Analysis Models
for Safehome System

Team 07 (Choonghwi Lee, Wookjae Byun)

Table of Contents

1. Introduction

2. Use cases and its diagrams
2.1 Use cases - On / Off (Use case #1~#2)

2.1.1 Use case diagram

2.1.2 Use case 1:

2.1.3 Use case 2:

2.2 Use cases - Setting (Use case #3~#11)

2.2.1 Use case diagram

2.2.2 Use case 3:
2.2.3 Use case 4:
2.2.4 Use case 5:
2.2.5 Use case 6:
2.2.6 Usecase 7:
2.2.7 Use case 8:
2.2.8 Use case 9:
2.2.9 Use case 10
2.2.10 Use case 1

2.3 Use cases - Sens

2.3.1 Use case diagram
2.3.2 Use case 12:
2.3.3 Use case 13:
2.3.4 Use case 14:
2.3.5 Use case 15:
2.3.6 Use case 16:
2.3.7 Use case 17:
2.3.8 Use case 18:
2.3.9 Use case 19:

2.4 Use cases - Chec

2.4.1 Use case diagram

2.4.2 Use case 20
2.4.3 Use case 21

Turn on System

Turn off System

Drawing floor plan

Setting up password

ma’o’mmwwwww

Change password

Reset password

Add phone number

Delete phone number

Set Arm state

11
13
14

: Set Disarm state

1: Reset all settings

or and reactions (Use case #12~#19)

Motion detection in safe zone

Open / Crash detection of door

Open / Crash detection of window

Motion detection from motion sensor

Camera rotation to follow moving object

Logging security actions
Saving recorded video

Send urgent SMS

king (Use case #20~#22)

: Floor plan check

14
15
17

17
17

19

19
20

21

22
23
25
26

26
27

: Log check

28

2.4.4 Use case 22: Video check

2.5 Use cases - Web access (Use case #23)

2.5.1 Use case diagram

2.5.2 Use case 23: Web access

Appendix A. Traceability matrix
Appendix B. Who-did-what list

Appendix C. Figure index

Appendix D. Meeting logs

Appendix E. Revision history

28
30
30
30
32
34
35
36
36

1. Introduction

This document contains Analysis mode level contents of Safehome Project. In analysis model
process, it creates many possible use cases, and those use cases can be specified with
analyzing its primary and secondary actor, goal of that use case, preconditions of that user
cases, triggers, scenario(it is same as use case procedure), and possible exceptions and
priority, open issues. Also, visualize of use cases can be use “swimlane diagram”. Swimlane
diagram show each parts of use case scenario as box, and arrows between box shows flow

between those part of scenarios.

2. Use cases and its diagrams

This requirements contain technical system functionalities and essential background of
system running(running environment, security features, development environments).

2.1 Use cases - On / Off (Use case #1~#2)

2.1.1 Use case diagram

Sensor — | .. include

/l Turn on system F / User

Program

Turn on/off System

Check Connection

—{ Tumn off system I’

Figure 1: Use case diagram for Use case #1~#2

2.1.2 Use case 1: Turn on System

Name

Turn on system

Actor

Primary : User
Secondary : Program, Sensors

Goal of Usage

Turn on all system and make the system available.

Preconditions

1. PC is running and Safehome system is installed on PC.
2. All sensors and cameras should running.

Trigger

1. User runs the Safehome program.

3

Scenario 1. User runs the Safehome program.

2. Require password from user.

3. Program checks that all sensors are running and
connected through wireless network. If some sensors are
not running or not connected, show alert message on PC.
4. Turn on control panel.

5. Notify for disconnected sensors to user if disconnected
sensors exist.

Exceptions 1. (At 1) When the Safehome program is already running:
Send alert message and do not run new the Safehome
program.

2. (At 2) User enter incorrect password: Print error
message and user select (Retry input password) operation
or (Exit program) operation.

Priority High

Open Issues | -

Turn on

User Program Sensor

? Incorrect password
Retry
Enter |_
password

Check
password

Incorrect password
Terminate > Check
connection

Sensor is notjrunning OR y

Sensor is not connected >

Figure 2: Swimlane diagram for Use case #1

4

2.1.3 Use case 2: Turn off System

Name Turn off system

Actor Primary : User
Secondary : Program

Goal of Usage | Turn off the Safehome system.

Preconditions | 1. Program is running.
2. Safehome system is ‘disarm’ state.

Trigger 1. User terminate the Safehome program.

Scenario 1. User turns off the Safehome program.
2. Stop receiving interactions from users.
3. Terminate Safehome program.

Exceptions 1. (On 3) Some process is executing on the system : Print
error message and wait until all processes are terminated.
(e.g. Program is still sending log or recorded videos to
storage server)

Priority High

Open Issues | -

Turn off

User Program Sensor

Press Stop receiving
‘Turn off user interactions

L 2
Check other

commands are
being executed

There is commands
being executed

A

Wait until all Terminate
commands roaram
are executed progra

Figure 3: Swimlane diagram for Use case #2

5

2.2 Use cases - Setting (Use case #3~#11)

2.2.1 Use case diagram

Setting

Program

\

)

Reset all settings

Drawing floor plan

Setting up password

i

Change password jl

(

7/

— Reset password

Add phone number

Delete phone number

Set Arm State

A\

Set Disarm State

% User

Figure 4: Use case diagram for Use case #3~#11

2.2.2 Use case 3:

Drawing floor plan

Name

Drawing floor plan

Actor

Primary : User
Secondary : Program

Goal of Usage

Set floor plan for home.

