Predicate Calculus - Semantics 2/4

Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

Logical equivalence (1/3)

• Def 5.21 Given two closed formulas A_1, A_2 , if $v_{\mathcal{I}}(A_1) = {}_{\mathcal{I}}(A_2)$ for all interpretation \mathcal{I} , then A_1 is logically equivalent to A_2

• Notation: $A_1 \equiv A_2$

- Let A be a closed formula and U a set of closed formulas. If for all interpretations *I*, v_I(A) = T whenever v_I(A_i) = T for all A_i ∈ U, then A is a logical consequence of U
 Notation: U ⊨ A
- Thm 5.22 A = B iff \vDash A \leftrightarrow B, U \vDash A iff \vDash (A₁ $\land ... \land A_n$) \rightarrow A

$\forall x A(x) \leftrightarrow \neg \exists x \neg A(x)$	$\exists xA(x) \leftrightarrow \neg \forall x \neg A(x)$ simporta	ant duality Logica
$\forall x \forall yA(x, y) \leftrightarrow \forall y \forall xA(x, y) \exists x \forall yA(x, y) \rightarrow \forall y \exists xA(x, y)$	$\exists x \exists y A(x, y) \leftrightarrow \exists y \exists x A(x, y)$	equivalence (2/3)
$(\exists x A(x) \lor B) \leftrightarrow \exists x (A(x) \lor B)$	$(\forall x A(x) \lor B) \leftrightarrow \forall x (A(x) \lor B)$	
$(B \lor \exists x A(x)) \leftrightarrow \exists x (B \lor A(x))$	$(B \lor \forall x A(x)) \leftrightarrow \forall x (B \lor A(x))$	passing quantifier
$(\exists x A(x) \land B) \leftrightarrow \exists x (A(x) \land B)$	$(\forall xA(x) \land B) \leftrightarrow \forall x(A(x) \land B)$	over closed passing
$(B \land \exists x A(x)) \leftrightarrow \exists x (B \land A(x))$	$(B \land \forall x A(x)) \leftrightarrow \forall x (B \land A(x))$	formula quantifiers through
$\forall x(A \to B(x)) \leftrightarrow (A \to \forall xB(x))$	$\forall x(A(x) \to B) \leftrightarrow (\forall xA(x) \to B) \checkmark$	∧ and ∨
$(\exists x(A(x) \lor B(x)) \leftrightarrow (\exists xA(x) \lor \exists xB(x)))$	$\forall x(A(x) \land B(x)) \leftrightarrow (\forall xA(x) \land \forall xB(x))$	Y(x)
$\forall x A(x) \lor \forall x B(x)) \rightarrow \forall x (A(x) \lor B(x))$	$\exists x(A(x) \land B(x)) \rightarrow (\exists xA(x) \land \exists xB(x))$	S(x)
$\forall x(A(x) \leftrightarrow B(x)) \rightarrow (\forall xA(x) \leftrightarrow \forall xB(x))$	$\forall x (A(x) \leftrightarrow B(x)) \rightarrow (\exists x A(x) \leftrightarrow \exists x A(x))$	(B(x))
$\exists x (A(x) \to B(x)) \leftrightarrow (\forall x A(x) \to \exists x B(x))$	$(\exists xA(x) \rightarrow \forall xB(x)) \rightarrow \forall x(A(x) \rightarrow B(x)))$	B(x)) passing quantifiers
$\forall x (A(x) \lor B(x)) \rightarrow (\forall x A(x) \lor \exists x B(x))$	$\forall x (A(x) \to B(x)) \to (\forall x A(x) \to \forall x A(x)) \to \forall x A(x) \to x A(x) \to \forall x A(x) \to x A(x) \to \forall x A(x) \to \forall x A(x) \to $	\frown through \rightarrow
$\forall x (A(x) \to B(x)) \to (\exists x A(x) \to \exists x B(x))$	$\forall x (A(x) \to B(x)) \to (\forall x A(x) \to \exists x A(x)) \to \exists x A(x) A(x) A(x) A(x) A(x) A(x) A(x) A($	(B(x)) 3

Logical equivalence (3/3)

- Find counter examples for converse way
 - $(\forall x A(x) \lor \forall x B(x)) \rightarrow \forall x (A(x) \lor B(x))$
 - $\exists x (A(x) \land B(x)) \rightarrow (\exists x A(x) \land \exists x B(x))$
- Passing quantifiers through implication
 - $\exists x(A(x) \rightarrow B(x)) \equiv \exists x (\neg A(x) \lor B(x)) \equiv \exists x \neg A(x) \lor \exists x B(x)$
 - $\equiv \neg \exists x \ \neg A(x) \rightarrow \exists x B(x) \equiv \forall x \ A(x) \rightarrow \exists x \ B(x)$
- Ex 5.23 $\models \forall x (A(x) \lor B(x)) \rightarrow (\forall x A(x) \lor \exists x B(x))$
 - $\forall x (A(x) \lor B(x)) \rightarrow (\forall x A(x) \lor \exists x B(x)) \equiv$ $\forall x (A(x) \lor B(x)) \rightarrow (\exists x \neg A(x) \rightarrow \exists x B(x)) \equiv$ $\exists x \neg A(x) \rightarrow (\forall x (A(x) \lor B(x)) \rightarrow \exists x B(x))$ (note. A → (B → C) ≡ B → (A → C))
 - If $v_{\mathcal{I}}(\exists x \neg A(x)) = F$ or $v_{\mathcal{I}}(\forall x (A(x) \lor B(x))) = F$, the formula is true.
 - Thus, we need only show v_I(∃x B(x))=T whenever v_I(∃x¬A(x))=T and v_I(∀x(A(x)∨B(x)))=T
 - By Thm 5.15, for some assignment σ'₁, v_{σ'1}(¬A(x))=T and thus v_{σ'1}(A(x))=F. Using Thm 5.15 again, v_{σ1}(A(x)∨B(x)) = T under all assignments, in particular under σ'₁. Thus, v_{σ1}(B(x)) = T, and using Thm 5.15 yet again, v₁(∃x B(x)) = T.

