
JML: Expressive ModularJML: Expressive, Modular
Reasoning for JavaReasoning for Java

http://www.jmlspecs.org
Moonzoo Kim

CS Division of EECS Dept.
KAIST S

moonzoo@cs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/CS350-07

CS350 Intro. to SE
Spring 2008

These slides were originally created by. Prof.
Yoonsik Cheon and Gary T. Leavens @
University of Texas, El Paso.

Java Modeling Language JMLJava Modeling Language—JML
Formal specification language for JavaFormal specification language for Java
– Functional behavior
– Sequential

Goals:Goals:
– Practical, effective for detailed designs

E i ti d– Existing code
– Wide range of tools

Hoare-style
Method pre and postconditions– Method pre- and postconditions

– Type invariants

Example JML SpecificationExample JML Specification
field specification

public class Animal implements Gendered {

field specification

protected /*@ spec_public @*/ int age = 0;

/*@ requires 0 < yrs;/ @ requires 0 < yrs;
@ ensures age == \old(age + yrs); @*/

public void older(final int yrs)public void older(final int yrs)
{ age = age + yrs; }

/* */
method behavior specification

/* … */

}}

Behavioral Interface SpecificationBehavioral Interface Specification

JML Specification

Syntactic Interface Functional Behavior

J C dJava Code

Behavioral Interface SpecificationBehavioral Interface Specification

/*@ requires 0 < yrs;
@ ensures age == \old(age + yrs); @*/

public void older(final int yrs);

public void older(final int yrs);

requires yrs > 0;
ensures age == \old(age) + yrs;

p (y);

public void older(final int yrs)p (y)
{ age = age + yrs; }

Design by Contract with JMLDesign by Contract with JML

D i bDesign by contract
Java Modeling Language (JML)Java Modeling Language (JML)
Formal specifications in JML
JML tools – JML compiler (jmlc)

CS350 Spring 2008 6

Design By Contract (DBC)Design By Contract (DBC)

A way of recording:
– Details of method responsibilities
– Avoiding constantly checking arguments
– Assigning blame across interfaces

main () {
/* Client */
x = ..., y=...,
z = f(x, y) /* Implementer */

contract

...
}

CS350 Spring 2008 7

Contracts in SoftwareContracts in Software
/*@ requires x >= 0.0;

@ ensures JMLDouble.approximatelyEqualTo(x,
@ \result * \result, eps);@ , p);
@*/

public static double sqrt(double x) { … }

Obligations Rights

Client Passes non-negative
number

Gets square
root approximation

Implementor Computes and
returns square root

Assumes argument
is non-negative

CS350 Spring 2008 8

Pre and PostconditionsPre and Postconditions

D fi i iDefinition
– A method’s precondition says what must be true to call it.
– A method’s normal postcondition says what is true when itA method s normal postcondition says what is true when it

returns normally (i.e., without throwing an exception).
– A method’s exceptional postcondition says what is true when a

method throws an exceptionmethod throws an exception.

/*@ signals (IllegalArgumentException e) x < 0;
@*/

CS350 Spring 2008 9

Contracts as DocumentationContracts as Documentation

For each method say:
– What it requires (if anything), and
– What it ensures.

Contracts are:
– More abstract than code,
– Not necessarily constructive (i.e. declarative)Not necessarily constructive (i.e. declarative)
– Often machine checkable, so can help with

debugging, andgg g,
– Machine checkable contracts can always be up-to-

date.

CS350 Spring 2008 10

Abstraction by SpecificationAbstraction by Specification

A b i fi d iA contract can be satisfied in many ways:
E.g., for square root:
– Linear searchLinear search
– Binary search
– Newton’s method
– …

These will have varying non-functional properties
– Efficiency– Efficiency
– Memory usage

So, a contract abstracts from all these implementations,
and thus can change implementations later.

CS350 Spring 2008 11

More Advantages of ContractsMore Advantages of Contracts

Blame assignment
– Who is to blame if:Who is to blame if:

• Precondition doesn’t hold?
• Postcondition doesn’t hold?Postcondition doesn t hold?

Avoids inefficient defensive checks
//@ requires a != null && (* a is sorted *);
public static int binarySearch(Thing[] a, Thing x) { … }

CS350 Spring 2008 12

Modularity of ReasoningModularity of Reasoning

Typical OO code:
…
source.close();
dest.close();

() f (() ())getFile().setLastModified(loc.modTime().getTime());
…

How to understand this code?
– Read the code for all methods?Read the code for all methods?
– Read the contracts for all methods?

