Introduction to Logic (2/2)

Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

Overview

- Syntax v.s. semantics
- Various logics
- The history of mathematical logic
 - Logic at ancient Greek
 - Logic in 19th century
- Propositional calculus
 - Derivability/provability (symbolic manipulation)
 - Truth (semantic evaluation)
 - Soundness and completeness

Syntax v.s. Semantics

An example of small language

BNF

- F := 0 | 1 | F + 1 | 1 + F
- Ex. 0, 0+1+1, 1+0+1, but not 0+0
- Possible semantics
 - Is a formula 1 + 1 equal (in what sense?) to 1 + 1 + 0?
 - Yes (interpreting formula as natural number arithmetic),
 - $[1+1]_{N1} = 2, [1+1+0]_{N1} = 2$ $\rightarrow 1+1 =_{N1} 1+1+0$
 - No (interpreting formula as string),
 - [1 + 1]_S = "1+1", [1 + 1 +0]_S = "1+1+0" → 1 + 1 \neq_S 1 + 1 + 0
 - No (interpreting formula as natural # of string length)
 - $[1+1]_{N2} = 3, [1+1+0]_{N2} = 5 \rightarrow 1+1 =_{N2} 1+1+0$

Semantics Domain (cont.)

Mathematical Domain

Various Logics 1/2

- Using a logic, we would like to specify requirement specification as a logical formula ϕ
- At the same time, we would like to prove whether ϕ is true or not using an algorithm
- Therefore, we can characterize logic according to both
 - Expressive power
 - Ex. Second order logic > First order logic > Propositional logic
 - Computational complexity to prove a formula ϕ
 - Ex. Propositional logic is decidable, i.e., every formula ϕ in the propositional logic can be proved mechanically
 - Ex. First order logic is undecidable, i.e., some formula ϕ in the first order logic cannot be proved using computer

Various Logics 2/2

- Suppose that the multiple readers/writers system has 10000 readers. Then, describing ϕ_{CON} as $(R_1 \land R_2) \lor (R_2 \land R_3) \lor (R_3 \land R_4)...$ in propositional logic would have to write $(6 \times {}_{10000}C_2 - 1) = 3 \times 10^8$ characters.
 - For infinitely many readers, such way of description is even **not** possible.
- We can describe the requirement in the first order logic
 - $\exists i \exists j ((i \neq j) \land (R(i) \land R(j)))$ for some time instant t
- We can even describe the temporal condition in the requirement using the temporal logic
 - ♦ ∃i ∃j ((i≠j) ∧ (R(i)∧R(j)))
 - More correctly, ϕ_{CON} should be $\Box \diamond \exists i \exists j ((i \neq j) \land (R(i) \land R(j)))$

Logic at Ancient Greek 1/2

English word 'trivial' originates from

- "trie" (3 = grammar, rhetoric, and logic) + "via" (way)
- The study of logic was begun by the ancient Greeks to formalize deduction
 - The derivation of true statements, called conclusions, from statements that are assumed to be true, called premises
 - Rhetoric (수사학) included the study of logic so that all sides in a debate would use the same <u>rules</u> of deduction
- Axiom, theorem, and lemma are ancient Greek words

Logic at Ancient Greek 2/2

- One such famous rule is the syllogism (삼단논법)
 - Premise1: All men are mortal
 - Premise2: X is a man
 - Conclusion: Therefore, X is mortal.
- Using the syllogism, we can deduce
 - Socrates is mortal
- However, careless use of logic can lead to claims that false statements are true or vice versa.
 - Premise1: Some cars make noise.
 - Premise2: My car is some car
 - Conclusion: Therefore, my car makes noise.

