Temporal Logic (1/2)

Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

Introduction to temporal logic (1/3)

Temporal logic is to reason about time

- Temporal logic is applicable in many engineering fields
 - since the behavior of a target system can be described as a function of time
 - unlike mathematical expressions such as 1+1 = 2 whose behavior is static
- Consider the statement: "I am hungry."
 - Though its meaning is constant in time, the truth value of the statement can vary in time.
 - Sometimes the statement is true, and sometimes the statement is false, but the statement is never true and false simultaneously.
- In a temporal logic, statements can have a truth value which can vary in time.
 - Contrast this with an a predicate logic, which can only handle statements whose truth value is constant in time.

Introduction to temporal logic (2/3)

- Temporal logic refers modal-logic type of approach introduced around 1960 by Arthur Prior under the name of Tense Logic
 - subsequently developed further by logicians and computer scientists such as Amir Pnueli
 - Received great attention for its application on formal verification
- Example 11.1:
 - File server: If a request is made to print a file, eventually the file will be printed
 - Operating system: The system will always run. The system will never crash
- Timing properties can be expressed in predicate logic
 - ex. the file server property:
 - $\forall f \forall t_1 (\text{RequestPrint}(f,t_1) \rightarrow \exists t_2 ((t_2 \ge t_1) \land \text{PrintedAt}(f,t_2)))$
 - In temporal logic, new operators (□, ◊, U, etc) are introduced that enable the time variables and their relationships (e.g. t₂ ≥ t₁) to be implicitly indicated

Introduction to temporal logic (3/3)

- Temporal logic has received great attention for its application in verification field since 1980
- Informal description
 - is the universal operator 'for any time t in the future' (always)
- The operators compose in the sense that $\Box \diamondsuit p$ means not just $\forall t_1 \exists t_2 p$, but $\forall t_1 \exists t_2 ((t_2 \ge t_1) \land p)$ and
- The file server property:
 - $\forall f \Box (RequestPrint(f) \rightarrow \Diamond PrintedAt(f))$
- Reasoning with a temporal formula is much easier than with its translation into the predicate calculus, because the relationships among the times are implicit
 - Iow-level details about dealing with time variables are hidden

Motivation for verification

- There is a great advantage in being able to verify the correctness of computer systems
 - This is most obvious in the case of safety-critical systems
 - ex. Cars, avionics, medical devices
 - Also applies to mass-produced embedded devices
 - ex. handphone, USB memory, MP3 players, etc
- Formal verification can be thought of as comprising three parts
 - 1. a system description language
 - 2. a requirement specification language
 - 3. a verification method to establish whether the description of a system satisfies the requirement specification.

Model checking

Proof-based vs. model-based (model checking)

- In a proof-based approach, the system description is a set of formulas
 - Γ and the specification is another formula ϕ .
 - The verification consists of trying to find a proof that $\Gamma \vdash \phi$
 - Requires guidance and expertise from the user
- In a model-based approach, the system is represented by a model $\mathcal M$. The specification is again represented by a formula $\phi.$
 - The verification consists of computing whether \mathcal{M} satisfies $\phi \mathcal{M} \models \phi$
 - Caution: $\mathcal{M} \vDash \phi$ represents satisfaction, not semantic entailment
- The model-based approach is potentially simpler than the proof-based approach since

• $\Gamma \vdash \phi$ means (under soundness and completeness)

• for all models \mathcal{M} , if $\mathcal{M} \vDash \psi$ for all $\psi \in \Gamma$, then $\mathcal{M} \vDash \phi$

In model checking,

- The model \mathcal{M} is a transition systems and
- the property ϕ is a formula in temporal logic

 $\blacksquare ex. \Box p, \Box q, \diamondsuit q, \Box \diamondsuit q$

Linear time temporal logic (LTL)

- LTL models time as a sequence of states, extending infinitely into the future
 - sometimes a sequence of states is called a computation path or an execution path, or simply a path
- Def 3.1 LTL has the following syntax

where p is any propositional atom from some set Atoms

- Operator precedence
 - the unary connectives bind most tightly. Next in the order come U, R, W, \land , \lor , and \rightarrow

Semantics of LTL (1/3)

• Def 3.4 A transition system (called model) $\mathcal{M} = (S, \rightarrow, L)$

- a set of states S
- a transition relation \rightarrow (a binary relation on S)
 - such that every $s \in S$ has some $s' \in S$ with $s \rightarrow s'$
- a labeling function L: $S \rightarrow P$ (Atoms)
- Example
 - $S = \{s_0, s_1, s_2\}$
 - $\rightarrow = \{(s_0, s_1), (s_1, s_0), (s_1, s_2), (s_0, s_2), (s_2, s_2)\}$
 - L={ $(s_0, \{p,q\}), (s_1, \{q,r\}), (s_2, \{r\})$ }

So

- Def. 3.5 A path in a model $\mathcal{M} = (S, \rightarrow, L)$ is an infinite sequence of states $s_{i_1}, s_{i_2}, s_{i_3}, ...$ in S s.t. for each $j \ge 1$, $s_{i_j} \rightarrow s_{i_{j+1}}$. We write the path as $s_{i_1} \rightarrow s_{i_2} \rightarrow ...$
 - From now on if there is no confusion, we drop the subscript index i for the sake of simple description
- We write π^i for the suffix of a path starting at s_{i.}

ex.
$$\pi^3$$
 is $s_3 \rightarrow s_4 \rightarrow \dots$

KAIST Intro. to Logic CS402 Fall 2007

Semantics of LTL (2/3)

- Def 3.6 Let $\mathcal{M} = (S, \rightarrow, L)$ be a model and $\pi = s_1 \rightarrow ...$ be a path in \mathcal{M} . Whether π satisfies an LTL formula is defined by the satisfaction relation \vDash as follows:
 - Basics: $\pi \models \top$, $\pi \nvDash \bot$, $\pi \models p$ iff $p \in L(s_1)$, $\pi \models \neg \phi$ iff $\pi \nvDash \phi$
 - Boolean operators: $\pi \vDash p \land q$ iff $\pi \vDash p$ and $\pi \vDash q$
 - similar for other boolean binary operators
 - $\pi \vDash \mathsf{X} \phi$ iff $\pi^2 \vDash \phi$ (next °)
 - $\pi \vDash \mathbf{G} \phi$ iff for all $i \ge 1$, $\pi^i \vDash \phi$ (always \Box)
 - $\pi \vDash \mathbf{F} \phi$ iff there is some $i \ge 1$, $\pi^i \vDash \phi$ (eventually \diamondsuit)
 - $\pi \vDash \phi \bigcup \psi$ iff there is some $i \ge 1$ s.t. $\pi^i \vDash \psi$ and for all j=1,...,i-1 we have $\pi^j \vDash \phi$ (strong until)
 - $\pi \vDash \phi \ W \ \psi$ iff either (weak until)
 - either there is some i \geq 1 s.t. $\pi^i \vDash \psi$ and for all j=1,...,i-1 we have $\pi^j \vDash \phi$
 - or for all k \geq 1 we have $\pi^k \vDash \phi$
 - $\pi \vDash \phi \mathbf{R} \psi$ iff either (release)
 - either there is some $i \ge 1$ s.t. $\pi^i \vDash \phi$ and for all j=1,...,i we have $\pi^j \vDash \psi$
 - or for all k \geq 1 we have $\pi^k \vDash \psi$

In the initial system state (that is: at s₀)

interpreting formulae...

LTL: (<>(b1 && (!b2 U b2))) -> []!a3

another example

LTL: (<>b1) -> (<>b2)