Preconditions

1. Program is running.

Trigger

1. System is initially installed
2. User selects ‘reset floor plan’

6

Scenario

1. If reset (trigger #2), remove previous floor plan.

2. User inputs room structures.

3. User inputs place of all sensors.

4. Program decide and show ‘Safe zone’ from input room
structures and place of all cameras.

5. User press ‘save’ button to save current floor plan.

6. Save current floor plan in computer.

Exceptions -
Priority High
Open Issues | -
Draw floor plan
User Program

Enter
room structures

14

Place sensors into]
room structures
Press 'save’ I“ » Save floor plan

Determine
safe-zone

Figure 5: Swimlane diagram for Use case #3

2.2.3 Use case 4: Setting up password

Name

Setting up password

Actor

Primary : User
Secondary : Program

Goal of Usage | Setup password for authorization.

Preconditions | 1. Program is running.

Trigger 1. System initially installed.
2. Password is reseted.
Scenario 1. User enter user’s new password.
2. User re-enter user’s new password.
3. Program saves new password in system.
Exceptions 1. (On 2) Two password inputs are not equal each other :
Print error message and retry setting up password
procedure.
Priority High
Open Issues | -
Setting up password
User Program

—b‘ Enter password >

Determine
safe-zone

Passwords are not
equal

_| Check entered two
Re-enter password passwords are equal
'
y

Save password

Figure 6: Swimlane diagram for Use case #4
8

2.2.4 Use case 5:

Change password

Name

Change password

Actor

Primary : User
Secondary : Program

Goal of Usage

Change password to new password.

Preconditions

1. System is booted up.

Trigger 1. User selected ‘change password’.
Scenario 1. User inputs old password.

2. User inputs new password.
Exceptions 1. (On 1) If old password is not correct : Print error

message and retry input old password.

2. (On 2) If new password is same as old password : Print

error message and retry input new password.
Priority Medium
Open Issues -

Change password
User Program

Enter

old pa

Incorrect password. Retry

i

ssword Check password

Incorrect password. Cancel change

Set password
(Figure 6)

Figure 7: Swimlane diagram for Use case #5

2.2.5 Use case 6:

Reset password

Name

Reset password

Actor

Primary : User
Secondary : Program

Goal of Usage

Reset password to password-unset state.

Preconditions

1. Program is running

Trigger 1. User selected “reset password”.

Scenario 1. User select one phone number from phone number list.
2. Program sends SMS message to selected phone
number with validation code.

3. User inputs validation code to program.
4. Program delete registered password.

Exceptions 1. (On 3) User entered incorrect validation code. Print error
message and wait for correct validation code.

2. (On 3) User enters validation code after 3 minutes. Print
error message and terminate resetting password.

Priority Medium

Open Issues

10

ﬂ ﬂ«.

Invalid code. Retry

Reset password

User Program

Send SMS with

Press ‘reset validation code

Check itis
entered in 3
minutes

Enter code

Enter after 3 minutes. Terminate

Check validation
code

Set password
(Figure 6)

Figure 8: Swimlane diagram for Use case #6

2.2.6 Use case 7:

Add phone number

Name

Add phone number

Actor

Primary : User
Secondary : Program

Goal of Usage

Add phone number for urgent alert notification.
Multiple phone numbers are available.
At least one phone number must be registered.

Preconditions

1. Program is running.

Trigger

1. System is initially installed.
2. User selects ‘Add phone numbers’.

11

Scenario 1. User inputs phone number.

2. Program checks phone input number is correct format.
3. Program adds input phone number to phone number list.
4. Program saves list of phone number in computer.

Exceptions 1. (On 2) Input phone number is incorrect format : Print
error message and reinput phone number.

2. (On 2) Input phone number is already exists : Print
message and terminate.

Priority High

Open Issues -

User

t

Enter phone
number

]

Add phone number

Program

)

[

_f Check phone
'L number

Invalid format of phone number

Entered phone number already
exists

Add phone
number to list

Figure 9: Swimlane diagram for Use case #7

2.2.7 Use case 8:

Delete phone number

Name

Delete phone number

Actor

Primary : User
Secondary : Program

Goal of Usage

Delete phone number from phone number list.

Preconditions

1. Program is running.
2. there are 2 phone numbers at least on phone number
list.

Trigger 1. User selects ‘Delete phone numbers’.
Scenario 1. User selects phone number from phone number list.
2. Program delete input phone number from phone number
list in computer.
Exceptions -
Priority High
Open Issues | -
Add phone number
User Program
Select phone]
number from phone Delete phone
- number
numbers list J

Figure 10: Swimlane diagram for Use case #8

13

2.2.8 Use case 9:

Set Arm state

Name

Set Arm state

Actor

Primary : User
Secondary : Program

Goal of Usage

Change program state to arm state.

