Intro. to Logic
CS402 Fall 2007

Temporal Logic
-NuSMV

Moonzoo Kim
CS Division of EECS Depit.
KAIST

moonzoo@ecs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs402-07



NuSMV specification of the 1st mutual exclusion (1/2)

nypny

. N s
52
S \(87
[1€2
0 D

msr Intro. to Logic 2

A=Y CS402 Fall 2007



NuSMV specification of the 1st mutual exclusion (2/2)

What if there are 3
processes? _

= We need a more realistic % (nyn,
compositional model

Does this way of modeling

reflect real implementation?
= There might be no global 3

scheduler, which allows only 1

process to execute 1 step only. S
= For software process, tycs
asynchronous interleaving is /

more realistic

SS

e

msr Intro. to Logic ’
. CS402 Fall 2007




Revised mutual exclusion model in NuSMV (1/2)

MODULE main

This code consists of two modules, VAR |
_ prl: proceas prc(prZ.st, turn, 0);
mailn and prC pr2: process prciprl.st, turn, 1);
_ turn: boolean;
= Mmailn ASSIGN
. L. init(turn) == 0;
turn determines whose turn it is to -- safety
enter the critical section if both are f‘f“fivﬁg;ifﬂ'“ = ¢) & (pr2.st = c))
trying to enter SPEC G((prl.st = t) -> F (prl.st = c})
= prc BPEC G((prZ.st = t) -> F (pr2.st = c}))
st: the status of a process MODULE prc(other-st, turn, myturn)
other-st: the status of the other A (n, t, c};
. ASSIGN
FAIRNESS ¢ restrict search tree to init(st) i= n;
. . . next(st) :=
execution paths along which ¢ is case
. . . {st = n) + {t,n};
infinitely often true (st = t) & (other-st = n) -y
. L. (st = t) & ({other-st = t}) & (turn = myturn}): c;
= l.e., limit the search space (st = c . {c,n};
- 1 : sk
= FAIRNESS running enforces that esac;
the process should execute infinitely nexelturm) i
turn = t & st = ¢ : lturn;
Often 1Ll}_I" My CUurrl 5 C : tu?;l;l
esac;

FAIRNESS running
msr Intro. to Logic FAIRNESS !ist = c)
e e CS402 Fall 2007



Revised mutual exclusion model in NuSMV (2/2)

FAIRNESS ! (st=c)

= This prevents a process from
staying at critical section forever
this prevents to detects silly

violation of liveness property
due to such situation

FAIRNESS running

= This prevents a process from
executing all the time

this prevents to detects silly
violation of liveness property
due to such situation

Intro. to Logic
CS402 Fall 2007

MODULE mairn
VAR
prl: proceas prcipri.st,
prZ2: process prciprl.st,
turn: boolean;
ASSIGN
init{turn) := 0;
-- safety
SPEC G! {({prl.st =
-- liveness
SPEC G((prl.st = £} - F
SPEC G({pr2.st = t) -=

turn, 0);
turn, 1);

c) & (pr2.st

{prl.
F (pr2.s

MODULE prciother-st,
VAR
st: {n, £, c};
ASSIGN
initi(st) :
next(st) :

turn, myturn)

n;

case
(st = n)
(st = t) & ({other-st = n) :
(st = t} & {(other-st = t)}) & (turn = myturn):
(st = c) :
1
esac;
next (turn) :=
case
turn = myturn & st = ¢ : lturn;
1 : turn:
esac;
FAIRNESSE running
FAIRNESS list = ¢}

¢ {t,n};

: {c,n};



Transition system




