidered by many to be an ‘old school’ approach

» flow-oriented modeling continues to provide a view
of the system that is unique—it should be used to
supplement other analysis model elements

msr CS550 Intro. to SE

Spring 2007

The Flow Model

Every computer-based system Is an
information transform

computer
baged ‘4

M CS550 Intro. to SE
Spring 2007

ot

CS550 Intro. to SE
Spring 2007

Flow Modeling Notation

-l external entity
‘) process

data flow

data store

External Entity

- A producer or consumer of data

Examples: a person, a device, a sensor

Another example: computer-based system

Data must always originate somewhere
and must always be sent to something

m CS550 Intro. to SE

e SPring 2007

Process

A data transformer (changes input to output)

Examples: compute taxes, determine area,
format report, display graph

Data must always be processed in some
way to achieve system function

m CS550 Intro. to SE

e SPring 2007

Data Flow

e Data flows through a system, beginning

I . .
as input and be transformed into output.

base
\ compute
triangle
heigh area

m CS550 Intro. to SE

e SPring 2007

Data Stores

e
Data is often stored for later use.
e

sensor #

report required
/

sensor number

sensor #, type,
location, age

type,
location, age

|
|
sensor data

m CS550 Intro. to SE

e SPring 2007

Data Flow Diagramming: Guidelines

All icons must be labeled with meaningful names

The DFD evolves through a number of levels of
detall

Always begin with a context level diagram (also
called level 0)

Always show external entities at level 0
Always label data flow arrows
Do not represent procedural logic

msr CS550 Intro. to SE
Spring 2007

10

Constructing a DFD—

review the data model to isolate data
objects and use a grammatical parse
to determine “operations”

determine external entities (producers
and consumers of data)

create a level O DFD

msr CS550 Intro. to SE
Spring 2007 11

Bt

Level O DFD Example

processing

request requested

video

Video
source

- NTSC
video signal

CS550 Intro. to SE

Spring 2007

12

Constructing a DFD—II

Write a narrative describing the transform
Parse to determine next level transforms

“balance” the flow to maintain data flow
continuity

Develop a level 1 DFD
Use a 1.5 (approx.) expansion ratio

msr CS550 Intro. to SE

Spring 2007

13

Xapt

The Data Flow Hierarchy

CS550 Intro. to SE
Spring 2007

14

Flow Modeling Notes

each bubble is refined until it does just one thing

the expansion ratio decreases as the number of
levels increase

most systems require between 3 and 7 levels for
an adequate flow model

a single data flow item (arrow) may be expanded
as levels increase (data dictionary provides
iInformation)

msr CS550 Intro. to SE

Spring 2007

15

ant

Process Specification (PSPEC)

bubble

narrative
pseudocode (PDL)
equations

tables
diagrams and/or charts

CS550 Intro. to SE
Spring 2007

16

DFDs: A Look Ahead

Q”

0
anaIyS|s model \

1

design model =

SSSSSSSSSSSSSSS

17

Control Flow Diagrams

Represents “events” and the processes that manage
events

An “event” is a Boolean condition that can be
ascertained by:
listing all sensors that are "read" by the software.
listing all interrupt conditions.
listing all "switches" that are actuated by an operator.
listing all data conditions.

recalling the noun/verb parse that was applied to the processing
narrative, review all “control items" as possible CSPEC
inputs/outputs.

H CS550 Intro. to SE
Spring 2007

18

]

]
]

LI O L

u

The Control Model

the control flow diagram is "superimposed" on the DFD
and shows events that control the processes noted in
the DFD

control flows—events and control items—are noted by
dashed arrows

a vertical bar implies an input to or output from a control
spec (CSPEC) — a separate specification that
describes how control is handled

a dashed arrow entering a vertical bar is an input to the
CSPEC

a dashed arrow leaving a process implies a data
condition

a dashed arrow entering a process implies a control
input read directly by the process

control flows do not physically activate/deactivate the
processes—this is done via the CSPEC

CS550 Intro. to SE

Spring 2007

19

Class-Based Modeling

|dentify analysis classes by examining the
problem statement

Use a “grammatical parse” to isolate potential
classes

|dentify the attributes of each class
|dentify operations that manipulate the attributes

CS550 Intro. to SE
KAIST 20

Spring 2007

Analysis Classes

(e.g., other systems, devices, people) that produce or
consume information to be used by a computer-based system.

(e.qg, reports, displays, letters, signals) that are part of the
information domain for the problem.

(e.g., a property transfer or the completion of a
series of robot movements) that occur within the context of system
operation.

(e.g., manager, engineer, salesperson) played by people who
interact with the system.