Preconditions

1. Program is running.

Trigger 1. User selected “Change to Arm state”
Scenario 1. User input password.
2. Change program state to arm state
Exceptions 1. (On 1) If password is not correct : Print error message
and retry input password.
2. (On 2) If state is already arm state : Print error message.
Priority Medium

Open Issues

2.2.9 Use case 10: Set Disarm state

Name

Set Disarm state

Actor

Primary : User
Secondary : Program

Goal of Usage

Change program state to disarm state.

Preconditions

1. Program is running.

Trigger 1. User selected “Change to Disarm state”
Scenario 1. User input password.
2. Change program state to disarm state
Exceptions 1. (On 1) If password is not correct : Print error message

and retry input password.
2. (On 2) If state is already disarm state : Print error
message.

14

Priority Medium

Open Issues -

Set arm / disarm state

User Program Sensor

{ Enter password J—

Incorrect password. Retry

Check password

Incorrect password. cancel arm

Arm / disarm
Sensors

Set arm / disarm

Figure 11: Swimlane diagram for Use case #9,#10

2.2.10 Use case 11: Reset all settings

Name Reset all settings

Actor Primary : User
Secondary : Program

Goal of Usage | Reset all system.

Preconditions | 1. Program is running.

Trigger 1. User selected “reset all system”.

Scenario 1. User inputs password.

2. Program deletes all settings (password, floor plan, safe
zone, phone numbers).

3. User have to set initial settings through 2.2.2 ~2.2.4

15

Exceptions 1. (On 1) User input password is incorrect : Print error
message and requires re-input password.

Priority High

Open Issues -

Reset all settings

User Program

Enter password

Check password

Incarrect password. cancel arm

Delete all settings

Incorrect password. Retry

Figure 12: Swimlane diagram for Use case #11

16

2.3 Use cases - Sensor and reactions (Use case #12~#19)

2.3.1 Use case diagram

Sensor Reactions

[

Camera %

Door sensor ~__|

Window sensor —

Motion sensor — |

8 Motion detection in safe zone

Recording video

Camera rotation to follow
moving object
Open/Crash detection /

Motion detection

[Logging

> Program

Figure 13: Use case diagram for Use case #12~#19

2.3.2 Use case 12: Motion detection in safe zone

Name

Motion detection in safe zone

Actor

Primary : Camera
Secondary : Program, Gatecrasher

Goal of Usage

Catch motion detection in safe zone.

Preconditions

1. Camera is running.

2. Door sensor is connected to Program.
3. Program is running.

4. Program state is arm state.

Trigger

Motion of object is detected in safe zone by camera.

Scenario

1. Camera detects motion.
2. Camera alerts changed state to program.

17

3. Camera starts recording video.

4. Motion of object is finished.

5. Camera stops recording video.

6. Camera sends recorded video to program.

Exceptions 1. (On 6) Recorded video is too short (e.g. video has just 2
frames so that human cannot recognize) : Program add
paddings (some part of video of previous, next few
seconds) to recorded video.

Priority High

Open Issues None

Motion detection in safe zone

Camera Program Gatecrasher

?

Detect motion [« Appear in safe zone

Alert status

Logging &
SMS alert

Start recording

Stop recording
Send
recorded video

= Disappear

!

Check video is
too short

I Add padding]

Figure 14: Swimlane diagram for Use case #12

18

2.3.3 Use case 13: Open / Crash detection of door

Name

Open / Crash detection of door

Actor

Primary : Door sensor
Secondary : Gatecrasher, Program

Goal of Usage

Catch whether door is open or crashed.

Preconditions | 1. Door sensor is running.
2. Door sensor is connected to Program.
3. Program is running.
4. Program state is arm state.
Trigger 1. Door is opened or crashed.
Scenario 1. Door sensor alerts its state(‘Open’ or ‘Crush’) to
program.
Exceptions -
Priority High

Open Issues

2.3.4 Use case 14: Open / Crash detection of window

Name

Open / Crash detection of door

Actor

Primary : Window sensor
Secondary : Program

Goal of Usage

Catch whether window is open or crashed.

Preconditions

1. Window sensor is running.

2. Window sensor is connected to Program.
3. Program is running.

4. Program state is arm state.

Trigger

1. Window is opened or crashed.

Scenario

1. Window sensor alerts its state(‘Open’ or ‘Crush’) to
program.

19

Exceptions

Priority

High

Open Issues

2.3.5 Use case 15: Motion detection from motion sensor

Name

Motion detection from motion sensor

Actor

Primary : Motion sensor
Secondary : Program

Goal of Usage

Catch motion from motion sensor.

Preconditions

1. Motion sensor is running.

2. Motion sensor is connected to Program.
3. Program is running.

4. Program state is arm state.

Trigger 1. Motion is detected in range of motion sensor detection.

Scenario 1. Motion sensor alerts its state(‘Motion detected’) and
additional information(speed/direction) to Program.

Exceptions -

Priority High

Open Issues

Door / window sensor
Motion sensor

Open / crash detection of door / window
Motion detection in motion sensor

Program Gatecrasher

?

Detect Motion

[Detect open / crash]‘ (Open or crash door (window) J

D L Pass by motion sensor

1

Alert stat Logging &

Figure 15: Swimlane diagram for Use case #13,14,15

20

2.3.6 Use case 16: Camera rotation to follow moving object

Name

Camera rotation to follow moving object

Actor

Primary : Camera
Secondary : Gatecrasher

Goal of Usage

Rotate camera view to follow detected moving object.

