SAT for Software Model Checking

Introduction to SAT-problem for newbie

Moonzoo Kim
(original slides from Changbeom Choi)

-

 Motivation
e Model Checking as a SAT problem

e SAT & SAT—-solver?

e Discussion

Introductionto SAT-problem for newbie Choi, Chang-Beom@ pswiab

Motivation = 000000
Model Checking

Requirements farget
| PfOQf&@?
Requirement Properties Systerm Mode/
0@ - 0Q)

Satisw ‘Not satisfied

Okay Counter
example

Model Checker

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswlab

Model Checking as a SAT Problem

« What we are going to do

. Targe\
/ Requirements Program

! l
Requirement FProperties System Mode/
0@ - Q)

\ Model Checker
SAT-
solver

Satisﬁey ‘Not satisfied

Okay Counter
example

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswiab

Model Checking as a SAT problem

e disdlig o Saladuan

e SAT = Satisfiability
= Propositional Satisfiability

—>| SAT

Propositional ¢ — SAT _
problem

—> | UNSAT
e« NP-Complete problem

— We can use SAT solver for many NP—complete
problems
e Hamiltonian path
» 3 coloring problem
« Traveling sales man’s problem

e Recent interest as a verification engine

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswiab

Model Checking as a SAT problem

Model Checking as aSATproblem
SAT Formula

A set of propositional variables and clauses involving
variables

— Xi, X5, X3 and x, are variables (true or false)

e Literals: Variable and its negation
— X, and Xy’

* A clause is satisfied if one of the literals is true
— Xxy=true satisfies clause 1
— x,=false satisfies clause 2

e Solution: An assignment v that satisfies all clauses

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswlab

Model Checking as a SAT problem

DPLL(Davis-Putnam-Logemann-Loveland) Framework

[* The Quest for Efficient Boolean Satisfiability Solvers
* by L.Zhang and S.Malik, Computer Aided Verification 2002 */
DPLL(a formula ¢, assignment) {
necessary = deduction(¢, assignment);
new_asgnment = union(necessary, assignment);
if (is_satisfied(¢, new_asgnment))
return SATISFIABLE;
else if (is_conflicting(¢, new_asgnmnt))
return UNSATISFIABLE;
var = choose_free_ variable(¢, new_asgnmnt);
asgnl = union(new_asgnmnt, assign(var, 1));
if (DPLL(¢, asgnl) == SATISFIABLE)
return SATISFIABLE;
else {
asgn2 = union (new_asgnmnt, assign(var,0));
return DPLL (¢, asgn2);

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswlab

Model Checking as a SAT problem

Model Checking as a SATproblem
DPLL Example

p=T p=F

{TVrt} N{=T V —=q V r} N{T
Y4 —|1'}

V T}
AI SIMPLIFY

) A g
|

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswiab

SIMPLIFY

{—'Claf }

SIMPLIFY

Model Checking as a SAT problem

Simple Translation From Code to SAT Formula

« CBMC (C Bounded Model Checker, In CMU)
— Handles function calls using inlining

— Unwinds the loops a fixed number of times

— Allows user input to be modeled using non-—
determinism

e S0 that a program can be checked for a set of inputs
rather than a single input

— Allows specification of assertions which are
checked using the bounded model checking

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswlab

MC as a SAT problem - Simple Translation From Code to SAT Formula

Unwinding Loop

Original code Unwinding the loop 3 times

xX=0; X=0;
while (x < 2) { IfT (x < 2) {
y=y+X; y=y+X;
X++; X++;
¥ ¥
If (x <2) {
Y=Yy+X;
X++
¥
If (x <2) {
Y=Yy+X;
X++

}

Unwinding assertion:—— assert (I (X < 2))

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswlab

MC as a SAT problem - Simple Translation From Code to SAT Formula

From C Code to SAT Formula

Convert to static single v
(static single assignment (SSA))

Original code

X=X+Y, X1=Xo*Yo5
it (x1=1) it (X !1=1)
X=2: X,=2;
else else
X++; X3=X;+1;
assert(x<=3); X, =(X 1=1)?X, X33

assert(x,<=3);

Generate constraints

C = X;=XptYg A X,=2 A X3=X+1 A(X 1=1 A X=X, v X =1 A X,=X3)
P=X, <=3

Check if C A —P is satisfiable, if it is then the assertion is violated

C A =P is converted to Boolean logic using a bit vector representation
for the integer variables Y, , X, Xy, X5, X3, X, and their arithmetic operations

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswlab

MC as a SAT problem - Simple Translation From Code to SAT Formula

From C Code to SAT Formula

Example of arithmetic encoding into pure propositional formula

Assume that x,y,z are three bits positive integers represented by
Propositions X X,X,, Yo¥1Ys, ZoZ1Z5
C=z=xty = (Zo>(X®Yo)D((X1AY1) V (X1 BY1)AXAY2)))

A (216 (XBY1)B(XAY)))

A (26 (XBY5))

Half adder circuit diagram &
Full adder circuit diagram &
Inputs: {A, B, Carryln} = Outputs: {Sum, CarryOut}

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswlab

Model Checking as a SAT problem

Model Checking as a SATproblem
SAT-Solvers?

« Started with DPLL (1962)
— Able to solve 10-15 variable problems

e Satz (Chu Min Li, 1995)
— Able to solve some 1000 variable problems

e Chaff (Malik et al., 2001)
— Intelligently hacked DPLL , Won the 2004 competition
— Able to solve some 10000 variable problems

o (Current state—of—-the—art
— Minisat and SATELITEGTI (Chalmer’s university, 2004-2006)
— Jerusat and Haifasat (Intel Haifa, 2002)
— Ace (UCLA, 2004-2006)

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswlab

Countermeasure of State Explosion

1981 Clarke / Emerson: CTL Model Checking 105
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

Symbolic Model Checking 10100
Burch, Clarke, Dill, McMillan

SMV: Symbolic Model Verifier

McMillan

Bounded Model Checking using SAT 101000
Biere, Clarke, Zhu

Counterexample—guided Abstraction Refinement

Clarke, Grumberg, Jha, Lu, Veith

Introductionto SAT-problem for newbie Choi, Chang-Beom@pswiab

