
CS350 Introduction to Software Engineering, Spring 08

SafeHome Team 4
Design Model
Version 1.0
Printed by Team4

Team 4 :

20000330 Sangyoung, Lee
20040033 Sejoong, Kwon
20050426 Jieun, Lee
20070485 Kanghee, Won

Table of Contents
1. Class Diagram ...1

1.1 Class Diagram.. 1
 1.1.1 Main class diagram ... 1
 1.1.2 Floor-plan….. 2
1.2 Class Description ... 3
 1.2.1 Interface class.. 3
 1.2.1.1 Description ... 3
 1.2.1.2 Atttribute .. 3
 1.2.1.3 Responsibilities .. 3
 1.2.1.4 Traceability... 7
 1.2.1.5 CRC Card ... 8
 1.2.2 CoreContorl class.. 9
 1.2.2.1 Description ... 9
 1.2.2.2 Atttribute .. 9
 1.2.2.3 Responsibilities .. 9
 1.2.2.4 Traceability... 12
 1.2.2.5 CRC Card ... 13
 1.2.3 Permission class .. 14
 1.2.3.1 Description ... 14
 1.2.3.2 Atttribute .. 14
 1.2.3.3 Responsibilities .. 14
 1.2.3.4 Traceability... 14
 1.2.3.5 CRC Card ... 15
 1.2.4 SensorManagement class .. 16
 1.2.4.1 Description ... 16
 1.2.4.2 Atttribute .. 16
 1.2.4.3 Responsibilities .. 16
 1.2.4.4 Traceability... 19
 1.2.4.5 CRC Card ... 20
 1.2.5 CameraManagement class .. 21
 1.2.5.1 Description ... 21
 1.2.5.2 Atttribute .. 21
 1.2.5.3 Responsibilities .. 21
 1.2.5.4 Traceability... 26
 1.2.5.5 CRC Card ... 27
 1.2.6 Alarm class ... 28
 1.2.6.1 Description ... 28
 1.2.6.2 Atttribute .. 28
 1.2.6.3 Responsibilities .. 28
 1.2.6.4 Traceability... 28
 1.2.6.5 CRC Card ... 29
 1.2.7 Phonecall class .. 30
 1.2.7.1 Description ... 30
 1.2.7.2 Atttribute .. 30
 1.2.7.3 Responsibilities .. 30
 1.2.7.4 Traceability... 31
 1.2.7.5 CRC Card ... 31
 1.2.8 Sensor class... 32
 1.2.8.1 Description ... 32

 1.2.8.2 Atttribute .. 32
 1.2.8.3 Responsibilities .. 32
 1.2.8.4 Traceability... 33
 1.2.8.5 CRC Card ... 33
 1.2.11.Camera class ... 34
 1.2.9.1 Description ... 34
 1.2.9.2 Atttribute .. 34
 1.2.9.3 Responsibilities .. 34
 1.2.9.4 Traceability... 36
 1.2.9.5 CRC Card ... 36
 1.2.10 User class .. 37
 1.2.10.1 Description ... 37
 1.2.10.2 Atttribute .. 37
 1.2.10.3 Responsibilities .. 37
 1.2.10.4 Traceability... 37
 1.2.10.5 CRC Card ... 37
 1.2.11 Phonenumber class.. 38
 1.2.11.1 Description ... 38
 1.2.11.2 Atttribute .. 38
 1.2.11.3 Responsibilities .. 38
 1.2.11.4 Traceability... 38
 1.2.11.4 CRC Card ... 39
 1.2.12 Floor-plan class... 40
 1.2.12.1 Description ... 40
 1.2.12.2 Atttribute .. 40
 1.2.12.3 Responsibilities .. 40
 1.2.12.4 Traceability... 40
 1.2.13 Floor class ... 41
 1.2.13.1 Description ... 41
 1.2.13.2 Atttribute .. 41
 1.2.13.3 Responsibilities .. 41
 1.2.13.4 Traceability... 41
 1.2.14 Wall... 42
 1.2.14.1 Description ... 42
 1.2.14.2 Atttribute .. 42
 1.2.14.3 Responsibilities .. 42
 1.2.14.4 Traceability... 42
 1.2.15 Wall segments, Windows and Doors .. 43
 1.2.15.1 Description ... 43
 1.2.15.2 Atttribute .. 43
 1.2.15.3 Responsibilities .. 43
 1.2.15.4 Traceability... 43

2. State Diagram...44
2.0 The entire view .. 44
2.1 Activation... 46
2.2 Deactivation ... 47
2.3 Permission.. 48
2.4 Access Sensors... 49
2.5 Access Cameras ... 51
2.6 Alert ... 53
2.7 Configuration ... 54
 2.7.1 Configuration - Floor Plan .. 56
 2.7.2 Configuration - Password ... 58

 2.7.3 Configuration - Phonecall list ... 59
Appendix A: Team Meeting Reports ...

 1

1. Class Diagram

1.1 Class Diagram

 1.1.1 Main class diagram

 2

1.1.2 Floor-plan

 3

1.2. Class Description

1.2.1. Interface

1. Description

This class is for interface which is panel and internet in this Safehome
system. This class has most of function that must be implemented. This class is
super class of PanelInterface and WebInterface. The PanelInterface
andWebInterface inherits all attributes and operations in the Interface.

 Panel and internet class have all the functions. And when some input from
the external device is occurred and they call this function, this class command
“CoreControl” class to do something. The CoreContol class is the core of system.
So, this interface class that order to CoreControl class is the most superior class.

2. Attribute

1. userList: This list concludes all users who accesses via internet. This userList
composed of User Objects which have id and password as its attributes. This userList
has the list of User Objects. And administrator is not included in the userList.

2. adminID: SafeHome only have on user as a Administrator. And this attribute means
the administrator’s ID

3. adminPassword: Administrator’s password.
3. Responsibilities

1. bool initialize()
- Precondition: SafeHome HW box, panel must be installed.

 4

- Postcondition: SafaHome system is initialized.
- Trigger: When user turns on the power of safeHome system.
- This function used when safeHome power turns on or off. If panel interface or web
interface request initialize function, initialize function in the coreControl is
conducted to initialize all classes. If this function is properly done, true is returned.

2. bool stay()
- Precondition: SafeHome is deactivated state.
- Postcondition:SafeHome is “stay” activated.
- Trigger: When user using panel pushes “stay” button on the panel.
 When user accessing via web interface “stay” activates the safeHome.
- This function used when user “stay” activates safeHome system. If this function is
properly done, true is returned.

3. bool away()
- Precondition: SafeHome is deactivated state.
- Postcondition: SafaHome is “away” activated.
- Trigger: When user using panel pushes “away” button on the panel.
 When user accessing via web interface “away” activates the safeHome.
- This function used when user “stay” activates safeHome system. If this function is
properly done, true is returned.

4. bool deactivate()
- Precondition: SafeHome is activated state.
- Postcondition: SafaHome is deactivated
- Trigger: When user using panel inputs right password on the panel.
 When user accessing via web interface deactivates the safeHome.
- This function used when user deactivates safeHome system. If this function is
properly done, true is returned.

5. void panic()
- Precondition: User using panel pushes panic button.
- Postcondition: SafeHome syste alarms and calls the number in the phoneCall list.
- Trigger: When user using panel pushes panic button.
- This function is used when user pushes panic button. If this button is pushed,
coreControl class’s panic() function is called. And in the previous functions, alarm
class’s makeBigSound() and PhoneCall class’s callAll() function is called.

6. void display(String message)
- Precondition: There is message to be displayed in the panel display.
- Postcondition: Panel displays messages.
- Trigger: There is message to be displayed in the panel display.
- While doing the initialize() functions, if there are some malfunctioning sensors or
malfunctioning cameras, panel must displays the information of malfunctioning
sensors cameras. So display(String message) function is needed.

7. Image requestImage(String id, String password)
- Precondition: User accessing via internet requests a camera view, and inputs
password of the camera.

 5

- Postcondition: Selected camera’s view is returned.
- Trigger: When user accesing via web interface requests a camera view.
- This function calls the CoreControl’s requestImage(String id, String password), and
this function calls to CameraMangement’s requestImage(String id, String password)
and the camera which has that id return images.

