Propositional Calculus - Soundness & Completeness of H

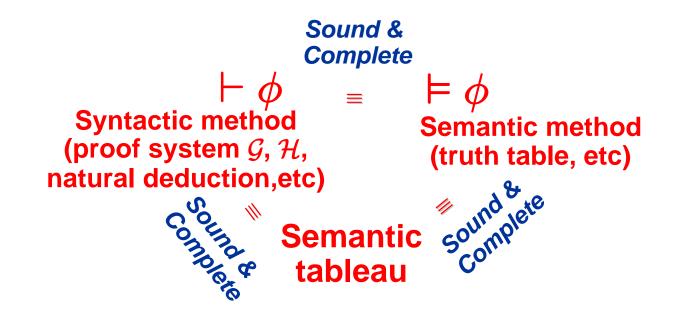
Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

Review

Goal of logic

- To check whether given a formula ϕ is valid
- To prove a given formula ϕ



Soundness of \mathcal{H} (1/2)

• Thm 3.34 \mathcal{H} is sound, that is \vdash A then \models A

- Proof is by structural induction
- We show that
 - 1. the all three axioms are valid and that
 - 2. if the premises of MP are valid, so is the conclusion
- **Task 1: to prove \models Axiom1, \models Axiom2, and \models Axiom3**
 - By showing the semantic tableau of the negated axiom is closed

Intro. to Logic CS402 Fall 2007

KAIS

Soundness of H (2/2)

Task 2: proof by RAA (귀류법)

- Suppose that MP were not sound.
 - Then there would be a set of formulas {A, $A \rightarrow B$, B} such that A and A \rightarrow B are valid, but B is not valid

$$\begin{array}{c|c} \vdash A & \vdash A \rightarrow B \\ \hline & \vdash B \end{array}$$

If B is not valid, there is an interpretation v such that v(B) = F. Since A and A → B are valid, for any interpretation, in particular for v, v(A) = v(A → B) = T. From this we deduce that v(B) = T contradicting the choice of v

Completeness of H(1/4)

- Thm 3.35 \mathcal{H} is complete, that is, if \models A then \vdash A
- Any valid formula can be proved in G (thm 3.8). We will show how a proof in G can be mechanically transformed into a proof in H
- The exact correspondence is that if the set of formulas U is provable in \mathcal{G} then the single formula \lor U is provable in \mathcal{H}
 - A problem is that
 - We can show that { $\neg p$, p} is an axiom in \mathcal{G} then $\vdash p \lor \neg p$ in \mathcal{H} since this is simply Thm 3.10 ($\vdash A \rightarrow A$)
 - Note that $A \lor B$ is an abbreviation for $\neg A \rightarrow B$
 - Similarly $A \land B$ is an abbreviation for $\neg (A \rightarrow \neg B)$
 - But if the axiom in G is {q, ¬p, r, p, s}, we cannot immediately conclude that ⊢q ∨ ¬p ∨ r ∨ p ∨ s

Completeness of H(2/4)

Lem 3.36 If U' \subseteq U and $\vdash \lor$ U' (in \mathcal{H}) then $\vdash \lor$ U (in \mathcal{H})

The proof is by induction using Thm 3.31 through 3.33

Suppose we have a proof of VU'. By repeated application of Thm 3.31, we can transform this into a proof of VU", where U" is a permutation of the elements of U.

Thm 3.31 Weakening $\vdash A \rightarrow A \lor B$ and $\vdash B \rightarrow A \lor B$

Now by repeated applications of the commutativity and associativity of disjunction, we can move the elements of U" to their proper places

Thm 3.32 Commutativity rule: $\vdash A \lor B \leftrightarrow B \lor A$

Thm 3.33 Associativity rule : $\vdash A \lor (B \lor C) \leftrightarrow (A \lor B) \lor C$

Completeness of H(3/4)

- Completeness proof by induction on the structure of the proof in G
 - We are transforming a proof in \mathcal{G} to a proof in \mathcal{H}
- Task 1:
 - If U is an axiom, it contains a pair of complementary literals and ⊢ ¬p ∨ p can be proved in *H*. BY Lem 3.36, this may be transformed into a proof of ∨ U.
 - Lem 3.36 If U' \subseteq U and $\vdash \lor$ U' (in \mathcal{H}) then $\vdash \lor$ U (in \mathcal{H})

Completeness of H(4/4)

Task 2:

• The last step in the proof of U in \mathcal{G} is the application of an α or β rule.

Case 1: An α rule was used in \mathcal{G} to infer

$$\frac{\vdash U_1 \cup \{A_1, A_2\}}{\vdash U_1 \cup \{A_1 \lor A_2\}}$$

By the inductive hypothesis, ⊢ (∨U₁ ∨ A₁) ∨ A₂ in H from which we infer ⊢ ∨ U₁ ∨ (A₁ ∨ A₂) by associativity

Case 2: An β rule was used in \mathcal{G} to infer

$$\frac{\vdash U_1 \cup \{A_1\} \quad \vdash U_2 \cup \{A_2\}}{\vdash U_1 \cup U_2 \cup \{A_1 \land A_2\}}$$

• By the inductive hypothesis, $\vdash \lor U_1 \lor A_1$ and $\vdash \lor U_2 \lor A_2$ in \mathcal{H} . Thus $\vdash \lor U_1 \lor \lor U_2 \lor (A_1 \land A_2)$

Consistency

Def 3.38 A set of formulas U is inconsistent iff for some formula A, U ⊢ A and U ⊢ ¬ A. U is consistent iff it is not inconsistent

Thm 3.39 U is inconsistent iff for all A, U ⊢ A

- Proof: Let A be an arbitrary formula. Since U is incosistent, for some formula B, U ⊢ B and U ⊢ ¬ B.
- By Thm 3.21 \vdash B \rightarrow (\neg B \rightarrow A). Using MP twice, U \vdash A.
- Corollary 3.40 U is consistent iff for some A, U ⊭ A
- Them 3.41 U \vdash A iff U \cup { \neg A} is inconsistent

