Propositional Calculus - Deductive Systems

Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

Deductive proofs (1/3)

- Suppose we want to know if ϕ belongs to the theory $\mathcal{T}(U)$.
 - By Thm 2.38 U $\vDash \phi$ iff $\vDash A_1 \land \ldots \land A_n \rightarrow \phi$ where U = { A_1, \ldots, A_n }
 - Thus, $\phi \in \mathcal{T}(U)$ iff a decision procedure for validity answers 'yes'
- However, there are several problems with this semantic approach
 - The set of axioms may be infinite
 - e.x. Hilbert deductive system \mathcal{H} has an axiom schema (A \rightarrow (B \rightarrow A)), which generates an infinite number of axioms by replacing schemata variables A,B and C with infinitely many subformulas (e.g. $\phi \land \psi, \neg \phi \lor \psi$, etc)
 - e.x.2. Peano and ZFC theories cannot be finitely axiomatized.
 - Very few logics have decision procedures for validity of ϕ
 - ex. propositional logic has a decision procedure using truth table
 - ex2. predicate logic does not have such decision procedure
- There is another approach to logic called deductive proofs.
 - Instead of working with semantic concepts like interpretation/model and consequence
 - we choose a set of axioms and a set of syntactical rules for deducing new formulas from the axioms

Deductive proofs (2/3)

- A deductive system consists of
 - a set of axioms and

axioms

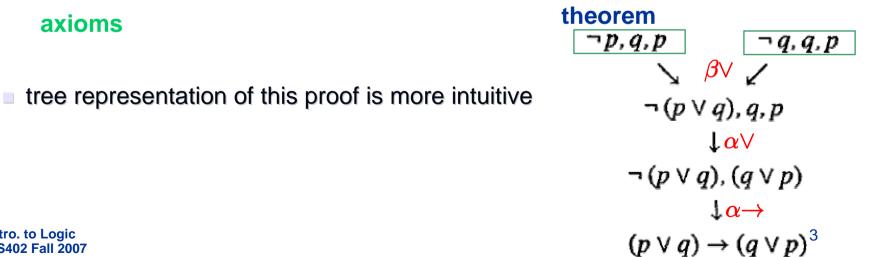
Intro. to Logic

CS402 Fall 2007

KAIST

Def 3.1

- a set of inference rules
- A proof in a deductive system is a sequence of sets of formulas s.t. each element is either an axiom or it can be inferred from previous elements of the sequence using a rule of inference
- If {A} is the last element of the sequence, A is a theorem, the sequence is a proof of A, and A is provable, denoted $\vdash A$
- **Example of a proof of (p** \lor q) \rightarrow (q \lor p) in gentzen system \mathcal{G}
 - $= \{\neg p,q,p\}.\{\neg q,q,p\}.\{\neg (p \lor q),q,p\}.\{\neg (p \lor q),(q \lor p)\}.\{(p \lor q) \rightarrow (q \lor p)\}$



Deductive proofs (3/3)

Deductive proofs has following benefits

- There may be an infinite number of axioms, but only a finite number of axioms will appear in any proof
- Any particular proof consists of a finite sequence of sets of formulas, and the legality of each individual deduction can be easily and efficiently determined from the syntax of the formulas
- The proof of a formula clearly shows which axioms, theorems and rules are used and for what purposes.
 - Such a pattern (i.e. relationship between formulas) can then be transferred to other similar proofs, or modified to prove different results.
 - Lemmas and corollaries can be obtained and can be used later
- But with a new problem
 - deduction is defined purely in terms of syntactical formula manipulation
 - But it is not amenable to systematic search procedures
 - no brute-force search is possible because any axiom can be used

The Gentzen system ${\cal G}$

- Def 3.2 The Gentzen system G is a deductive system.
 - The axioms are the sets of formulas containing a complementary pairs of literals
 ex. { ¬p, p, p∧q} can be an axiom, but { ¬p, q, p∧q} is not.
 - The rules of inferences are:
 - note that a set of formulas in \mathcal{G} is an implicit disjunction

premise
$$\vdash U_1 \cup \{\alpha_1, \alpha_2\}$$

conclusion $\vdash U_1 \cup \{\alpha\}$

$$\frac{\vdash U_1 \cup \{\beta_1\} \quad \vdash U_2 \cup \{\beta_2\}}{\vdash U_1 \cup U_2 \cup \{\beta\}}$$