8. Image requestThumbnailImage()
- Precondition: User accessing via internet requests a thumbnail view
- Postcondition: Thumbnail view is returned.
- Trigger: When user accesing via web interface requests a thumbnail view.
- This function calls the CoreControl’s requestThumbnailImage(), and this function
calls to CameraMangement’s makeThumbnailImage(). And then maked image is
returned.

9. bool displayImage(Image img)
- Precondition: User accessing via internet requests any kind of camera view.
- Postcondition: Web interface displays the image.
- Trigger: When User accessing via internet requests any kind of camera view.
- This function displays the img to web interface.

10. List requestPhoneNumberList()
- Precondition: User accessing via internet requests PhoneNumber list
- Postcondition: Web interface displays the PhoneNumber list.
- Trigger: When User accessing via internet requests PhoneNumber list.
- This function displays the PhoneNumber list.

11. PhoneNumber requestPhoneNumber(String name)
- Precondition: User accessing via internet requests PhoneNumber list
- Postcondition: Web interface displays the PhoneNumber list.
- Trigger: When User accessing via internet requests PhoneNumber list.
- This function displays the PhoneNumber list.

12. bool addPhoneNumber(String name, String number)
- Precondition: User accessing via internet requests to add phoneNumber to
PhoneNumber list
- Postcondition: A new phoneNumber is added to PhoneNumber list.
- Trigger: When User accessing via internet adds phoneNumber to PhoneNumber list.
- This function adds new phoneNumber to the PhoneNumber list.

13. PhoneNumber deletePhoneNumber(String name, String number)
- Precondition: User accessing via internet requests to delete phoneNumber from
PhoneNumber list
- Postcondition: A selected phoneNumber is deleted to PhoneNumber list.
- Trigger: When User accessing via internet request to delete phoneNumber from
PhoneNumber list.
- This function deletes the selected phoneNumber from the PhoneNumber list.

14. List requestSensorList()
- Precondition: User accessing via internet requests Sensor list

 6

- Postcondition: SensorList is returned.
- Trigger: When User accessing via internet requests Sensor list.
- This function returns sensorList.

15. bool addSensor(String sensorID, String sensorType)
- Precondition: User accessing via internet requests to add a new Sensor to
SensorList.
- Postcondition: The new sensor is added to SensorList.
- Trigger: When User accessing via internet requests to add a new Sensor.
- This function adds new Sensor to SensorList.

16. Sensor deleteSensor(String sensorID)
- Precondition: User accessing via internet requests to delete a selected Sensor from
SensorList.
- Postcondition: The selected sensor is deleted from the SensorList.
- Trigger: When User accessing via internet requests to delete a selected Sensor.
- This function deletes a selected Sensor to SensorList.

17. bool logIn(String id, String password)
- Precondition: User requests to log in the web interface.
- Postcondition: User log-in is accepted.
- Trigger: When User requests to log in the web interface.
- This function accepts user who properly logs in the web interface by inputting right
id and password. If the log-in procedure is properly done, this function returns true.

18. bool addUser(String id, String password)
- Precondition: User requests to add a new user to web interface.
- Postcondition: The new user is added.
- Trigger: When User requests to add a new user to web interface.
- This function adds a new user. If the adding procedure is properly done, this
function returns true.

19. User deleteUser(String id)
- Precondition: User requests to delete a selected user from web interface.
- Postcondition: The selected user is deleted
- Trigger: When User requests to delete a selected user from web interface.
- This function deletes a selected user. The deleted user object is returned.

20. bool record(String cameraID)
- Precondition: User requests to start recording a view of the selected camera.
- Postcondition: The camera recording is started.
- Trigger: When User requests to start recording a view of the selected camera.
- This function records view of the selected camera. If the starting to record is
properly done, this function returns true.

21. videoFile stopRecord(String cameraID)
- Precondition: User requests to end recording a view of the selected camera.
- Postcondition: The camera recording is ended.
- Trigger: When User requests to end recording a view of the selected camera.

 7

- This function records view of the selected camera. If the stopping to record is
properly done, this function returns the video which is recorded by previous
procedure.

22. setPanelPassword(String newPassword)
- Precondition: User requests to modify panel password.
- Postcondition: The panel password is modified.
- Trigger: When User requests to modify panel password.
-This function modifies panel password. This function returns true if panel password
properly changed.

4. Traceability

Responsibilities Use Case Description
+bool initialize() 3.1 Initialization
+bool stay() 3.2 Activation
+bool away() 3.2 Activation
+bool deactivate() 3.3 Deactivation
+void panic() 3.7 Alert
+void display(String message) 3.1 Initialization, 3.2 Activation
+Image requestImage(String CameraID,
String password)

3.6 Access Cameras

+Image requestThumbnailImage() 3.6 Access Cameras
+ListrequestPhoneNumberList() 3.8 Configuration
+PhoneNumber requestPhoneNumber(String
name)

+bool addPhoneNumber(String name,String
number)

3.8 Configuration

+PhoneNumber deletePhoneNumber(String
name,String number)

3.8 Configuration

+List requestSensorList() 3.5 Access Sensors
+bool addSensor(String sensorID, String
sensorType)

3.8 Configuration

+Sensor deleteSensor(String sensorID) 3.8 Configuration
+bool login(String id, String password) Newly added
+bool addUser(String id, String password) Newly added
+User searchUser(String id) Newly added
+void setPanelPassword(String
newPassword)

3.8 Configuration

 8

5. CRC Card

 9

1.2.2. CoreControl

1. Description

This is CoreControl class. This class represents the core of system. This class
is the superior class than other classes without Interface classes. Other functionality
classes are CameraManagement, SensorManagement, Permission, Alarm,
PhoneCall and so on, connected from this class. And this CoreControl class achieve
results of the function by controlling other class.

2. Attribute

None

3. Responsibilities
1. bool initialize()

- Precondition: SafeHome HW box, panel must be installed.
- Postcondition: SafaHome system is initialized.
- Trigger: When user turns on the power of safeHome system.
- This function used when safeHome power turns on or off. If panel interface or web
interface request initialize function, this function is called, and this function
initializes other classes. If this function is properly done, true is returned.

2. bool stay()
- Precondition: SafeHome is deactivated state.
- Postcondition: SafeHome is “stay” activated.
- Trigger: When user using panel pushes “stay” button on the panel.
 When user accessing via web interface “stay” activates the safeHome.
- This function used when user “stay” activates safeHome system. The interface class
calls this function to activate the safeHome system. If this function is properly done,
true is returned.

3. bool away()
- Precondition: SafeHome is deactivated state.
- Postcondition: SafaHome is “away” activated.

 10

- Trigger: When user using panel pushes “away” button on the panel.
 When user accessing via web interface “away” activates the safeHome.
- This function used when user “stay” activates safeHome system. The interface class
calls this function to activate the safeHome system. If this function is properly done,
true is returned.

4. bool deactivate()
- Precondition: SafeHome is activated state.
- Postcondition: SafaHome is deactivated
- Trigger: When user using panel inputs right password on the panel.
 When user accessing via web interface deactivates the safeHome.
- This function used when user deactivates safeHome system. The interface class
calls this function to deactivate the safeHome system.

5. void panic()
- Precondition: User using panel pushes panic button.
- Postcondition: SafeHome syste alarms and calls the number in the phoneCall list.
- Trigger: When user using panel pushes panic button.
- This function is used when user pushes panic button. If this button is pushed,
Interface class’s panic() function calls this function. And this function calls alarm
class’s makeBigSound() and PhoneCall class’s callAll() function.

6. Image requestImage(String id, String password)
- Precondition: User accessing via internet requests a camera view, and inputs
password of the camera to web interface.
- Postcondition: Selected camera’s view is returned.
- Trigger: When user accesing via web interface requests a camera view.
- This function is called when Interface’s requestImage(String id, String password) is
called. And this function calls CameraMangement’s requestImage(String id, String
password) and the camera which has that id return images.

7. Image requestThumbnailImage()
- Precondition: User accessing via internet requests a thumbnail view
- Postcondition: Thumbnail view is returned.
- Trigger: When user accesing via web interface requests a thumbnail view.
- This function is called when Interface’s requestThumbnailImage() is called. And
this function calls to CameraMangement’s makeThumbnailImage(). And then maked
image is returned.

8. List requestPhoneNumberList()
- Precondition: User accessing via internet requests PhoneNumber list
- Postcondition: Web interface displays the PhoneNumber list.
- Trigger: When User accessing via internet requests PhoneNumber list.
- This function returns the PhoneNumber list.