KAIST Intro. to Logic CS402 Fall 2007

Logic at 19th Century

- Until the 19th century, logic remained a philosophical rather than a mathematical and scientific tool because
 - a natural language cannot express what mathematicians want to express and reason precisely enough
 - symbolic logic (a.k.a mathematical logic) was invented for the purpose in the 19th century where
 - formal symbols (e.g. "φ", "∧") are used to describe a formula instead of natural languages
 - Separation of a syntactic representation of a formula from its interpretation
 - formal rules to manipulate a formula purely based on its syntactic representation are defined

Logic at 19th Century

- 19th century, mathematicians questioned the legitimacy of the entire deductive process used to prove theorems in mathematics since they discovered the paradoxes
 - The Sophist's Paradox.
 - A Sophist is sued for his tuition by the school that educated him.
 - He argues that he must win, since, if he loses, the school didn't educate him well enough, and doesn't deserve the money.
 - The school argues that he must lose, since, if he wins, he was educated well enough and therefore should pay for it.
 - Russell's paradox (1902)
 - Consider the set A of all those sets X such that X is not a member of X.
 - Clearly, by definition, A is a member of A if and only if A is not a member of A. So,
 - if A is a member of A, then A is also not a member of A
 - If A is not a member of A, then A is a member of A
 - In a formal way, consider the set $T=\{ S \mid S \notin S \}$
 - Then $T \in T \leftrightarrow T \notin T$ (a contradiction)

Logic at 19th Century

- Thus, they wanted to justify mathematical deduction by formalizing a system of logic in which the set of derivable/provable statements is the same as the set of true statements, i.e.,
 - 1. Every statement that can be proved is true
 - 2. If a statement is in fact true, there is a proof for the statement

An Example of a Provable Statement and a True Statement

Logic at 19th Century

- Hilbert's program, the research spurred by this plan, resulted in the development of systems of logic
 - Also, development of theories of the nature of logic itself
- Gödel showed that there are true statements of arithmetic that are not provable. This famous theorem is called Gödel's incompleteness theorem.
 - Thus, Gödel's incompleteness theorem refutes Hilbert's program's goal.
- The application of logic to computer science has spurred the development of new systems of logic
 - Analogy to cross-fertilization between continuous mathematics and applications in the physical sciences

Propositional Calculus

- The study of logic commences with the study of reasoning truth of sentences. Thus, sentential logic is the most primitive logic and also known as propositional logic.
 - A proposition *p* represents a declarative sentence.
 - A proposition p states that "John eats an apple"
 - A proposition q states that "Mary eats an orange"
- Formulas of the propositional logic are defined by syntactical rules using Boolean operators (¬,→,∧,∨)
 - Suppose that φ and ψ are well-formed propositional formulas (wff). Every proposition is a well-formed formula. Then,
 - (ϕ), $\neg \phi$, $\phi \land \psi$, $\phi \lor \psi$, $\phi \rightarrow \psi$ are wffs, too.
 - Note that \neg and \wedge are core Boolean operators
 - (($\rightarrow \psi$ is not a wff.

Propositional Calculus

- Syntax is also used to define the concept of proof, the symbolic manipulation of formulas in order to deduce a theorem.
 - See derivation rules and proof tree at slide 7
- Meaning (semantics) of the formula is defined by interpretations which assign a value true or false to every formula.
 - See truth table at slide 7
- Propositional logic is sound and complete in a sense that
 - Derivability coincide with truth
 - A wff ϕ can be proved if and only if ϕ is true
 - In other words, if you can prove ϕ using derivation rules, then ϕ must be evaluated true using the truth table. Also, vice versa.

Name		Name		Name	
alpha	α	beta	β	Gamma	Γ
gamma	γ	delta	δ	Theta	Θ
epsilon	3	zeta	ζ	Xi	Ξ
eta	η	theta	θ	Omega	Ω
iota	l	kappa	κ	Pi	Π
lambda	λ	mu	μ	Delta	Δ
nu	ν	xi	x	Lambda	Λ
chi	χ	pi	π	Phi	Φ
rho	ρ	upsilon	υ	Sigma	Σ
phi	ø	psi	Ψ	Psi	Ψ
omega	ω				

Greek Letters

