
Moonzoo Kim

(original slides from Changbeom Choi)

• Motivation

• Model Checking as a SAT problem

• SAT & SAT-solver?

• Discussion

Requirements Target
Program

Requirement Properties

(Φ Ω)

Model Checker

↓

System Model

↓

Okay

Satisfied Not satisfied

Counter
example

• What we are going to do

Requirements
Target
Program

Requirement Properties

(Φ Ω)

Model Checker

↓

System Model

↓

Okay

Satisfied Not satisfied

Counter
example

SAT-
solver

• SAT = Satisfiability
= Propositional Satisfiability

• NP-Complete problem
– We can use SAT solver for many NP-complete

problems
• Hamiltonian path

• 3 coloring problem

• Traveling sales man’s problem

• Recent interest as a verification engine

SAT
problem

SAT
problem

Propositional φPropositional φ

SAT

UNSAT

• A set of propositional variables and clauses involving
variables
– (x1 ∨ x2’ ∨ x3) ∧ (x2 ∨ x1’ ∨ x4)

– x1, x2, x3 and x4 are variables (true or false)

• Literals: Variable and its negation
– x1 and x1’

• A clause is satisfied if one of the literals is true
– x1=true satisfies clause 1

– x1=false satisfies clause 2

• Solution: An assignment v that satisfies all clauses

/* The Quest for Efficient Boolean Satisfiability Solvers
* by L.Zhang and S.Malik, Computer Aided Verification 2002 */
DPLL(a formula φ, assignment) {

necessary = deduction(φ, assignment);
new_asgnment = union(necessary, assignment);
if (is_satisfied(φ, new_asgnment))

return SATISFIABLE;
else if (is_conflicting(φ, new_asgnmnt))

return UNSATISFIABLE;
var = choose_free_variable(φ, new_asgnmnt);
asgn1 = union(new_asgnmnt, assign(var, 1));
if (DPLL(φ, asgn1) == SATISFIABLE)

return SATISFIABLE;
else {

asgn2 = union (new_asgnmnt, assign(var,0));
return DPLL (φ, asgn2);

}
}

{p∨ r}∧{¬p∨ ¬q∨ r}∧{p∨¬r}

{T∨r}∧{¬T∨ ¬q∨ r}∧{T
∨ ¬r}

{F∨ r}∧{¬F∨ ¬q∨ r}∧{F
∨ ¬r}

p=T p=F

{¬q,r} {r}∧{¬r}

{}

SIMPLIFY SIMPLIFY

SIMPLIFY

• CBMC (C Bounded Model Checker, In CMU)

– Handles function calls using inlining

– Unwinds the loops a fixed number of times

– Allows user input to be modeled using non-
determinism

• So that a program can be checked for a set of inputs
rather than a single input

– Allows specification of assertions which are
checked using the bounded model checking

x=0;
while (x < 2) {

y=y+x;
x++;

}

x=0;
if (x < 2) {

y=y+x;
x++;

}
if (x < 2) {

y=y+x;
x++;

}
if (x < 2) {

y=y+x;
x++;

}

assert (! (x < 2))

Original code Unwinding the loop 3 times

Unwinding assertion:

x=x+y;
if (x!=1)

x=2;
else

x++;
assert(x<=3);

x1=x0+y0;
if (x1!=1)

x2=2;
else

x3=x1+1;
x4=(x1!=1)?x2:x3;
assert(x4<=3);

C ≡ x1=x0+y0 ∧ x2=2 ∧ x3=x1+1 ∧(x1!=1 ∧ x4=x2 ∨ x1=1 ∧ x4=x3)
P ≡ x4 <= 3

Check if C ∧ ¬P is satisfiable, if it is then the assertion is violated

C ∧ ¬P is converted to Boolean logic using a bit vector representation
for the integer variables y0,x0,x1,x2,x3,x4 and their arithmetic operations

Original code Convert to static single v
(static single assignment (SSA))

Generate constraints

Assume that x,y,z are three bits positive integers represented by
propositions x0x1x2, y0y1y2, z0z1z2
C ≡ z=x+y ≡ (z0↔(x0⊕y0)⊕((x1Æy1) Ç (((x1⊕y1)Æ(x2Æy2)))

Æ (z1↔(x1⊕y1)⊕(x2Æy2))
Æ (z2↔(x2⊕y2))

•Example of arithmetic encoding into pure propositional formula

• Started with DPLL (1962)
– Able to solve 10-15 variable problems

• Satz (Chu Min Li, 1995)
– Able to solve some 1000 variable problems

• Chaff (Malik et al., 2001)
– Intelligently hacked DPLL , Won the 2004 competition

– Able to solve some 10000 variable problems

• Current state-of-the-art
– Minisat and SATELITEGTI (Chalmer’s university, 2004-2006)

– Jerusat and Haifasat (Intel Haifa, 2002)

– Ace (UCLA, 2004-2006)

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000