9. PhoneNumber requestPhoneNumber(String name)
- Precondition: User accessing via internet requests PhoneNumber list
- Postcondition: Web interface displays the PhoneNumber list.
- Trigger: When User accessing via internet requests PhoneNumber list.

 11

- This function returns the PhoneNumber object which has the name in the phone
Number List.

10. bool addPhoneNumber(String name, String number)
- Precondition: User accessing via internet requests to add phoneNumber to
PhoneNumber list
- Postcondition: A new phoneNumber is added to PhoneNumber list.
- Trigger: When User accessing via internet adds phoneNumber to PhoneNumber list.
- This function is called when Interfaces addPhoneNumberList(String name, String
number)is called. This function return true when adding procedure is properly done.

11. PhoneNumber deletePhoneNumber(String name, String number)
- Precondition: User accessing via internet requests to delete phoneNumber from
PhoneNumber list
- Postcondition: A selected phoneNumber is deleted to PhoneNumber list.
- Trigger: When User accessing via internet request to delete phoneNumber from
PhoneNumber list.
- This function is called when Interfaces deletePhoneNumberList(String name, String
number)is called. This function returns the deleted PhoneNumber object when
deleting procedure is properly done.

12. List requestSensorList()
- Precondition: User accessing via internet requests Sensor list
- Postcondition: SensorList is returned.
- Trigger: When User accessing via internet requests Sensor list.
- This function is called when Interface requestSensorList() function is called. And
this function returns sensorList.

13. bool addSensor(String sensorID, String sensorType)
- Precondition: User accessing via internet requests to add a new Sensor to
SensorList.
- Postcondition: The new sensor is added to SensorList.
- Trigger: When User accessing via internet requests to add a new Sensor.
- This function adds new Sensor to SensorList.

14. Sensor deleteSensor(String sensorID)
- Precondition: User accessing via internet requests to delete a selected Sensor from
SensorList.
- Postcondition: The selected sensor is deleted from the SensorList.
- Trigger: When User accessing via internet requests to delete a selected Sensor.
- This function is called when interface’s deleteSensor(String sensorID) is called.
This function returns deleted Sensor object.

15. bool record(String cameraID)
- Precondition: User requests to start recording a view of the selected camera.
- Postcondition: The camera recording is started.
- Trigger: When User requests to start recording a view of the selected camera.
- This function records view of the selected camera. If the starting to record is

 12

properly done, this function returns true.

16. videoFile stopRecord(String cameraID)
- Precondition: User requests to end recording a view of the selected camera.
- Postcondition: The camera recording is ended.
- Trigger: When User requests to end recording a view of the selected camera.
- This function records view of the selected camera. If the stopping to record is
properly done, this function returns the video which is recorded by previous
procedure.

17. bool setPanelPassword(String newPassword)
- Precondition: User requests to modify panel password.
- Postcondition: The panel password is modified.
- Trigger: When User requests to modify panel password.
-This function modifies panel password. This function is called when Interface’s
setPanelPassword(String newPassword) is called. This function returns true if panel
password properly changed.

4. Traceability

Responsibilities Use Case Description
+bool initialize() 3.1 Initialization
+bool stay() 3.2 Activation
+bool away() 3.2 Activation
+bool deactivate() 3.3 Deactivation
+void panic() 3.7 Alert
+Image requestImage(String CameraID,
String password)

3.6 Access Cameras

+Image requestThumbnailImage() 3.6 Access Cameras
+ListrequestPhoneNumberList() 3.8 Configuration
+PhoneNumber requestPhoneNumber(String
name)

Newly added

+bool addPhoneNumber(String name,String
number)

3.8 Configuration

+PhoneNumber deletePhoneNumber(String
name,String number)

3.8 Configuration

+List requestSensorList() 3.5 Access Sensors
+bool addSensor(String sensorID, String
sensorType)

Newly added

+Sensor deleteSensor(String sensorID) 3.8 Configuration
+bool record(String cameraID) 3.6 Access Cameras
+ImgFile stopRecord(String CameraID) 3.6 Access Cameras
+void setPanelPassword(String
newPassword)

3.8 Configuration

 13

5. CRC Card

 14

1.2.3 Permission

1. Description
When user inputs 4-digit password to panel to deactivate the safeHome

system, the inputted password must be checked. Or, administrator can change panel
password via web interface. So this class deals those responsibilities.

2. Attribute

1. password: panel password.
2. numOfFailedTrial: number of failed trial.

3. Responsibilities
1. bool checkPassword(String inputtedPassword)

- Precondition: User inputted password.
- Postcondition: User gets the permission.
- Trigger: User inputted password, and Core Controller wants to confirm that the
inputted password is correct or not.
- This function is called when the user inputted the password into panel or internet to
get the permission.

2. bool setPassword(String newPassword)
- Precondition: Administrator via internet wants to modify the password.
- Postcondition: The password is changed.
- Trigger: Administrator via internet orders modifying password.
- In CoreControl class, there is setPassword(String newPassword) functions. In that
function this function is called and set newPassword as a password

4 .Traceability

Responsibilities Use case description
+bool checkPassword(String
inputtedPassword)

3.4 Permission

+void setNewPassword(String
newPassword)

3.8 Configuration

 15

5. CRC Card

 16

1.2.4 SensorManagement

1. Description

This class is for sensor management. All functions related to sensor
management are accomplished in this class. User accessing internet can turn on or
off certain sensors, and add or delete sensors. And also user can modify maximum
number of sensors.

2. Attribute
1. maxNumOfSensors: maximum number of sensors that can exist in the house.
2. numOfEnabledSensors: current number of enabled sensors.
3. sensorList: all sensor list in the house.
4. enabledSensorList: enabled sensor list.
5. malfunctioningSensorList: list of malfunctioning sensors.
6. ignoredSensorList: list of ignored sensors.
7. interruptQueue: queue of sensor interrupts.

3. Responsibilities

1. bool initialize()
- Precondition: CoreContol’s initialize() function is called.
- Postcondition: Sensors are initialized.
- Trigger: When user turns on the power of safeHome system.
 When panel is “away” activated.
- This function is used when safeHome power turns on. And whenever the system is

 17

“away” activated, SensorManagement’s initialize() function must be called. If this
function is properly done, and sensors are properly initialized, true is returned.

2. bool detect()
- Precondition: SafeHome is “away” activated.
- Postcondition: All sensors wait for interrupts.
- Trigger: When SafeHome is “away” activated.
- This function is used when safeHome is “away” activated. And whenever the
system is “away” activated, SensorManagement’s detect() function must be called to
detect motions in the house. If this function is properly done, true is returned.

3. bool enableAll()
- Precondition: SafeHome is “away” activated.
- Postcondition: All sensors are enabled.
- Trigger: When SafeHome is “away” activated.
- This function is used when safeHome is “away” activated. And whenever the
system is “away” activated, SensorManagement’s enables all sensors in the house.
So this function calls all sensors’ enable() function. If this function is properly done,
true is returned.

4. bool disableAll()
- Precondition: SafeHome is deactivated.
- Postcondition: All sensors are disabled.
- Trigger: When SafeHome is deactivated.
- This function is used when safeHome is deactivated. And whenever the system is
deactivated, SensorManagement’s disables all sensors in the house. So this function
calls all sensors’ disable() function. If this function is properly done, true is returned.

5. bool enable(sensorID)
- Precondition: User accessing via web interface enables sensor whose id is sensorID.
- Postcondition: sensor which has sensorID is enabled.
- Trigger: When user accessing via web interface enables sensor whose id is
sensorID.
- This function is used when safeHome is “away” activated and user accessing via
web interface enables certain sensor whose id is sensorID. So this function calls the
selected sensor’s enable() function. If this function is properly done, true is returned.

6. bool disable(sensorID)
- Precondition: User accessing via web interface disables sensor whose id is sensorID.
- Postcondition: sensor which has sensorID is disabled.
- Trigger: When user accessing via web interface disables sensor whose id is
sensorID.
- This function is used when safeHome is “away” activated and user accessing via
web interface disables certain sensor whose id is sensorID. So this function calls the
selected sensor’s disable() function. If this function is properly done, true is returned.

7. Sensor searchSensor(String sensorID)
- Precondition: None
- Postcondition: Sensor which has sensorID is returned.

 18

- Trigger: When functions which needs to search certain sensor with sensorID calls
this function.
- This function is used when functions which need to search certain sensor with
sensorID are called. If this function is properly done, sensor whose id is sensorID is
returned.