Preconditions

1. Motion sensor is running.
2. Program is running.
3. Program state is arm state.

Trigger

1. Moving object is moving around edge of camera view.

Scenario

1. While target object is moving in sight of camera, camera
rotates to proper direction which moving object is
positioned as near as center of camera view.

2. Movement of objects is finished.

3. Camera rotates to initial position.

Exceptions

1. (On 1) Camera reached to rotation angle limit : Camera
stop tracing that moving object.

Priority

High

Open Issues

21

Camera rotation to follow moving object

Gatecrasher

[Check if object is in]1——[Moving around safe zone J
edge

Not in edge. finish 1

Camera

Check camera
can rotate more

Cannot rotate. finish

Rotate toward
object

Figure 16: Swimlane diagram for Use case #16

2.3.7 Use case 17: Logging security actions

Name Logging security actions

Actor Primary : Program
Secondary : Storage server

Goal of Usage | Save all logs from security actions from sensors to both
computer and server.

Preconditions | 1. Program is running.
2. Remote storage service is provided (by Safehome
provider company).

22

Trigger

1. Program received alert of state changes from sensors.

Scenario

1. Write the log with information (time, sensor, prev state,
next state).

2. If alert is from camera, started time and finished time of
video is added to current log.

3. Save current log to computer.

4. Upload current log to remote storage service.

Exceptions

1. (On 3) There is no more storage for saving log on
computer : Remove oldest logs or videos until enough
space is left.

Priority

High

Open Issues

2.3.8 Use case 18: Saving recorded video

Name

Saving recorded video

Actor

Primary : Program
Secondary : Storage server

Goal of Usage

Save video sent from camera to both computer and server.

Preconditions

1. Program is running
2. Remote storage service is provided (by Safehome
provider company)

Trigger

1. Program received alert of motion detection from camera.

Scenario

1. Program receive recorded video from camera.

2. Add additional informations(started time/finished time) to
recorded video.

3. Save current video to computer.

4. Upload current video to storage service.

Exceptions

1. (On 3) There is no more storage for saving video on
computer : Remove oldest logs or videos until enough
space is left.

Priority

High

Open Issues

23

Logging / Saving recorded video

Program External Server

? |

Receive alert
Receive recorded video

|

Check there is
enough internal

storage

. Not enough storage

< Remove past
logs and videos

Y
Y

Save log / video [+ ‘
| —

Y ‘
)

Send log / video
~—

Save log / video

Figure 17: Swimlane diagram for Use case #17,#18

24

2.3.9 Use case 19: Send urgent SMS

Name

Send urgent SMS

Actor

Primary : Program
Secondary : User

Goal of Usage | Alert critical state to user through SMS message

Preconditions | 1. Program is running.

2. Program is arm state.

Trigger 1. One of sensors sends alert to Program.
Scenario 1. Send SMS message to all phone number on phone
number list.
Exceptions -
Priority High
Open Issues -
Send urgent SMS
Program User

!
)
|

O

Figure 18: Swimlane diagram for Use case #19

25

2.4 Use cases - Checking (Use case #20~#22)

2.4.1 Use case diagram

Program

Checking

]

/[Reset all settings
(

| Drawing floor plan

I
r

Figure 19: Use case diagram for Use case #20~#22

26

2.4.2 Use case 20: Floor plan check

Name

Floor plan check

Actor

Primary : User
Secondary : Program

Goal of Usage

Show state through floor plan

Preconditions

1. Program is running.
2. Floor plan is already set

Trigger 1. User selected “Floor plan check”.
Scenario 1. Show floor plan and sensor states on program.
(Caught alert=Red, Uncaught alert=Blue)
Exceptions -
Priority Medium
Open Issues | -
Floor plan check
User Program

t

[Select “floor-plan” menu }—PL Update floor plan]

A

[Receive floor]1 (Send floor plan]

plan overview
J L

Figure 20: Swimlane diagram for Use case #20

27

2.4.3 Use case 21: Log check

Name

Log check

Actor

Primary : User
Secondary : Program

Goal of Usage

Check and read stored logs

Preconditions

1. Program is running.

Trigger

1. User selected “Log check”.
2. User select some log from log list.
3. User input password.

Scenario

Show selected log details.

Exceptions

1. (On 2) When there is no log in log list : Print error
message.

2. (On 3) Input password is incorrect : Print error message
and re-input password.

Priority

Medium

Open Issues

2.4.4 Use case 22: Video check

Name

Video check

Actor

Primary : User
Secondary : Program

Goal of Usage

Check and read stored videos

Preconditions

1. Program is running.

Trigger 1. User selected “Video check”.
2. User select some video from video list.
3. User input password.
Scenario Show selected video details.
Exceptions 1. (On 2) When there is no video in video list : Print error

message.

28

2. (On 3) Input password is incorrect
and re-input password.

. Print error message

Priority

Medium

Open Issues

User

?