CS350 Spring 2008 13

Rules for ReasoningRules for Reasoning
Cli t dClient code
– Must work for every implementation that satisfies the contract, and
– Can thus only use the contract (not the code!), i.e.,

• Must establish precondition and• Must establish precondition, and
• Gets to assume the postcondition

//@ assert 9.0 >= 0;@
double result = sqrt(9.0);
//@ assert result * result ≈ 9.0; // can assume result == 3.0?

Implementation codep
– Must satisfy contract, i.e.,

• Gets to assume precondition
• Must establish postcondition

– But can do anything permitted by it.

CS350 Spring 2008 14

Contracts and IntentContracts and Intent

C d k b dCode makes a poor contract, because code can not
separate:
– What is intended (contract)What is intended (contract)
– What is an implementation decision

E.g., if the square root gives an approximation good to 3 decimal
places can that be changed in the next release?places, can that be changed in the next release?

By contrast, contracts:
– Allow vendors to specify intent,
– Allow vendors freedom to change details, and
– Tell clients what they can count on.

QuestionQuestion
– What kinds of changes might vendors want to make that don’t

break existing contracts?

CS350 Spring 2008 15

JMLJML

What is it?
– Stands for “Java Modeling Language”Stands for Java Modeling Language

• A formal behavioral interface specification
language for Javag g

– Design by contract for Java
Uses Java 1 4 or later– Uses Java 1.4 or later

– Available from www.jmlspecs.org

CS350 Spring 2008 16

AnnotationsAnnotations

JML ifi i i d i i hi hJML specifications are contained in annotations, which
are comments like:

//@ …

or

/*@ …
@ …
@*/@*/

At-signs (@) on the beginning of lines are ignored within annotations.

QuestionQuestion
– What’s the advantage of using annotations?

CS350 Spring 2008 17

Informal DescriptionInformal Description
A i f l d i ti l k likAn informal description looks like:
(* some text describing a property *)

– It is treated as a boolean value by JML, and
– Allows

• Escape from formality, andp y,
• Organize English as contracts.

public class IMath {p {
/*@ requires (* x is positive *);
@ ensures \result >= 0 &&
@ (* \result is an int approximation to square root of x *)@ (\result is an int approximation to square root of x)
@*/

public static int isqrt(int x) { … }
}

CS350 Spring 2008 18

}

ExerciseExercise
Write informal pre and postconditions for methods of the
following class.
public class Person {

private String name;
private int weight;

/*@ also
public void addKgs(int kgs) {

if (kgs >= 0) {
@ ensures \result != null &&
@ (* \result is a displayable
@ form of this person *);

public String toString() {

if (kgs 0) {
weight += kgs;

} else {
throw new IllegalArgumentException();

}public String toString() {
return “Person(\” + name +

“\”, “ + weight + ”)”;
}

}
}

public int getWeight() {
return weight;

}

public Person(String n) {
name = n; weight = 0;

}
}

CS350 Spring 2008 19

} }

Formal SpecificationsFormal Specifications

F l ti itt JFormal assertions are written as Java
expressions, but:
– Cannot have side effects– Cannot have side effects

• No use of =, ++, --, etc., and
• Can only call pure methods.

C t i t J– Can use some extensions to Java:
Syntax Meaning

\result result of method call
a ==> b a implies b
a <== b b implies a
a <==> b a iff b
a <=!=> b !(a <==> b)
\old(E) value of E in pre-state

CS350 Spring 2008 20

ExampleExample
// File: Person refines java// File: Person.refines-java

//@ refine “Person.java”

public class Person {
private /*@ spec_public non_null @*/ String name;
private /*@ spec_public @*/ int weight;

//@ public invariant !name equals(“”) && weight >= 0;//@ public invariant !name.equals() && weight >= 0;

/*@ also
@ ensures \result != null;
@*/

public String toString();

//@ also ensures \result == weight;//@ also ensures \result == weight;
public int getWeight();

<<continues to next slide>>

CS350 Spring 2008 21

Example (Cont)Example (Cont.)
/*@ also

@ ensures kgs >= 0 && weight == \old(kgs + weight);
@ signals (Exception e) kgs < 0 &&
@ (e instanceof IllegalArgumentException);@ (e instanceof IllegalArgumentException);
@*/

public void addKgs(int kgs);

/*@ also
@ requires !n.equals(“”);
@ ensures n.equals(name) && weight == 0;
@*/@ /

public Person(/*@ non_null @*/ String n);
}

CS350 Spring 2008 22

Meaning of PostconditionsMeaning of Postconditions

normal
(ret rn)

exceptional
(th)(return) (throw)

ensures
kgs >= 0

signals (…)
kgs < 0;kgs >= 0 … kgs < 0;

CS350 Spring 2008 23

InvariantsInvariants

Definition
– An invariant is a property that is always true of an

object’s state (when control is not inside the object’s
methods).