8. bool addSensor(String sensorID, String type)
- Precondition: User accessing vie web interface requests to add new sensor which
has sensorID and type to sensorList.
- Postcondition: A new sensor is added to sensorList.
- Trigger: When user accessing vie web interface requests to add new sensor which
has sensorID and type.
- This function used when user accessing via web interface requests to add new
sensor. If this function is properly done, sensor whose id is sensorID and type is type
is added to sensorList. A newly added sensor is initially diabled. And if this function
is properly done, sensor whose id is sensorID and type is type is added.

9. Sensor deleteSensor(String sensorID)
- Precondition: User accessing vie web interface requests to delete sensor which has
sensorID from sensorList.
- Postcondition: The selected sensor is deleted form sensorList.
- Trigger: When user accessing vie web interface requests to delete sensor which has
sensorID from sensorList.
- This function used when user accessing via web interface requests to delete sensor
whose id is sensorID. If this function is properly done, sensor is deleted from
sensorList. And if this function is properly done, sensor whose id is sensorID
returned.

10. bool addMalfunctioningSensor(Sensor s)
- Precondition: None.
- Postcondition: A malfunctioning sensor is added to malfunctioningSensorList.
- Trigger: While accomplishing any functions related to sensors, if one sensor is
malfunctioning, this function is called.
- If malfunctioning sensor is found, the sensor is added to malfunctioningSensorList.
And if this function is properly done, true is returned.

11. Sensor deleteMalfunctioningSensor(Sensor s)
- Precondition: None.
- Postcondition: Sensor s is deleted from malfunctioningSensorList.
- Trigger: When malfunctioning sensor is fixed or trashed.
- This function deletes Sensor s from the malfunctioningSensorList. And if this
function is properly done, the deleted Sensor is returned.
Sensor deleteIgnoredSensor(Sensor s)
- Precondition: None
- Postcondition: Sensor s is deleted from ignoredSensorList.
- Trigger: indecisive
- This function deletes Sensor s from the ignoredSensorList. And if this function is
properly done, the deleted Sensor is returned.

 19

12. String sensorListInfo()
- Precondition: When user accessing via web interface requests sensorList
information.
- Postcondition: sensorList information is made and returned.
- Trigger: When user accessing via web interface requests sensorList information.
- This function makes String which contains information about sensors which is in
sensorList. And if this function is properly done, the String which made previously is
returned.

13. String malfunctioningListInfo()
- Precondition: None
- Postcondition: malfunctioningSensorList information is made and returned.
- Trigger: indecisive
- This function makes String which contains information about sensors which is in
malfunctioningSensorList. And if this function is properly done, the String which
made previously is returned.

14. String ignoredSensorListInfo()
- Precondition: None
- Postcondition: malfunctioningSensorList information is made and returned.
- Trigger: indecisive
- This function makes String which contains information about sensors which is in
ignoredSensorList. And if this function is properly done, the String which made
previously is returned.

15. void setNumOfEnabledSensors(int newCurrentNumOfSensors)
- Precondition: User enables or disables sensors.
- Postcondition: The current number of enabled sensors is modified.
- Trigger: When current number of enabled sensor is changed.
-When user accessing via web interface enables or disables sensors the
numOfEnabledSensors should be changed. This function modifies
numOfEnabledSensors. This function returns true if numOfEnabledSensors is
properly changed.

16. void setMaxNumOfSensors(int newMaxNumOfSensors)
- Precondition: User requests to modify the maximum number of sensors in the house.
- Postcondition: The maximum number of sensors is modified.
- Trigger: When User requests to modify the maximum number of sensors.
-This function modifies maximum number of sensors. This function returns true if
maximum number of sensors is properly changed.

4. Traceability

Responsibilities Use Case Description
+bool initialize() 3.1 Initialization
+bool detect() 3.7 Alert
+bool enableAll() 3.2 Activation, 3.5 Access Sensors
+bool disableAll() 3.2 Activation, 3.5 Access Sensors
+bool enable(sensorID) 3.5 Access Sensors
+bool disable(sensorID) 3.5 Access Sensors

 20

+Sensor searchSensor(String sensorID,
String type)

Newly added

+bool addSensor(String sensorID, String
type)

3.8 Configuration

+Sensor deleteSensor(String sensorID) 3.8 Configuration
+bool addMalfunctioningSensor(Sensor s) 3.1 Initialization, 3.2 Activation
+Sensor deleteMalfunctioningSensor(Sensor
s)

3.1 Initialization, 3.2 Activation

+bool addIgnoredSensor(Sensor s) 3.2 Activation
+bool deleteIgnoredSensor(Sensor s) 3.2 Activation
+String sensorListInfo() Newly added
+String malfunctioningListInfo() Newly added
+String ignoredSensorListInfo() Newly added
+void setNumOfEnabledSensors(int
newCurrentNumOfSensors)

3.8 Configuration

+void setMaxNumOfSensors(int
newMaxNumOfSensors)

3.8 Configuration

5. CRC Card

 21

1.2.5 CameraManagement

1. Description
This class is for camera management. All functions related to camera

management are accomplished in this class. User accessing internet can turn on or
off certain cameras, and add or delete cameras. And also user can modify maximum
number of cameras.

2. Attribute

1. maxNumOfCameras: maximum number of cameras that can exist in the house.
2. numOfEnabledCameras: current number of enabled cameras.
3. cameraList: all camera list in the house.
4. EnabledCameraList: enabled camera list.
5. malfunctioningCameraList: list of malfunctioning cameras.
6. ignoredCameraList: list of ignored cameras.
7. videoList : list of videos.
8. maxNumOfVideo: maximum number of videos.

3. Responsibilities

 22

1. bool initialize()
- Precondition: CoreContol’s initialize() function is called.
- Postcondition: Cameras are initialized.
- Trigger: When user turns on the power of safeHome system.
 When panel is “away” activated.
- This function is used when safeHome power turns on. And whenever the system is
“away” or “stay” activated, CameraManagement’s initialize() function must be called.
If this function is properly done, and cameras are properly initialized, true is returned.

2. bool enableAll()
- Precondition: SafeHome is “away” or “stay” activated.
- Postcondition: All cameras are enabled.
- Trigger: When SafeHome is “away” or “stay” activated.
- This function is used when safeHome is “away” or “stay” activated. And whenever
the system is “away” or “stay” activated, CameraManagement’s enables all cameras
in the house. So this function calls all cameras’ enable() function. If this function is
properly done, true is returned.

3. bool disableAll()
- Precondition: SafeHome is deactivated.
- Postcondition: All cameras are disabled.
- Trigger: When SafeHome is deactivated.
- This function is used when safeHome is deactivated. And whenever the system is
deactivated, CameraManagement’s disables all cameras in the house. So this function
calls all cameras’ disable() function. If this function is properly done, true is returned.

4. bool enable(cameraID)
- Precondition: User accessing via web interface enables camera whose id is
cameraID.
- Postcondition: camera which has cameraID is enabled.
- Trigger: When user accessing via web interface enables camera whose id is
cameraID.
- This function is used when safeHome is “away” or “stay” activated and user
accessing via web interface enables certain camera whose id is cameraID. So this
function calls the selected camera’s enable() function. If this function is properly
done, true is returned.

5. bool disable(cameraID)
- Precondition: User accessing via web interface disables sensor whose id is
cameraID.
- Postcondition: camera which has cameraID is disabled.
- Trigger: When user accessing via web interface disables camera whose id is
cameraID.
- This function is used when safeHome is “away” or “stay” activated and user
accessing via web interface disables certain camera whose id is cameraID. So this
function calls the selected camera’s disable() function. If this function is properly
done, true is returned.

 23

6. Camera searchCamera(String cameraID)
- Precondition: None
- Postcondition: Camera which has cameraID is returned.
- Trigger: When functions which needs to search certain camera with cameraID calls
this function.
- This function is used when functions which need to search certain camera with
cameraID are called. If this function is properly done, sensor whose id is cameraID is
returned.