(e.g., division, group, team) that are relevant to an
application.

(e.g., manufacturing floor or loading dock) that establish the
context of the problem and the overall function of the system.

(e.g., sensors, four-wheeled vehicles, or computers) that define
a class of objects or related classes of objects.

CS550 Intro. to SE
Spring 2007

21

Bt

Selecting Classes—~Criteria

CS550 Intro. to SE
Spring 2007

“/retained Information
“/needed services

“/multiple attributes
qcommon attributes

qcommon operations

“/essential requirements

22

Class Diagram

is placed Withinb

HoorPlan

type
name
outsideDimensions

determineType ()
positionHoorplan
scale()

change color()

Camera

type

ID

location
fieldView
panAngle
Zoom Setting

determineType ()
translateLocation ()
displayID()
displayView()
displayZoom ()

is part of

Wall

type

wallDimensions

determineType ()
computeDimensions ()

is used to build P

A

« is used to build

is used to build

WallSegm ent

Window

Door

type

startCoordinates
stopCoordinates
nextWallSement

type

startCoordinates
stopCoordinates
nextWindow

type
startCoordinates
stopCoordinates
nextDoor

determineType ()
draw()

draw()

determineType ()

determineType ()
draw()

ms CS550 Intro. to ¢

Spring 2007

23

CRC Modeling

Analysis classes have “responsibilities”

o are the attributes and operations encapsulated
by the class
Analysis classes collaborate with one another
O are those classes that are required to provide a

class with the information needed to complete a responsibility.

= In general, a collaboration implies either a request for
iInformation or a request for some action.

CS550 Intro. to SE
Spring 2007

24

CRC Modeling

OClocco:

Class: FloorPlan

Description:

Responsibility:

Collaborator:

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

incorporates walls, doors and windows

Wall

shows position of video cameras

Camera

CS550 Intro. to SE
Spring 2007

25

Class Types

, also called model or business classes, are
extracted directly from the statement of the problem (e.g.,
FloorPlan and Sensor).

are used to create the interface (e.g.,
interactive screen or printed reports) that the user sees and
interacts with as the software is used.

manage a “unit of work” [UMLO3] from start to
finish. That is, controller classes can be designed to manage

= the creation or update of entity objects;

= the instantiation of boundary objects as they obtain information from
entity objects;

= complex communication between sets of objects;

= validation of data communicated between objects or between the
user and the application.

CS550 Intro. to SE

- Spring 2007

26

Responsibilities

System intelligence should be distributed across classes
to best address the needs of the problem

Each responsibility should be stated as generally as
possible

Information and the behavior related to it should reside
within the same class

Information about one thing should be localized with a
single class, not distributed across multiple classes.

Responsibilities should be shared among related classes,
when appropriate.

CS550 Intro. to SE
- KAIST 27

Spring 2007

Collaborations

Classes fulfill their responsibilities in one of two ways:

= A class can use its own operations to manipulate its own attributes, thereby
fulfilling a particular responsibility, or

= aclass can collaborate with other classes.
Collaborations identify relationships between classes
Collaborations are identified by determining whether a class can fulfill each
responsibility itself
three different generic relationships between classes [WIR90]:
= the is-part-of relationship
= the has-knowledge-of relationship
= the depends-upon relationship

CS550 Intro. to SE

- Spring 2007

28

KAIS

Composite Aggregate Class

Player

?

PlayerHead

PlayerBody

PlayerArms

PlayerLegs

CS550 Intro. to SE
Spring 2007

29

Reviewing the CRC Model

All participants in the review (of the CRC model) are given a subset of the CRC
model index cards.

= Cards that collaborate should be separated (i.e., no reviewer should have two cards that
collaborate).

All use-case scenarios (and corresponding use-case diagrams) should be
organized into categories.

The review leader reads the use-case deliberately.

= As the review leader comes to a named object, she passes a token to the person
holding the corresponding class index card.

When the token is passed, the holder of the class card is asked to describe the
responsibilities noted on the card.

= The group determines whether one (or more) of the responsibilities satisfies the use-
case requirement.

If the responsibilities and collaborations noted on the index cards cannot
accommodate the use-case, modifications are made to the cards.

= This may include the definition of new classes (and corresponding CRC index cards) or
the specification of new or revised responsibilities or collaborations on existing cards.

H CS550 Intro. to SE
Spring 2007 30

Associations and Dependencies

Two analysis classes are often related to one another in
some fashion
In UML these relationships are called
Associations can be refined by indicating (the term
IS used in data modeling
In many instances, a client-server relationship exists
between two analysis classes.