Invariants allow you to define:
– Acceptable states of an object, and
– Consistency of an object’s state.

//@ public invariant !name.equals(“”) && weight >= 0;

CS350 Spring 2008 24

ExerciseExercise

Formally specify the following method (in
Person))

public void changeName(String newName) {p g (g) {
name = newName;

}

Hint: watch out for the invariant!

CS350 Spring 2008 25

QuantifiersQuantifiers

JML supports several forms of quantifiers
– Universal and existential (\forall and \exists)()
– General quantifiers (\sum, \product, \min, \max)
– Numeric quantifier (\num of)q (_)

(\forall Student s; juniors.contains(s); s.getAdvisor() != null)

(\forall Student s; juniors.contains(s) ==> s.getAdvisor() != null)

CS350 Spring 2008 26

ExerciseExercise

Formally specify the missing part, i.e., the fact
that a is sorted in ascending order.

/*@ old boolean hasx = (\exists int i; i >= 0 && i < a.length; a[i] == x);
@ requires@ requires
@
@ ensures (hasx ==> a[\result] == x) && (!hasx ==> \result == -1);
@ requires_redundantly (* a is sorted in ascending order *);
@*/

public static int binarySearch(/*@ non null @*/ int[] a, int x) { … }pub c stat c t b a ySea c (/ @ o _ u @ / t[] a, t) { }

Hint: use a nested quantification!

CS350 Spring 2008 27

Model DeclarationsModel Declarations
Wh t if t t h bli fi ld’ ?What if you want to change a spec_public field’s name?
private /*@ spec_public non_null @*/ String name;

to

private /*@ non_null @*/ String fullName;

For specification:
– need to keep the old name public
– but don’t want two strings.but don t want two strings.

So, use a model field:
//@ public model non_null String path;@ g

and a represents clause

//@ private represents path <- fullName;

CS350 Spring 2008 28

Model VariablesModel Variables

Are specification-only variables
– Like domain-level constructs
– Given value only by represents clauses:

name abstract (model)

fullName concrete (real)

represented by

fullName concrete (real)

CS350 Spring 2008 29

QuestionQuestion

What changes would you make to change the
representation of a person’s weight from kilograms to
pounds?pounds?

CS350 Spring 2008 30

Tools for JMLTools for JML

JML compiler (jmlc)
JML/Java interpreter (jmlrac)JML/Java interpreter (jmlrac)
JML/JUnit unit test tool (jmlunit)
HTML generator (jmldoc)

CS350 Spring 2008 31

JML Compiler (jmlc)JML Compiler (jmlc)

Basic usage
$ jmlc Person.java$ jmlc Person.java

produces Person.class
$ jmlc Q * ja a$ jmlc –Q *.java

produces *.class, quietly
$ jmlc –d ../bin Person.java

produces ../bin/Person.classproduces ../bin/Person.class

CS350 Spring 2008 32

Running Code Compiled with jmlcRunning Code Compiled with jmlc

Must have JML’s runtime classes
(jmlruntime.jar) in Java’s boot class path(j j) p
Automatic if you use script jmlrac, e.g.,
$ j l P M i$ jmlrac PersonMain

CS350 Spring 2008 33

A Main ProgramA Main Program
public class PersonMain {

public static void main(String[] args) {public static void main(String[] args) {
System.out.println(new Person(null));
System.out.println(new Person(“”));

}
}

$ jmlc Q Person java$ jmlc –Q Person.java
$ javac PersonMain.java
$ jmlrac PersonMain
E ti i th d " i " j l j l ti JMLE t P diti EException in thread "main" org.jmlspecs.jmlrac.runtime.JMLEntryPreconditionError
: by method Person.Person regarding specifications at
File "Person.refines-java", line 52, character 20 when

' ' i ll'n' is null
at org.jmlspecs.samples.jmltutorial.Person.checkPre$$init$$Person(

Person.refines-java:1060)

CS350 Spring 2008 34

at org.jmlspecs.samples.jmltutorial.Person.<init>(Person.refines-java:51)
at org.jmlspecs.samples.jmltutorial.PersonMain.main(PersonMain.java:27)