7. bool addCamera(String cameraID, String type)
- Precondition: User accessing vie web interface requests to add new camera which
has cameraID and type to cameraList.
- Postcondition: A new camera is added to cameraList.
- Trigger: When user accessing vie web interface requests to add new camera which
has cameraID and type.
- This function used when user accessing via web interface requests to add new
camera. If this function is properly done, camera whose id is cameraID and type is
type is added to cameraList. A newly added camera is initially diabled. And if this
function is properly done, camera whose id is cameraID and type is type is added.

8. Camera deleteCamera(String cameraID)
- Precondition: User accessing vie web interface requests to delete camera which has
cameraID from cameraList.
- Postcondition: The selected camera is deleted form cameraList.
- Trigger: When user accessing vie web interface requests to delete camera which has
cameraID from cameraList.
- This function used when user accessing via web interface requests to delete camera
whose id is cameraID. If this function is properly done, camera is deleted from
cameraList. And if this function is properly done, camera whose id is cameraID
returned.

9. bool addMalfunctioningCamera(Camera c)
- Precondition: None.
- Postcondition: A malfunctioning camera is added to malfunctioningCameraList.
- Trigger: While accomplishing any functions related to cameras, if one camera is
malfunctioning, this function is called.
- If malfunctioning camera is found, the camera is added to
malfunctioningCameraList. And if this function is properly done, true is returned.

10. Camera deleteMalfunctioningCamera(Camera c)
- Precondition: None.
- Postcondition: Sensor s is deleted from malfunctioningCameraList.
- Trigger: When malfunctioning camera is fixed or trashed.
- This function deletes Camera c from the malfunctioningCameraList. And if this
function is properly done, the deleted camera is returned.

11. bool addIgnoredCamera(Camera c)
- Precondition: Panel is deactivated and Initialize() function is conducted.
- Postcondition: Camera c which should be ignored is added to ignoredCameraList.

 24

- Trigger: When panel is deactivated, if there is sensor which is not disabled by any
reasons.
- When panel is deactivated, if there is camera which is not disabled by any reasons.
But camera must be forcibly ignored. So the camera must be added to
ignoredCameraList and safeHome system ignores all signals from cameras in
ignoredCameraList. And if this function is properly done, true is returned.

12. Camera deleteIgnoredCamera(Camera c)
- Precondition: None
- Postcondition: Camera c is deleted from ignoredCameraList.
- Trigger: indecisive
- This function deletes Camera c from the ignoredCameraList. And if this function is
properly done, the deleted Camera is returned.

13. Image requestImage(cameraID)
- Precondition: User accessing via web interface requests image of camera whose id
is cameraID.
- Postcondition: image of camera is returned.
- Trigger: When user accessing via web interface requests image of camera whose
id is cameraID.
- This function returns image of camera whose id is cameraID. And if this function
is properly done, the Image is returned.

14. bool zoom_in(cameraID)
- Precondition: User accessing via web interface requests to zoom_in function of
camera whose id is cameraID.
- Postcondition: image is zoomed in.
- Trigger: When user accessing via web interface requests to zoom_in function of
camera whose id is cameraID.
- This function returns true if the zoom_in function of the camera is conducted.

15. bool zoom_out(cameraID)
- Precondition: User accessing via web interface requests to zoom_out function of
camera whose id is cameraID.
- Postcondition: image is zoomed out.
- Trigger: When user accessing via web interface requests to zoom_out function of
camera whose id is cameraID.
- This function returns true if the zoom_out function of the camera is conducted.

16. bool pan(cameraID)
- Precondition: User accessing via web interface requests to pan function of camera
whose id is cameraID.
- Postcondition: image pans.
- Trigger: When user accessing via web interface requests to pan function of camera
whose id is cameraID.
- This function returns true if the pan function of the camera is conducted.

17. bool tilt(cameraID)
- Precondition: User accessing via web interface requests to tilt function of camera

 25

whose id is cameraID.
- Postcondition: image tilts.
- Trigger: When user accessing via web interface requests to tilt function of camera
whose id is cameraID.
- This function returns true if the tilt function of the camera is conducted.

18. Image makeThumbnailImage()
- Precondition: User accessing via web interface requests thumbnail image.
- Postcondition: ThmbnailImage is returned.
- Trigger: When user accessing via web interface requests thumbnail image.
- This function makes thumbnail image of all cameras by using each camera’s
scanImage() function. And this function returns thumbnail image.

19. String cameraListInfo()
- Precondition: When user accessing via web interface requests cameraList
information.
- Postcondition: cameraList information is made and returned.
- Trigger: When user accessing via web interface requests cameraList information.
- This function makes String which contains information about cameras which is in
cameraList. And if this function is properly done, the String which made previously
is returned.

20. String malfunctioningCameraListInfo()
- Precondition: None
- Postcondition: malfunctioningCameraList information is made and returned.
- Trigger: indecisive
- This function makes String which contains information about cameras which is in
malfunctioningCameraList. And if this function is properly done, the String which
made previously is returned.

21. String ignoredCameraListInfo()
- Precondition: None
- Postcondition: ignoredCameraList information is made and returned.
- Trigger: indecisive
- This function makes String which contains information about cameras which are in
ignoredCameraList. And if this function is properly done, the String which made
previously is returned.

22. bool record(String cameraID)
- Precondition: User requests to start recording a view of the selected camera.
- Postcondition: The camera recording is started.
- Trigger: When User requests to start recording a view of the selected camera.
- This function records view of the selected camera. If the starting to record is
properly done, this function returns true.

23. videoFile stopRecord(String cameraID)

- Precondition: User requests to end recording a view of the selected camera.
- Postcondition: The camera recording is ended.
- Trigger: When User requests to end recording a view of the selected camera.

 26

- This function records view of the selected camera. If the stopping to record is
properly done, this function returns the video which is recorded by previous
procedure.

24. bool setMaxNumOfCameras(int newMaxNumOfCameras)
-Precondition: User requests to modify the maximum number of cameras in the
house.
- Postcondition: The maximum number of cameras is modified.
- Trigger: When User requests to modify the maximum number of cameras.
-This function modifies maximum number of cameras. This function returns true if
maximum number of cameras is properly changed.

25. void setMaxNumOfVideo(int newMaxNumOfVideos)
- Precondition: User requests to modify the maximum number of videos.
- Postcondition: The maximum number of videos is modified.
- Trigger: When User requests to modify the maximum number of videos.
-This function modifies maximum number of videos.

4. Traceability
Responsibilities Use Case Description
+bool initialize() 3.1 Initialization
+bool enableAll() 3.2 Activation, 3.6 Access Cameras
+bool disableAll() 3.3 Deactivation, 3.6 Access Cameras
+bool enable(cameraID) 3.6 Access Cameras
+bool disable(cameraID) 3.6 Access Cameras
+bool addMalfunctioningCamera(Camera c) 3.1 Initialization, 3.2 Activation
+bool addIgnoredCamera(Camera c) 3.2 Activation
+Image requestImage(cameraID) 3.6 Access Cameras
+bool zoom_in(cameraID) 3.6 Access Cameras
+bool zoom_out(cameraID) 3.6 Access Cameras
+bool pan(cameraID) 3.6 Access Cameras
+bool tilt(cameraID) 3.6 Access Cameras
+Image makeThumbnailImage() 3.6 Access Cameras
+bool record(String cameraID) Newly added
+ImgFile stopRecord(String cameraID) Newly added

 27

5. CRC Card

 28

1.2.6 Alarm

1. Description

This is Alarm class. This class is mainly responsible for make a big alarming
sound in emergency situation, but also it is concerned about a small beep sound
when needed.

2. Attribute

None
3. Responsibilities

1. void makeBeep()
- Precondition: Something not expected has been happened.
- Postcondition: A short beep sound is played.
- Trigger: When something not expected has been happened.
- When a small beep sound is needed, this function makes a small beep sound to
notify the user that something is wrong.

2. void makeBigSound()
- Precondition: System concluded that it is an emergency situation.
- Postcondition: A big alarm sound is played.
- Trigger: When system concluded that it is an emergency situation.
- When system detected motion while activated, or an intruder tries to enter, or user
pressed panic button, or in any other emergency situations, system should alarm.
This function takes responsibility for making Big alarm sound in such emergency
situations.

3. void disable()
- Precondition: User wants to turn off the alarm.
- Postcondition: Alarm is disabled.
- Trigger: When User wants to turn off the alarm.
- Sometimes system might make incorrect decision and user wants to turn off the
alarm. Or, after user solved the problem which is a reason for alarming user may
want to turn off the alarm. In such situations, this function disables alarm.