Logs / video check

Program

Select
"Log (videos)” menu

Check selected logs
(videos) is in
internal storage

Receive
logs (videos)

Selected logs
(videos) is not in
internal storage

Require past

External Server

logs (videos)

Select

-

Y

logs (videos)

Send logs
(videos)

Figure 21: Swimlane diagram for Use case #21,#22

29

2.5 Use cases - Web access (Use case #23)

2.5.1 Use case diagram

Web access

| _— Web browser

User

Il Web access <

[Program

Figure 22: Use case diagram for Use case #23

2.5.2 Use case 23: Web access

Name

Web access

Actor

Primary : User
Secondary : Browser, Program

Goal of Usage

Access program through web browser in remote place

Preconditions

1. Program is running.
2. User have ID and Password on Safehome Service.

Trigger 1. User access Safehome Manager Homepage(Which is
provided by Safehome provider).
2. Trigger from one of use case 4~11, use case 20~22
Scenario 1. User put ID and Password on login page of Safehome

Manager Homepage.

2. Safehome Manager Homepage show exactly same view
of Program.

3. Scenario from one of use case 4~11, use case 20~22
can be executed by use case selection.

30

Exceptions 1. (On 1) Input ID is invalid : print error message and
re-input ID.
2. (On 1) Input password is invalid : print error message
and re-input password.

Priority Medium

Open Issues | Concurrency Problem

User

t

[

Enter ID and password]

Web access

Program External Server

of external server

A

Entered
ID and password
are not validated

j Check J

'L ID and password

Receive User

Require User
interfaces

Send User
interfaces

interfaces

(Pass user]

L interfaces to User

Figure 23: Swimlane diagram for Use case #23

31

Appendix A. Traceability matrix

Use Cases

2

4

5

-_—

-_—

-_—

-_—

-_—

oN

-—

NN

Wi

sensor.common.r
un

sensor.common.s
top

sensor.common.s
elf_check

sensor.common.a
lert

sensor.camera.st
ate

sensor.camera.re
cord

sensor.camera.sa
ve_video

sensor.camera.ro
tate

sensor.door.state

sensor.door.brea
king

sensor.window.st
ate

sensor.window.br
eaking

sensor.motion.sta
te

sensor.manager.c
heck

sensor.manager.a
lert

system.state.arm

system.state.disa
rm

system.monitor.c
amera

32

system.monitor.s
ensor

system.monitor.lo
9

system.monitor.vi
deo

system.web.login

system.web.arm

system.web.disar
m

system.web.came
ra

system.core.set_
password

system.core.reset
_password

system.core.reset
_setting

system.core.reset
all

system.core.log

system.core.uplo
ad

system.core.dow
nload

33

Appendix B. Who-did-what list

Task

Choonghwi Lee

Wookjae Byun

Table of contents

\Y

Use case 1~11

Use case 12~23

Use case diagrams

Swimlane diagrams

Revision of SRS

Appendix A.

Appendix B.

Appendix C.

Appendix D.

Appendix E.

I <[< | <K< 1< <

34

Appendix C. Figure index

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:

Use case diagram for Use case #1~#2

Swimlane diagram for Use case #1

Swimlane diagram for Use case #2

Use case diagram for Use case #3~#11

Swimlane diagram for Use case #3

Swimlane diagram for Use case #4

Swimlane diagram for Use case #5

Swimlane diagram for Use case #6

Swimlane diagram for Use case #7

Swimlane diagram for Use case #8

Swimlane diagram for Use case #9,#10

Swimlane diagram for Use case #11

Use case diagram for Use case #12~#19

Swimlane diagram for Use case #12
Swimlane diagram for Use case #13,#14,#15

Swimlane diagram for Use case #16

Swimlane diagram for Use case #17,#18

Swimlane diagram for Use case #19

Use case diagram for Use case #20~#22

Swimlane diagram for Use case #20

Swimlane diagram for Use case #21,#22

Use case diagram for Use case #23

Swimlane diagram for Use case #23

35

Appendix D. Meeting logs

#1) 2015/5/3 Sun, N1, #109

Meeting during 20:30~22:30

Short revision of SRS(Changed name : secure.” -> sensor.*, panel.” -> system.*)
Traceability table content decision : function name & use cases

Write scenarios to use cases.

#2) 2015/5/4 Mon, E11, #411

Meeting during 14:30~15:30

Specified use-cases for pre-written scenario

Divide roles to each members (Lee: case 1 ~ case 10, Byun: case 11 ~ case 21)
Next time : decide documentation format and implement contents.

#3) 2015/5/6 Wed, N1, #114

Meeting during 17:00~25:00

Main purpose : Analysis model documentation finish

Revised each members' work. (Works divided at last time)

Revised SRS. (Some difference between SRS document and Analysis model document, so
reduced difference)

Finished documents.