Necessity of functions

- One can always do without function symbols by using predicate symbols instead
 - note that a function is defined as a relation as a predicate is
- Andy and Paul have the same maternal grandmother (외할머니)
 - $\forall x \forall y \forall u \forall v (M(x,y) \land M(y,Andy) \land M(u,v) \land M(v,Paul) \rightarrow x=u).$
- The function symbols of predicate logic give us a ways of avoiding this ugly encoding, for they allow us to represent y's mother in a more direct way.
 - Instead of writing M(x,y) to mean that x is y's mother, we simply write m(y) to mean y's mother where m is a function symbol
 - m(m(Andy)) = m(m(Paul))

Introduction of function symbols (Sect 7.1)

- Ex 7.1 (x>y) → ((x+1) > (y+1)) can be written in prefix notation as >(x,y) → >(+(x,1),+(y,1)). It is interpreted instance of the following formula in the predicate calculus: p(x,y) → p(f(x,a),f(y,a)) where
 - > is assigned to p, + is assigned to f and 1 to a
- Def 7.2 Let *F* be a countable set of function symbols. The following grammar rules define terms, a generalization of constants and variables. The rule for atomic_formula is modified to take a term_list as its argument
 - atomic formula
 - term ::= x for any $x \in \mathcal{V}$
 - term ::= a for any $a \in \mathcal{A}$
 - term ::= f(term_list) for any $f \in \mathcal{F}$
 - term_list ::= term+
 - atomic_formula ::= p (term_list) for any $p \in \mathcal{P}$
- As with predicate symbols, function symbols have a fixed arity
 - functions are denoted by {f,g,h}

Intro. to Logic CS402 Fall 2007

Functions (1/2)

Ex 7.3

- terms: a, x, f(a,x), f(g(x),y), g(f(a,g(b)))
- atomic formulas: p(a,b), p(x,f(a,x)), q(f(a,a),f(g(x),g(x)))
- Def 7.4 A term or atom is ground iff it contains no variables. A formula is ground iff it contains no quantifiers and no variables. A formula A is a ground instance of a quantifier-free formula A iff it can be obtained from A by substituting ground terms for the (free) variables in A
- Def 7.5 Let U be a set of formulas s.t. {p₁,...,p_k} are all the predicate symbols, {f₁,...,f_l} are all the function symbols and {a₁,...,a_m} are all the constant symbols appearing in U. An interpretation *I* is a 4-tuple
 - $(D, \{R_1, ..., R_k\}, \{F_1, ..., F_l\}, \{d_1, ..., d_m\})$
 - D is a non-empty set
 - an assignment of n_i-ary relations R_i on D to the n_i-ary predicate symbols p_i
 - an assignment of n_i-ary functions F_i on D to the n_i-ary function symbols f_i
 - Notation: $f_i^{\mathcal{I}} = F_i$

Intro. to Logican assignment of elements $d_i \in D$ to the constant symbols a_i

Functions (2/2)

- Def 7.6 Given a ground term t, $v_{\mathcal{I}}(t)$, the value of the term in the interpretation \mathcal{I} , is defined by induction:
 - $v_{\mathcal{I}}(a_i) = d_i$
 - $v_{\mathcal{I}}(f_i(t_1,...,t_n)) = F_i(v_1(t_1),...,v_{\mathcal{I}}(t_n))$

 $v_{\mathcal{I}}(A)$, the value of a formula, is also defined by induction. For atomic formulas:

- $v_{\mathcal{I}}(p_i(t_1,...,t_n)) = T \text{ iff } (v_i(t_1),...,v_{\mathcal{I}}(t_n)) \in R$
- Ex 7.7 (\mathcal{Z} , { \leq },+,{1}) $\vDash \forall x \forall y (p(x,y) \rightarrow p(f(x,a),f(y,a)))$
 - i.e., $\forall x \forall y ((x \le y) \rightarrow (x+1 \le y+1))$
 - However, the formula is not valid since it is falsified by the interpretation (Z, {≤},*,{-1})
 - 4 ≤ 5 but 4*-1 ≤ 5*-1

Example

- For an interpretation $\mathcal{I} = (\mathcal{D}, \mathcal{R}, \mathcal{F}, \mathcal{C})$ where
 - *D* = {a,b,c}
 - R = {Trans, Final, Equality} where
 - Trans = {(a,a),(a,b),(a,c),(b,c),(c,c)}
 - Final = {b,c}
 - Equality={(a,a),(b,b),(c,c)}
 - *F*={}
 - C={a}

• Some formulas for \mathcal{I} where $R^{\mathcal{I}}$ =Trans, $F^{\mathcal{I}}$ =Final, = \mathcal{I} =Equality, $i^{\mathcal{I}}$ =a

- *I* ⊨ ∃y R(i,y)
- *I* ⊨ ¬F(i)
- $\mathcal{I} \nvDash \forall x \forall y \forall z \ (\mathsf{R}(x,y) \land \mathsf{R}(x,z) \rightarrow y = z)$
- $\mathcal{I} \models \forall x \exists y \mathsf{R}(x,y)$