4. Traceability

Responsibilities Use Case Description
+void makeBeep() Newly added
+void detect() 3.7 Alert
+void disable() 3.3 Deactivation

 29

5. CRC Card

 30

1.2.7 Phonecall

1. Description

 This class is for phone call. All functions related to phone call are
accomplished in this class.

2. Attribute
1. phoneNumberList: list of phone numbers which is called in emergency

situation.

3. Responsibilities

1. bool initialize()
- Precondition: Phonecall class is needed to be initialized.
- Postcondition: Phonecall class is initialized.
- Trigger: When Phonecall class is needed to be initialized.
- When Phonecall class is needed to be initialized, (i.e. Activation or Initialization)
this function initializes the Phonecall class and returns the result. If initialization was
successful, this function returns true. Otherwise, it returns false.

2. bool isPhoneNumberListEmtpy()
- Precondition: None.
- Postcondition: Returns true if phoneNumberList is empty. Otherwise returns false.
- Trigger: indecisive.
- This function returns true if phoneNumberList is empty. If phoneNumberList is not
empty, it returns false.

3. bool callAll()
- Precondition: In emergency situations.
- Postcondition: Call to the all phone numbers in phoneNumberList.
- Trigger: In emergency situations.
- In emergency situations, the call to all the phone numbers in phoneNumberList may
be needed. This function tries to call to all the phone numbers in phoneNumberList,
and returns true if all the calls are successful. If any call has been failed, this returns
false.

4. List getPhoneNumberList()
- Precondition: Other classes need information about phone numbers.
- Postcondition: Returns List which is identical to phoneNumberList.
- Trigger: When other classes need information about phone numbers.
- When other class need phoneNumberList, this function confirms the identical List
to the phoneNumberList and returns it.

 31

5. PhoneNumber searchPhoneNumber(String name, String number)
- Precondition: None.
- Postcondition: Returns PhoneNumber which matches name and number.
- Trigger: indecisive.
- This function finds specific PhoneNumber instance in phoneNumberList which
matches name and number passed by arguments and returns it.

6. PhoneNumber searchPhoneNumber(String name, String number)
- Precondition: None.
- Postcondition: Returns PhoneNumber which matches name and number.
- Trigger: indecisive.
- This function finds specific PhoneNumber instance in phoneNumberList which
matches name and number passed by arguments and returns it.

4. Traceability

Responsibilities Use Case Description
+bool initialize() 3.1 Initialization, 3.2 Activation
+bool phoneNumberListIsEmpty() 3.8 Configuration
+bool callAll() 3.7 Alert
+List getPhoneNumberList() 3.8 Configuration
+PhoneNumber searchPhoneNumber(String
name, String number)

3.8 Configuration

+bool addPhoneNumber(String name, String
number)

3.8 Configuration

+PhoneNumber
deletePhoneNumber(PhoneNumber pn)

3.8 Configuration

+bool modifyPhoneNumber(PhoneNumber
pn, String newName, String newNumber)

3.8 Configuration

5. CRC Card

 32

1.2.8 Sensor

Figure

1. Description

This class is Sensor class. This class is designed for control sensors one by one.
Each class is responsible for exact one sensor. It has all functions about sensors;
initialization, enable/disable, and detection.

2. Attribute

1. sensorID: ID for the sensor.
2. sensorType: Specify type of the sensor.

3. Responsibilities

1. bool initialize()
- Precondition: Sensor is needed to be initialized.
- Postcondition: Sensor is initialized.
- Trigger: When Sensor is needed to be initialized.
- When Sensor is needed to be initialized, (i.e. Activation or Initialization) this
function initializes the Sensor and returns the result. If initialization was successful,
this function returns true. Otherwise, it returns false.

2. bool enable()
- Precondition: Sensor is needed to be enabled.
- Postcondition: Sensor is enabled.
- Trigger: When Sensor is needed to be enabled.
- When Sensor is needed to be enabled, (i.e. Activation or Configuration) this
function enables the Sensor and returns the result. If the sensor is successfully
enabled, this function returns true. Otherwise, it returns false.

3. bool disable()
- Precondition: Sensor is needed to be disabled.
- Postcondition: Sensor is disabled.
- Trigger: When Sensor is needed to be disabled.
- When Sensor is needed to be disabled, (i.e. Deactivation or Configuration) this
function disables the Sensor and returns the result. If the sensor is successfully
disabled, this function returns true. Otherwise, it returns false.

4. bool detect()
- Precondition: None
- Postcondition: Returns true if some motions has been detected.
- Trigger: indecisive.
- If some motion has been detected, this function returns true. If no motion has been
detected, this function returns false.

 33

5. String toString()
- Precondition: None
- Postcondition: Returns string that contains information about the sensor.
- Trigger: indecisive.
- This function returns string that contains information about the sensor.

4. Traceability

Responsibilities Use Case Description
+bool initialize() 3.1 Initialization
+bool enable() 3.2 Activation
+bool disable() 3.3 Deactivation
+bool detect() 3.7 Alert
+String toString() Newly added

5. CRC Card

 34

1.1.9 Camera

Figure

1. Description

This is Camera class. This class is designed for control cameras one by one. Each
class is responsible for exact one camera. It has all functions about cameras;
initialization, enable/disable, identification, scanning image, password verification,
and recording.

2. Attribute

1. cameraID: ID for the camera.
2. cameraType: Type of the camera.
3. password: password which is needed when requesting view.
4. zoomInLimit: Limit that camera can zoom in.
5. zoomOutLimit: Limit that camera can zoom out.
6. panLimit: Limit that camera can pan.
7. zoomValue: Current Value that represents how much the camera has zoomed in.
8. panValue: Current value that represents location of the camera.

3. Responsibilities

1. bool initialize()
- Precondition: Camera is needed to be initialized.
- Postcondition: Camera is initialized.
- Trigger: When Camera is needed to be initialized.
- When Camera is needed to be initialized, (i.e. Activation or Initialization) this
function initializes the Camera and returns the result. If initialization was successful,
this function returns true. Otherwise, it returns false.

2. bool enable()
- Precondition: Camera is needed to be enabled.
- Postcondition: Camera is enabled.
- Trigger: When Camera is needed to be enabled.
- When Camera is needed to be enabled, (i.e. Activation or Configuration) this

 35

function enables the Camera and returns the result. If the Camera is successfully
enabled, this function returns true. Otherwise, it returns false.

3. bool disable()
- Precondition: Camera is needed to be disabled.
- Postcondition: Camera is disabled.
- Trigger: When Camera is needed to be disabled.
- When Camera is needed to be disabled, (i.e. Deactivation or Configuration) this
function disables the Camera and returns the result. If the Camera is successfully
disabled, this function returns true. Otherwise, it returns false.

4. Image scanImage()
- Precondition: User accessing via web interface requests image of camera
- Postcondition: image of camera is returned.
- Trigger: When user accessing via web interface requests image of camera.
- This function scans and returns image of camera. And if this function is properly
done, the Image is returned.

5. bool isRightPassword(String inputtedPW)
- Precondition: User inputted password for accessing camera view.
- Postcondition: Return true if password is correct.
- Trigger: When user inputted password for accessing camera view.
- If user wants to access camera view, user must enter the correct password which is
pre-configured for each camera. This function compares password that user has
inputted with password that is stored in the class. And if password is correct, the
function returns true. If password is incorrect, the function returns false.

6. String toString()
- Precondition: None
- Postcondition: Returns string that contains information about the camera.
- Trigger: indecisive.
- This function returns string that contains information about the camera.

7. bool record()
- Precondition: User requests to start recording a view of the camera.
- Postcondition: Recording is started.
- Trigger: When User requests to start recording a view of the selected camera.
- This function records view of the camera. If the starting to record is properly done,
this function returns true.

 .
8. videoFile stopRecord()

- Precondition: User requests to end recording a view camera.
- Postcondition: Recording is ended.
- Trigger: When User requests to end recording a view of the camera.
- This function records view of the camera. If the stopping to record is properly done,
this function returns the video which is recorded by previous procedure.