Appendix E. Revision history

Version Changed contents Date

1.0 Analysis Model Document Completion 2015/5/6

36

Software Requirement
Specification

Team 07 (Choonghwi Lee, Wookjae Byun)

Safehome SRS

Table of Contents

Team 7

1. Introduction

1.1 Purpose

1.2 User Scenario

1.3 SRS overview

2. Specific Requirements

Appendix A. Glossaries and Indices

Appendix B. Traceability matrix

Appendix C. Who-did-what list

Appendix D. Meeting logs

2

2

2

2

3

2.1 Functional requirements (System features) 3
2.1.1 Sensor feature (sensor.*) 3
2.1.1.1 Overall description 3
2.1.1.2 Common Features (sensor.common.*) 4
2.1.1.3 Camera (sensor.camera.*) 5
2.1.1.4 Door sensors (sensor.door.*) 6
2.1.1.5 Window sensors (sensor.window.*) 6
2.1.1.6 Motion sensors (sensor.motion.*) - 7
2.1.1.7 Handler (sensor.handler.*) 7
2.1.2 Systems and Control panels (system.*) 8
2.1.2.1 Overall Description 8
2.1.2.2 State change (Arm / Disarm) (system.state.*) 8
2.1.2.3 Monitoring sensors / logs (system.monitor.*) 8
2.1.2.3 Remote access through web (system.web.*) 9
2.1.2.4 System core (system.core.”) 10
2.2 Non-functional requirements 12
2.2.1 Running environment 12
2.2.2 Security requirement 12
2.2.3 Development requirement 12
2.2.4 Storage requirement 12
2.2.5 Serving web server for remote access 12
13

13

15

16

16

Appendix E. Revision history

Safehome SRS Team 7

1. Introduction

1.1 Purpose

This Safehome service helps customer to keep their house more safe by cameras,
sensors, and control system. Users can surveil their home, even though they are not in
their home. If someone not invited enter users home, then alarm bell go off and
security agents are come their home. Notifications are also sent to users when alarm
bell went off.

1.2 User Scenario

Initailly, user installs safehome system to their house. User should initialize settings
during installing safehome system.

Initial setting starts from designing floor plan by user. Floor plan is drawed by setting
all places of doors, windows, and sensors. Then user can set safe zone, by adding
some group of sensors to each safe zone. Then initial setting is finished.

User can manage or activate/deactivate all systems by control system. By floor plan
GUI with safe zone expression, user can figure out overall current system state. More
specifically, user can monitor many places inside of house by each sensor state and
image of camera view.

User can arm safehome system to protect house at absent state to manage
emergency cases, and disarm safehome system when returned.

By managing functions of system, user can check previous logs and videos of specific
time from system storage. By checking stored logs and videos, user can figure out
when thieves entered to house and what thieves look like.

And user can access safehome system from remote places by mobile applications
through web browser, and user can use exactly same functions from control system.

1.3 SRS overview

This document contains functionalities of each hardwares(sensors, cameras, control
panel) and system(grouped as functional requirements), and background to run
safehome system such as running environment, security level, development
environments(grouped as nonfunctional requirements). Appendix contains glossaries,
index, meeting logs, and others.

In this document, we designed functions to cover

Safehome SRS Team 7

2. Specific Requirements

This requirements contain technical system functionalities and essential background of
system running(running environment, security features, development environments).

2.1 Functional requirements (System features)

2.1.1 Sensor feature (sensor.*)
2.1.1.1 Overall description

Safehome system provides home security features. Followings are functional
features to be provided.
a. Surveillance features
e Safehome system surveils inside of house via cameras(CCTV),
door sensors, motion sensors.
e Each camera records when there is some not-invited person or
people in sight of camera.
e Door sensors check whether door is opened, and detect
abnormal trial of opening door.
e Window sensors check whether window is opened, and detect
abnormal trial of opening window.
e Motion sensors detect passing of some object or person through
sensor.
b. Notification features
e Safehome system notifies an emergency state to user
e Safehome system notifies via SMS service, Push notification of
Smart-Phone or ARS service.
e Safehome system can notifies to multiple users at once.

Safehome SRS

Team 7

2.1.1.2 Common Features (sensor.common.¥)

Sensors have common features and those are described below. Sensors can
detect change of states(Cameras and motion sensors have ‘motion undetected’
and ‘motion detected’ states, door sensors and window sensors have ‘open’,
‘closed’, ‘crush’ states). Sensors can alert change of state to system, when
Sensors are ‘run’ state.

sensor.common.run

Assumption | Sensor state is ‘stop’.
Description | Set sensor state to ‘run’ and turn on that sensor.
Exceptions | Concurrency : Concurrent operations by users.

sensor.common.stop

Assumption | Sensor state is ‘run’.
Description | Set sensor state to ‘stop’ and turn off that sensor.
Exceptions | Concurrency : Concurrent operation by users.

sensor.common.self_check

Assumption | -

Description | Sensor perform self-checking procedure and return self-check
result.

Exceptions | CheckError : self-check procedure cannot be done because of

error.

sensor.common.alert

Assumption | Sensor state is ‘run’.

Sensor detect some movements.
Description | Sensor send message to control system.
Exceptions | -

Safehome SRS

Team 7

2.1.1.3 Camera (sensor.camera.*)

Cameras surveil safe-zone. Cameras can check whether something is moving
in safe-zone. When moving is caught, camera checks that state and record that
scene. Recorded videos are saved in storage.

sensor.camera.state

Assumption | Camera state is ‘run’.
Description | Return camera state to Program.
1. Recording / Not recording
2. Moving / Static
Exceptions | -

sensor.camera.record

Assumption | Camera state is ‘run’.