In such cases, a client-class depends on the server-class in
some way and a IS established

msr CS550 Intro. to SE

Spring 2007

_ -1

CS550 Intro. to SE
Spring 2007

Multiplicity

_ -

32

ot

CS550 Intro. to SE
Spring 2007

Dependencies

DisplayWindow Camera

33

Analysis Packages

Various elements of the analysis model (e.g., use-cases,
analysis classes) are categorized in a manner that
packages them as a grouping

The + sign preceding the analysis class name in each
package indicates that the classes have public visibility
and are therefore accessible from other packages.

Other symbols can precede an element within a package.
A minus sign indicates that an element is hidden from all
other packages and a # symbol indicates that an

element is accessible only to packages contained within
a given package.

CS550 Intro. to SE
Spring 2007 34

Analysis Packages

- - package name

-

-]
-

Environment - -

+Tree
+Landscape
+Road
+Wall
+Bridge
+Building
+VisualEffect
+Scene

i
RulesOf TheGame

i
+RulesOfMovement

1
+ConstraintsOnAction

Characters

+Player
+Protagonist

+Antagonist
+SupportingRole

CS550 Intro. to SE
Spring 2007

35

Behavioral Modeling

The behavioral model indicates how software will
respond to external events or stimuli. To create the
model, the analyst must perform the following steps:

Evaluate all use-cases to fully understand the sequence of
iInteraction within the system.

Identify events that drive the interaction sequence and understand
how these events relate to specific objects.

Create a sequence for each use-case.
Build a state diagram for the system.
Review the behavioral model to verify accuracy and consistency.

msr CS550 Intro. to SE

Spring 2007

36

State Diagram for the ControlPanel Class

timer< lockedTime

timer > lockedTime locked

password = incorrect
& numberOfTries & maxTries

=Nl

reading numberOfTries > maxTries

password
entered

do: validatePassword

\ Y, password = correct

selecting

activation successful

Fig 8.20 pg 251 in SEPA
KAIST Cs550intro. to SE

Spring 2007

37

The States of a System

= a set of observable circum-stances that characterizes the
behavior of a system at a given time

= the movement from one state to another

= an occurrence that causes the system to exhibit some
predictable form of behavior

= process that occurs as a consequence of making a
transition

CS550 Intro. to SE
Spring 2007

38

Behavioral Modeling

make a list of the different states of a system
(How does the system behave?)

Indicate how the system makes a transition from
one state to another

How does the system change state?

Indicate event
Indicate action

draw a

msr CS550 Intro. to SE
Spring 2007

39

Sequence Diagram

homeowner control panel system sensors

system
ready

password entered

>

request lookup

comparing

result

password = correct

numberOfTries > maxTries, request activation

() iimer > locked Time

-

»

selecting

activation successful

activation successful

=t
g

S et et
A

Figure 8.27 Sequence diagram (partial) for SafeHome security function

ms CS550 Intro. to SE

T Spring 2007

Specification Guidelines

L

use a layered format that provides increasing detail
as the "layers" deepen

use consistent graphical notation and apply textual
terms consistently (stay away from aliases)

be sure to define all acronyms

be sure to include a table of contents; ideally,
include an index and/or a glossary

write in a simple, unambiguous style (see "editing
suggestions" on the following pages)

always put yourself in the reader's position, "Would
| be able to understand this if | wasn't intimately
familiar with the system?"

Spring 2007

MIST CS550 Intro. to SE

41

KAIS

Specification Guidelines

Be on the lookout for persuasive connectors, ask why?
keys: certainly, therefore, clearly, obviously, it follows that ...

Watch out for vague terms
keys: some, sometimes, often, usually,ordinarily, most, mostly ...

When lists are given, but not completed, be sure all items are understood
keys: etc., and so forth, and so on, such as

Be sure stated ranges don't contain unstated assumptions
e.g., Valid codes range from 10 to 100. Integer? Real? Hex?

Beware of vague verbs such as handled, rejected, processed, ...

Beware "passive voice" statements
e.g., The parameters are initialized. By what?

Beware "dangling” pronouns
e.g., The I/O module communicated with the data validation module an
its contol flag is set. Whose control flag?

CS550 Intro. to SE
Spring 2007

42

KAIST

Specification Guidelines

When a term is explicitly defined in one place, try
substituting the definition forother occurrences of the term

When a structure is described in words, draw a picture

When a structure is described with a picture, try to redraw
the picture to emphasize different elements of the structure

When symbolic equations are used, try expressing their
meaning in words

When a calculation is specified, work at least two
examples

Look for statements that imply certainty, then ask for proof
keys; always, every, all, none, never

Search behind certainty statements2d e sure restrictions
or limitations are realistic

CS550 Intro. to SE

Spring 2007

43