 36

4. Traceability

Responsibilities Use Case Description
+bool initialize() 3.1 Initialization
+bool identify() 3.1 Initialization, Access Camera
+bool enable() 3.2 Activation
+bool disable() 3.3 Deactivation
+Image scanImage() 3.6 Access Cameras
+bool IsRightPassword(String inputtedPW) 3.6 Access Cameras
+String toString() Newly added
+bool record() 3.6 Access Cameras
+imgFile stopRecord() 3.6 Access Cameras

5. CRC Card

 37

1.2.10 User

1. Description

This class is about user who accesses via internet. User has id and password.

2. Attribute
1. id: User’s id on the web.
2. password: User’s password on the web.

3. Responsibilities

1. setPassword(String new PW)
- Precondition: User must logs in.
- Postcondition: User’s password is changed.
- Trigger: User requests to change password.
- This function changes user’s password with new password.

4. Traceability
Responsibilities Use Case description
setPassword(String newPW) 3.8 Configuration

5. CRC Card

 38

1.2.11 PhoneNumber

Figure

1. Description

This class about PhoneNumber. Phone number has name and number in it.
PhoneNumber is needed to encapsulate phone number object.

2. Attribute

1. name: Owner of the number
2. number: phone number

3. Responsibilities

1. String getName()
- Precondition: None
- Postcondition: name is returned.
- Trigger: indecisive
- This function returns the name.

2. String getNumber()
- Precondition: None
- Postcondition: number is returned.
- Trigger: indecisive
- This function returns the number.

3. void setName(String name)
- Precondition: None
- Postcondition: name is modified.
- Trigger: indecisive
- This function modifies name.

4. void setNumber(String number)
- Precondition: None
- Postcondition: number is modified.
- Trigger: indecisive
- This function modifies number.

4. Traceability
 - In Use case description there is no concrete description about PhoneNumber

 39

5 CRC Card

 40

 1.2.12 FloorPlan

Figure

1. Description
 This class is for floor-plan. The superior class of floor-plan. This class have the list
of floor. When other classes request the floor plans or set up floor plans, response properly.

2. Attribute

1. numberOfFloor : The number of floor that this plan has.
2. floorList : the list of floor.

3. Responsibilities

1. getFloorPlan()
- Precondition: Stored floor-plans exist.
- Postcondition: Floor plan will be returned.
- Trigger: Some functions wants to get the floor-plan.
- This function is for get the entire data.

2. setFloorPlan()
- Precondition: The storing space is available.
- Postcondition: New of modified floor-plan will be stored.
- Trigger: Some functions wants to set the floor-plan.(Maybe, configuration)
- This function is for set or modifying the entire data.

4. Traceability
 - In Use case description there is no concrete description about Floor Plan class

 41

 1.2.13 Floor

1. Description

This is Floor class. One floor-plan can store several floors. This class represents one floor.
This floor has cameras, sensors and walls.

2. Attribute

1. type : The type of floor.
2. name : The name of floor.
3. roomNumber : How many rooms the floor have.
4. wallList: The list of walls that this floor have
5. cameraList: The list of cameras that this floor have
6. sensorList: The list of sensors that this floor have

3. Responsibilities
1. getFloor()
- Precondition: Stored floor exist.
- Postcondition: Floor information will be returned.
- Trigger: Some functions wants to get the floor-plan. And the floor-plan class wants to
get the floor.
- This function is for get the entire data of one floor.

2. setFloor()
- Precondition: The storing space is available.
- Postcondition: New of modified floor will be stored.
- Trigger: Some functions wants to set the floor-plan.(Maybe, configuration) And the
floor-plan class wants to set the floor.
- This function is for set or modifying the entire data of one floor.

4. Traceability

 - In Use case description there is no concrete description about Floor class

 42

1.2.14 Wall

1. Description

This is CoreControl class. This class represents the core of system. This class is the
superior class than Safehome’s functionality classes. Other functionality classes, sensor
management, camera management and so on, connected from this class. And this
CoreControl class orders the other class.

2. Attribute

1. type : the type of wall

3. Responsibilities

1. getWall()
- Precondition: Stored walls exist.
- Postcondition: Wall information will be returned.
- Trigger: Some functions wants to get the floor-plan. And the floor-plan class wants to
get the floor. And next the floor is needed. Finally, these walls need to return.
- This function is for get the entire data of one wall.
2. setWall()
- Precondition: The storing space is available. And the floor that this wall is belonged
has no error.
- Postcondition: New of modified wall will be stored.
- Trigger: Some functions wants to set the floor-plan.(Maybe, configuration). Setting
floor is the set of setting walls.

4. Traceability

 - In Use case description there is no concrete description about Wall class

 43

1.2.15 Wall segment, Window, Door

1. Description
 Walls have wall segments, windows and doors. Each component is object. So all the

components are from classes. And these classes are sub-classes from the super class,
Wall class. The three classes in abstract level are not quite different and have same
attributes and responsibility.

2. Attribute

1. type
2. startCoor : the coordinate of starting point.
3. stopCoor : the coordinate of ending point.
4. next… : If there is connected Component, next… is indicated the next componets.

3. Responsibilities

1. getInformation()
- Precondition: Stored walls exist.
- Postcondition: Wall information will be returned.
- Trigger: Some functions wants to get the floor-plan. And the floor-plan class wants to
get the floor. And next the floor is needed. Finally, these wall information need to return.
- This function is for get the entire data of one wall.
2. setInformation()
- Precondition: The storing space is available. And the wall that these wall components
are belonged hae no error.
- Postcondition: New of modified wall components will be stored.
- Trigger: Some functions wants to set the floor-plan.(Maybe, configuration). Setting
floor is the set of setting walls.

4. Traceability
 - In Use case description there is no concrete description

 44

2. State diagram
2.0 The entire view

 45

Descprion
 Starting with key hit, states flow. Every function needs qualification to access the
system. So, starting state goes to permission process and then user deactivates the system or
administrator changes configuration.
 Most states have “Go back” transition to go to previous state, and some states have
“Cancel” transition to cancel current work.
 Not only key hit but also detected motion by sensors can be the stating state

 46

2.1 Activate

Description

The main purpose of Safehome system is security. The main function of
security is this “Activation.” User turns on the sensors and cameras of system. This
diagram is for only “Activation” use-case. The use-case is described in the use-case
statement.

This diagram described how the system state is changed when the system is
activated. There is two activation states, stay and away.

State Flow

This diagram starts at the deactivated state. When the user want to activate
“stay” or “away” mode, the state is changed to activation state. On the way that
sensor and camera is turned on, if one of them is failed (can not be enabled), the state
is returned to deactivate state.

 47

2.2 Deactivate

Description

When the system is activated, all the people in the house is detected by the
sensors. But when he or she input the password shortly, the system is deactivated and
the Safehome system doesn’t regard a user as an intruder. This diagram is for only
“Deactivation” use-case. The use-case is described in the use-case statement.

This diagram described how the system state is changed when the system is
deactivated.

State Flow

At first, user must get permission. If user gets the permission, user must be
not an intruder. So the activated state will be changed. The all the security
components will be stopped. If the entire component is deactivated and stopped, the
system’s status is “deactivated”

 48

2.3
Permission

Description

All users must to have the qualification to access the system. This
qualification is for deactivating the system in our SafeHome. User can get permission
by inputting 4-digit password, and user has 3 chances for correct password. And
there is password for administrator. Only administrator can change configuration and
get administrator permission only by administrator password.

State Flow

Permission starts from any key hit. Basic state of Permission is Reading. In
this state, every input is considered as password entered. If user inputs correct
password, then user gets permission directly. Also, there is inserting time between
each character. If the time between characters goes over inserting time, inputs which
have been entered will be gone and next input will be considered as the first input.

Whenever user entered incorrect password, numOfFailedTrial increases by 1.

If it reaches 3, Alert is performed. If user enters correct password in any step after
Alert is performed, that makes Alert disable and numOfFailedTrial is reset to 0. Also,
numOfFailedTrial is reset to 0 after user gets permission.

 49

2.4 Access Sensors

Description

User can modify the state of sensors via internet. In Activation or
Deactivation module controls all the sensors at a time. But user can turn on or off
each sensor.

 50

State Flow

If unexpected motion is detected by sensors, current state is changed to
interrupt state and Alert is performed.

To turn off each sensor, user selects a sensor and makes it disable. User, also,
can turn off all sensors by using disableAll function. To turn on sensors, user uses
enable function and enableAll function in same way.

With search function, user can search all sensors and find sensors which are
malfunctioning. After searching is done, the list of the malfunctioning sensors is
returned to the system, and user can see the list.