Camera detect movement.
Description | Camera starts recording until movement disappears.
Exceptions | -

sensor.camera.save_video

Assumption | Camera is recording video.

Camera does not detect any movement.
Description | Camera stops recording and save video file to main system.
Exceptions | VideoTooShort : Recorded video is too short to be recognized

by person, such as record has just 2 frame. it should be
padded by before and after videos.

Connection error : Connection is unlinked by network or
disconnection of cable.

sensor.camera.rotate

Assumption | To rotate camera, one of followings is satisfied.
- Camera is recording and target object is moving
- Camera finished recording

Description | Rotate camera to target or to initial angle.

5

Safehome SRS

Team 7

Exceptions

CannotRotateMore : Camera cannot rotated more.

2.1.1.4 Door sensors (sensor.door.*)

Door sensors detect whether a door is open or closed, and detect abnormal
trial to open or break door.

sensor.door.state

Assumption

Sensor state is ‘run’.

Description

Return door state to Program.
1. Open/ Closed
2. Crashed
3. Whether some object is passing or not

Exceptions

sensor.door.breaking

Assumption

Sensor detect abnormal trial of breaking door.

Description

Send alert message to Program.

Exceptions

SensorCrash : Sensor can be crashed also.

2.1.1.5 Window sensors (sensor.window.*)

Window sensors detect whether a window is open or closed, and detect
abnormal trial to open or break window.

sensor.window.state

Assumption

Sensor state is ‘run’.

Description

Return window state to Program.
1. Open/ Closed
2. Crashed
3. Whether some object is passing or not

Exceptions

Safehome SRS

Team 7

sensor.window.breaking

Assumption

Sensor detect abnormal trial of breaking window.

Description

Send alert message to Program.

Exceptions

SensorCrash : Sensor can be crashed also.

2.1.1.6 Motion sensors (sensor.motion.*)

sensor.motion.state
Assumption | Sensor state is ‘run’.
Description | Return state and additional information of motion sensor to
Program.
1. Whether movement is detected
2. Movement direction and speed
Exceptions | -

2.1.1.7 Handler (sensor.handler.*)

Manager is supervisor of sensors. Manager manages sensors and decides
whether the change is danger when manager detects state change of sensors.
If danger state is catched, alert to system.

sensor.handler.check

Assumption | ‘sensor.common.alert’ is called.
Description | If system is arm state, call ‘sensor.handler.alert’.
Exceptions | -

sensor.handler.alert

Assumption | Called from ‘sensor.handler.check’.
Description | Send alert to main system.
Exceptions | -

Safehome SRS Team 7

2.1.2 Systems and Control panels (system.*)
2.1.2.1 Overall Description

This service provides control panel to manage several options and function
usage. Followings are methods related to using control panel

e Using control panel

e Remote access via internet

2.1.2.2 State change (Arm / Disarm) (system.state.*)

There are two state on system. One state is arm, which is defensing mode(alert
to user is on). Another state is disarm, which is normal mode(not alert to user).

system.state.arm

Assumption | Current state is ‘disarm’.

Description | Change state to ‘arm’ state.

Exceptions | Concurrency : Concurrent operation by users.

system.state.disarm

Assumption | Current state is ‘arm’.

Description | Change state to ‘disarm’ state.

Exceptions | Concurrency : Concurrent operation by users.

2.1.2.3 Monitoring sensors / logs (system.monitor.*)

By control panel, user can monitor sensors and cameras. Also, user can read
previous logs about sensors or watch recorded video from cameras.

system.monitor.camera

Assumption | Camera state is ‘run’.

Description | Show current camera view on system.

Exceptions | Invalidstate : Camera state is ‘stop’.

Safehome SRS

Team 7

system.monitor.sensor

Assumption | Sensor state is ‘run’.

Description | Show current sensor states on system on Program.
(sensor.*.state)

Exceptions | Invalidstate : Sensor state is ‘stop’.

system.monitor.log

Assumption

Description

Show previous logs of seleced sensor on Program.

Exceptions

system.monitor.video

Assumption

Description

Show selected recorded video on Program.

Exceptions

2.1.2.3 Remote access through web (system.web.*)

User can access to main system from not only fixed panels but also mobile
devices through web browsers.

system.web.login

Assumption | Computer(installed Program) is connected to internet.

Description | First, Input username and password to access web server.
Second, Input system password and connect to system in
home from web browser.

Exceptions | LoginException : Wrong Password.

NetworkException : Network connection has problem.
SystemNotAvailable: System from home is off.

system.web.arm

Safehome SRS

Team 7

Assumption | User is logged in.
Description | Call ‘system.state.arm’ to arm system.
Exceptions | NetworkException : Network connection has problem.

system.web.disarm

Assumption | User is logged in.
Description | Call system.state.disarm’ to disarm system.
Exceptions | NetworkException : Network connection has problem.

system.web.camera

Assumption | User is logged in.

Description | Call ‘system.monitor.camera’ and adjust view to browser
environment.

Exceptions | -

2.1.2.4 System core (system.core.*)

Some critical processes such as reset should be controlled by authorized
users, so those processes are controlled in system core.

system.core.set_password

Assumption | User is authorized. User input new password.
Description | Set password to user input.
Exceptions | UnauthorizedException : User is not authorized.

system.core.reset_password

Assumption

User is authorized.