	α	α_1	α2
	<i>א</i> רר <i>A</i>	A	
	$\neg (A_1 \land A_2)$	$\neg A_1$	¬A ₂
8 α -rules	$A_1 \lor A_2$	<i>A</i> ₁	A2
\checkmark	$\underline{A_1 \rightarrow A_2}$	$\neg A_1$	A ₂
	$A_1 \uparrow A_2$	$\neg A_1$	$\neg A_2$
	$\neg (A_1 \downarrow A_2)$	A_1	A ₂
	$\neg (A_1 \leftrightarrow A_2)$	$\neg (A_1 \rightarrow A_2)$	$\neg (A_2 \rightarrow A_1)$
KAIST Intro to CS402		$\neg (A_1 \rightarrow A_2)$	$\neg (A_2 \rightarrow A_1)$

	β	β_1	β ₂	
_				
	$B_1 \wedge B_2$	<i>B</i> ₁	<i>B</i> ₂	
	$\neg (B_1 \lor B_2)$	$\neg B_1$	$\neg B_2$	7β -rules
	$\neg (B_1 \rightarrow B_2)$	<i>B</i> ₁	$\neg B_2$	
	$\neg (B_1 \uparrow B_2)$	B_1	<i>B</i> ₂	
	$B_1 \downarrow B_2$		$\neg B_2$	
	$B_1 \leftrightarrow B_2$	$B_1 \rightarrow B_2$	$B_2 \rightarrow B_1$	
	$\neg \left(B_{1} \oplus B_{2} \right)$	$B_1 \rightarrow B_2$	$B_2 \rightarrow B_1$	5

Soundness and completeness of \mathcal{G}

Note that there are close relationship between a deductive proof of ϕ and semantic tableau of ϕ

 $\neg p, q, p \qquad \neg q, q, p$ $\searrow \qquad \swarrow$ $\neg (p \lor q), q, p$ \downarrow $\neg (p \lor q), (q \lor p)$ \downarrow $(p \lor q) \rightarrow (q \lor p)$

 $\neg [(p \lor q) \rightarrow (q \lor p)]$ \downarrow $p \lor q, \neg (q \lor p)$ \downarrow $p \lor q, \neg q, \neg p$ \swarrow $p, \neg q, \neg p$ $q, \neg q, \neg p$ $q, \neg q, \neg p$ χ χ

A proof in \mathcal{G}

Semantic tableau

Soundness and completeness of ${\mathcal{G}}$

- Thm 3.6 Let U be a set of formulas and Ū be the set of complements of formulas in U. Then ⊢U in *G* iff there is a closed semantic tableau T for Ū
- Proof of completeness,
 - \vdash U in \mathcal{G} if there exists a closed T for \overline{U} exists
 - induction on the height of T, h
 - h=0
 - T consists of a single node labeled by Ū, a set of literals containing a complementary pair (say {p, ¬p}), that is Ū = Ū₀ ∪ {p, ¬p}
 - Obviously U = U₀ \cup {¬p, p} is an axiom in \mathcal{G} , hence \vdash U

Soundness and completeness of ${\cal G}$

Proof of completeness (continued)

- \vdash U in \mathcal{G} if there exists a closed T for \overline{U} exists
- h>0
 - Some tableau α or β rule was used at the root n of T on a formula $\overline{A} \in \overline{U}$, that is $\overline{U} = \overline{U}_0 \cup {\overline{A}}$
 - Case of α rule
 - A tableau α-rule was used on (a formula such as) Ā = ¬ (A₁ ∨ A₂) to produce the node n' labeled Ū' = Ū₀' ∪ { ¬A₁, ¬A₂}. The subtree rooted at n' is a closed tableau for Ū', so by the inductive hypothesis, ⊢ U₀ ∪ {A₁, A₂}. Using the α-rule in G, ⊢ U₀ ∪ {A₁ ∨ A₂}, that is ⊢ U
 - Case of β rule
 - A tableau β-rule was used on (a formula such as) Ā = ¬ (A₁ ∧ A₂) to produce the node n' and n" labeled Ū' = Ū₀ ∪ { ¬A₁}, Ū"= Ū₀ ∪ {¬A₂}, respectively. By the inductive hypothesis, ⊢ U₀ ∪ {A₁} and ⊢ U₀ ∪ {A₂}. Using the β-rule in G, ⊢ U₀ ∪ {A₁ ∧ A₂}, that is ⊢U