Also, user can ignore malfunctioning sensors, and put them on the list of the
ignored sensors. User can add or remove sensors and make the list of them with this
management, too.

If user requests the list of any type of sensors directly, the information of
sensors sensorListInfo, malfunctioningSensorListInfo, ignoreSensorListInfo, which
is already stored, is returned.

 51

2.5 Access Cameras

 52

Description
This state diagram is for surveillance functions that described in the “Access

Cameras” use-case. This diagram is for only “Access Cameras” use-case. The use-
case is described in the use-case statement.

Each camera has two states, activated or deactivated. And each camera has
one password and many functions-zoom, pan, tilt and so on.

State flow

There is two states in each camera. One is activated, the other is deactivated.
When the camera management orders enable(), the camera must turn on. Otherwise
the camera must turn off.

In the deactivated or activated state, if user wants to order something
functions. Then, the camera management state is loaded. And camera management
conducts the order that user wants – Recoding, imaging, controlling and so on.

Camera Management also has initializing or checking function. The function
is the search state in the state diagram. When the state is loaded, search the entire
camera and indentify the status of camera.

 53

2.6
Alert

Description

In the emergency situation, which need to sound a warning, SafeHome
system warn the urgency of situation using some External Hardware that sounds.
Also, when the user goes into the house that security function is activated and input
the password, a beep sounds until the password is correct.

State Flow

There are two causes that make Alert performed. One is that user input
incorrect password 3 times. The other is that unexpected motion is detected in away
activated state. If Alert is performed, alarm sounds and the system calls the numbers
in Phonecall list. In both situations, if user inputs correct password, that makes Alert
disable then alarming sound will be gone.

 54

2.7 Configuration

 55

Description
In the internet interface, Administrator can modify some information about Safehome, floor-
plans, passwords, phonecall lists, and so on. This diagram is based on the use-case statement
about configuration. And there are sub-diagrams because each modifying function is too
complex to describe one diagram.

State flow
At first, user selects what user wants to modify. Then the state branches off. And when user
wants to go back, the state goes back to the first state.
1) Floor plan

There are three functions in the modifying floor plan. The state is changed by the user’s
selection. If user wants to cancel or exit, go back to first state. The detailed description
and flow is described in the sub-diagram.

2) Password
There are two functions in the modifying password. The state is changed by the user’s
selection. If user wants to cancel or exit, go back to first state. The detailed description
and flow is described in the sub-diagram.

3) Phonecall list
There are three functions in the modifying phonecall list. The state is changed by the
user’s selection. User can add phone numbers and delete phone numbers. If user wants
to cancel or exit, go back to first state. The detailed description and flow is described in
the sub-diagram.

 Configuration starts with selecting any of those three menus. Only administrator permission
is authorized to configure the system. Every state has “Go back” transition to go to previous
state, and some states in Floor Plan have “Cancel” transition to go to cancel current state.

 56

2.7.1 Configuration – Floor Plan

State Flow

If administrator chooses “Make new floor plan”,
1. Input the number of floors.
2. Input the number of rooms in each floor.
3. Then the system shows an initial display which has all floors with rooms.
4. Administrator can set doors, windows, cameras, sensors with drag & drop.
5. After finish setting floor plan, administrator can select “Apply” to apply new

floor plan or “Save & Exit” to save and then quit or “Exit without saving” to
go back.

If administrator chooses “Modify current floor plan”
1. The system shows the current floor plan.
2. Administrator can reset doors, windows, cameras, sensors with drag & drop..
3. After finish setting floor plan, administrator can select “Apply” to apply new

floor plan or “Save & Exit” to save and then quit or “Exit without saving” to
go back.

If administrator chooses “Load saved floor plan”,
1. The system shows the list of the saved floor plan.
2. Administrator selects one of them, and can see selected floor plan.
3. Administrator can reset doors, windows, cameras, sensors with drag & drop.
4. After finish setting floor plan, administrator can select “Apply” to apply new

floor plan or “Save & Exit” to save and then quit or “Exit without saving” to
go back.

 57

2.7.2 Configuration – Password

 State Flow
If administrator chooses “Change Password,

1. Administrator inputs new password.
2. Administrator inputs new password again for conforming.
3. Then password is changed and administrator will see previous menu.
4. Administrator can cancel this work in any step with pushing “Cancel” button.

If administrator chooses “Password Inserting Time”,
1. Display shows current password inserting time.
2. Administrator can change the time.
3. Time can be inputted by only numbers, and the unit of time should be in

second.
4. Administrator can finish with pushing “Done” button to apply changed

setting or “Cancel” to cancel changing.

 58

2.7.3 Configuration – Phonecall list

State Flow

If administrator chooses “Add”, administrator can add a phonecall number to
the list.

If administrator chooses “Remove”, administrator can remove a phonecall
number from the list.

 59

Appendix A: Team Meeting Reposts

CS350 Software Engineering

Team Meeting Report III-I
Team 4

Who:

 Lee Sangyoung,

Kwon Sejoong,

 Lee Jieun,

 Won Kanghee

When:

2008/04/23 Wed

Where:

Eve room in CS building

Work:

1. Discuss about the previous project.

- All team members

2. Modify the use-case diagram and make sub use-case diagram

- All team members

3. Modify the use-case statement.

- Lee Jieun, Lee Sangyoung.

4. Modify the analysis diagram and make added diagram.

- Won Kanghee, Kwon Sejoong

Result:

1. Modified use-case diagrams and use-case statements

2. Modified sequence diagrams and activity diagram.

Sign

 60

CS350 Software Engineering

Team Meeting Report III-II
Team 4

Who:

 Lee Sangyoung,

Kwon Sejoong,

 Lee Jieun,

 Won Kanghee

When:

2008/04/24 Thu

Where:

Eve room in CS building

Work:

1. Continue modifying the previous project.

- All team members

2. Add descriptions to sequence diagrams

 - Won Kanghee, Lee Sangyoung

3. Add traceability to use-case statements

- Lee Jieun, Kwon Sejoong.

-

Result:

1. Modified use-case diagrams and use-case statements

2. Modified sequence diagrams and activity diagram.

Sign

 61

CS350 Software Engineering

Team Meeting Report III-III
Team 4

Who:

 Lee Sangyoung,

Kwon Sejoong,

 Lee Jieun,

 Won Kanghee

When:

2008/04/25 Fri

Where:

Eve room in CS building

Work:

1. Continue modifying the previous project.

- All team members

2. Make the class-diagram

- All team members

Result:

1. Initial the class-diagram.

2. Modifying the previous project is almost done.

Sign

 62

CS350 Software Engineering

Team Meeting Report III-IV
Team 4

Who:

 Lee Sangyoung,

Kwon Sejoong,

 Lee Jieun,

 Won Kanghee

When:

2008/04/26 Sat

Where:

Eve room in CS building

Work:

1. Make the class-diagram

- Lee Ji-eun, Kwon Sejoong

2. Make the state-diagram

- Lee Sangyoung

3. Meeting with Professor Moon.

 - Lee Ji-eun

4. Make initial CRC Cards

- Won Kanghee

5. Add descriptions to activity diagrams

- Kwon Sejoong

Result:

1. Class-diagram and initial state-diagram.

2. initial CRC Cards,

Sign

 63

CS350 Software Engineering

Team Meeting Report III-V
Team 4

Who:

 Lee Sangyoung,

Kwon Sejoong,

 Lee Jieun,

 Won Kanghee

When:

2008/04/27 Sun

Where:

Eve room in CS building

Work:

1. Review traceability and modify above all results.

- Lee Ji-eun, Won Kanghee, Kwon Sejoong.

2. Meeting with Kim Yunho, the TA of SE class

- Lee Ji-eun, Won Kanghee, Kwon Sejoong.

3. Confirm the class-diagram design.

- All team members

4. Make state-diagrams.

- Lee, sang-young.

Result:

1. Class-diagram.

2. Modified use-case diagrams, use-case statements, activity diagrams and sequence

diagrams.

3. State diagrams

Sign

 64

CS350 Software Engineering

Team Meeting Report III-VI
Team 4

Who:

 Lee Sangyoung,

Kwon Sejoong,

 Lee Jieun,

 Won Kanghee

When:

2008/04/28 Mon

Where:

Eve room in CS building

Work:

1. Make the documents of this project

- All team members

Result:

1. The final results of the third project/

Sign