Description

Reset password to initial one.
ex) ‘0000’ or non-set state

10

Safehome SRS

Team 7

Exceptions

UnauthorizedException : User is not authorized.

system.core.reset_setting

Assumption | User is authorized.
Description | Reset all settings to initial settings.
Exceptions | UnauthorizedException : User is not authorized.

system.core.reset_all

Assumption | User is authorized.
Description | Reset all settings to initial settings.
Remove all data.
Exceptions | UnauthorizedException : User is not authorized.

system.core.log

Assumption | ‘sensor.common.alert’ is called.
Description | Make and save proper logs.
Exceptions | -

system.core.upload

Assumption | Connected to network.
Some video or log passed than storage due.
Description | Upload old video data or logs to provider’s storage.
Remove uploaded data.
Exceptions | ConnectionException

system.core.download

Assumption

Connected to network.
User want to read older video or log than locally-stored video
or log.

11

Safehome SRS Team 7

Description | Download some video or log from provider’s storage

Exceptions | ConnectionException

2.2 Non-functional requirements

2.2.1 Running environment

1. Platform

System run with all platform but java is avaliable for that system.
2. Java version

System run with Jave se 8 and java over 1.7.0.

2.2.2 Security requirement

1. Password managing
a. Password is stored in file only accessible by system
b. Password is stored with md5 hashing

2.2.3 Development requirement

Programming language - java
Programming tools - eclipse (or intellij)
Communication - slack

CVS - git & bitbucket

rODd -

2.2.4 Storage requirement

1. Storage is 500GB at least
2. Past video and logs stored in storage
3. Remote storage by provider can be available

2.2.5 Serving web server for remote access

1. Provider serves a web server for customers’ homesafe system

12

Safehome SRS Team 7

Appendix A. Glossaries and Indices

Sensor (P. 4)
Sensor is hardware conponent of Safehome system. Some actions activates
sensors and sensor alerts to system. Sensor includes camera.

Camera (P. 5)
Camera is special kind of sensor. Like a cctv, camera is for surveillance of
some spaces. It can record video of specific section of time.

Program (P. 5)
In this document and next documents, ‘Program’ means Safehome control
program on computer. This works core of Safehome and all functions works
during this program is running.

Not-invited person (P. 3)
Not-invited person is person disrelated from house (safehome system set) or
owner of that house. If not-invited person activates sensor of Safehome and it
is armed system, Emergency Notification is sended to service provider and
user and user knows invasion of someone.

System (P. 8)
Central system of Safehome. System manages sensors, logs, stored vidoes.
System also connect to provider’s server to grant to remote access

Web server (P. 9)
Web server from service provider. It provides web interface to access system
away from home.

Safe-zone (P. 2)
Coverage of Camera.

Floor plan (P. 2)
Blueprint of house. Set by group of sensors.

Appendix B. Traceability matrix

Parts Initial Control Watching Remote Critical
Setting Log/Video | Access Controls
sensor.common.run V
sensor.common.stop V

13

Safehome SRS

Team 7

sensor.common.self_check

sensor.common.alert

sensor.camera.state

sensor.camera.record

sensor.camera.save_video

sensor.camera.rotate

sensor.door.state

sensor.door.breaking

sensor.window.state

sensor.window.breaking

sensor.motion.state

sensor.manager.check

sensor.manager.alert

system.state.arm

system.state.disarm

I < I << I << KKK I <K< <K<K |1

system.monitor.camera

system.monitor.sensor

system.monitor.log

system.monitor.video

<|l<|<|<

system.web.login

system.web.arm

system.web.disarm

system.web.camera

<|l<l|<|<

system.core.set_password

system.core.reset_password

system.core.reset_setting

14

Safehome SRS

Team 7

system.core.reset_all

system.core.log

system.core.upload

system.core.download

I <[<<

Appendix C. Who-did-what list

Task Choonghwi Lee Wookjae Byun
Table of contents Vv Vv
Functional requirements - \
Home security features
Functional requirements - \%
Control panels
Non-functional requirements \ \
Appendix A. \ \
Appendix B. \
Appendix C. V
Appendix D. V \%
Appendix E. \%

15

Safehome SRS Team 7

Appendix D. Meeting logs

#1) 2015/4/17 Fri, N1, #114

Meeting during 19:00~23:30

SRS initial structurize(v0.0)

Contruct table of content and assign each works
(function requirement describing of each part)

#2) 2015/4/20 Fri, N1, #102

Meeting during 19:00~20:00

Assign personal jobs. Divided each roles of TOC. Getting attention to functional requirements
We'd like to add an simple images, which can helps customers' understaning.

Roughly decided documentation format.

#3) 2015/4/26 Sun, N1, #114

Meeting during 17:30~23:30

Version 1.0 of SRS. Implemented all places from individual drafts by each other.
Little change about structures.

Appendix E. Revision history

Version Changed contents Date
0.0 Initial contents draft. 2015/4117
0.1 Dividing functional/nonfunctional parts. 2015/4/20

More specific dividing & grouping.
1.0 Implement contents. 2015/4/26
1.1 Revised nonfunctional requirements and Appendix 2015/5/6

A(Glossaries)

16

