
Intro. to Logic
CS402

1

Propositional Calculus
- Semantics (2/3)

Moonzoo Kim
CS Division of EECS Dept.

KAIST

moonzoo@cs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs402-07

Intro. to Logic
CS402

2

Overview

2.1 Boolean operators
2.2 Propositional formulas
2.3 Interpretations
2.4 Logical equivalence and substitution
2.5 Satisfiability, validity, and consequence
2.6 Semantic tableaux
2.7 Soundness and completeness

Logical equivalence

Def 2.13. Let A1,A2∈F. If ν(A1) = ν(A2) for all/every
interpretation ν, then A1 is logically equivalent to A2,
denoted A1 ≡ A2

Example 2.14. Is p Ç q equivalent to q Ç p?

p q ν(p Ç q) ν(q Ç p)
T T T T
T F T T
F T T T
F F F F

Logical equivalence

We can extend the result of example 2.14 from
atomic propositions to general formulas
Theorem 2.15 Let A1 and A2 be any formulas. Then
A1 Ç A2 ≡ A2 Ç A1.

Proof
Let ν be an arbitrary interpretation for A1 Ç A2.
Then, ν is an interpretation for A2 Ç A1, too.
Similarly, ν is an interpretation for A1 and A2
Therefore, ν(A1ÇA2)=T iff ν(A1) =T or ν(A2) =T
iff ν(A2ÇA1)=T

Logical equivalence
Definition 2.22

The unary operator ¬ is defined from a set of operators
{o1, … on} iff ¬ A1 ≡ A, where A is constructed from
occurrences of A1 and the operators in the set.
Similarly, a binary operator o is defined from a set of
operators {o1, … on} if and only if there is a logical
equivalence A1 o A2 ≡ A, where A is a formula
constructed from occurrences of A1 and A2 using the
operator {o1, …, on}.
Examples

↔ is defined from {→, Æ } because A ↔ B ≡ (A → B) Æ (B → A)
→ is defined from {¬, Ç } because A → B ≡ ¬A Ç B
Æ is defined from {¬, Ç } because A Æ B ≡ ¬(¬A Ç¬B)

Intro. to Logic
CS402

5

Object language v.s. metalanguage

Note that ‘≡’ is not a binary operator used in
propositional logic (object language).
‘≡’ (metalanguage) is used to explain a relationship
between two formulas.
Theorem 2.16

A1 ≡ A2 if and only if A1 ↔ A2 is true in every interpretation

Logical substitution

Logical equivalence justifies substitution of one formula
for another
Defn 2.17 A is subformula of B if the formation tree for A
occurs as a subtree of the formation tree for B. A is
proper subformation of B if A is a subformation of B, but
A is not identical to B.
Example 2.18 The formula (p → q) ↔ (¬p → ¬q)
contains the following proper subformulas:

p → q, ¬ p → ¬ q, ¬ p, ¬ q, p and q

Logical substitution

Def. 2.19
If A is a subformula of B and A’ is any formula,
then B’, the substitution of A’ for A in B, denoted B{A ← A’}, is the
formula obtained by replacing all occurrences of the subtree for A in
B by the tree for A’.

Theorem 2.21 Let A be a subformula of B and let A’ be a
formula such that A ≡ A’. Then B ≡ B{A ← A’}
One of the most important applications of substitution is
simplication

Ex. p Æ (¬p Ç q) ≡ (p Æ ¬p) Ç (p Æ q) ≡ false Ç (p Æ q) ≡ p Æ q

Satisfiability v.s. validity
Definition 2.24

A propositional formula A is satisfiable iff ν(A)=T for some
interpretation ν.

A satisfying interpretation is called a model for A.
A is valid, denoted ² A, iff ν (A) = T for all interpretation ν.

A valid propositional formula is also called a tautology.
Theorem 2.25

A is valid iff ¬A is unsatisfiable.
A is satisfiable iff ¬A is falsifiable.

Intro. to Logic
CS402

9

Satisfiability v.s. validity

Definition 2.26

Let V be a set of formulas. An algorithm is a decision
procedure for V if given an arbitrary formula A ∈ F, it
terminates and return the answer ‘yes’ if A ∈ V and the
answer ‘no’ if A ∉ V

By theorem 2.25, a decision procedure for satisfiability
can be used as a decision procedure for validity.

Suppose V is a set of all satisfiable formulas
To decide if A is valid, apply the decision procedure for
satisfiability to ¬A

This decision procedure is called a refutation procedure

Intro. to Logic
CS402

10

Satisfiability v.s. validity

Example 2.27 Is (p → q) → (¬ q → ¬ p) valid?

Intro. to Logic
CS402

11

p q p → q ¬ q → ¬ p (p → q) → (¬ q → ¬ p)
T T T T T
T F F F T
F T T T T
F F T T T

Example 2.28 p \/ q is satisfiable but not valid

Logical consequence

Definition 2.30 (extension of satisfiability from a
single formula to a set of formulas)

A set of formulas U = {A1 , … An} is (simultaneously)
satisfiable iff there exists an interpretation ν such that ν
(A1) = … = ν (An) = T.
The satisfying interpretation is called a model of U.
U is unsatisfiable iff for every interpretation ν, there
exists an i such that ν (Ai) = F.

Logical consequence

Let U be a set of formulas and A a formula. If A is true in
every model of U, then A is a logical consequence of U.

Notation: U ² A
If U is empty, logical consequence is the same as validity

Theoem 2.38
U ² A iff ² A1Æ … Æ An → A where U={A1 … An}
Note Theorem 2.16

A1 ≡ A2 if and only if A1 ↔ A2 is true in every interpretation

Theories
Logical consequence is the central concept in the foundations
of mathematics

Valid formulas such as p Ç q ↔ q Ç p are trivial and not
interesting
Ex. Euclid assumed five formulas about geometry and deduced
an extensive set of logical consequences.

Definition 2.41
A set of formulas T is a theory if and only if it is closed under
logical consequence.

T is closed under logical consequence if and only if for all formula A,
if T ² A then A ∈ T.

The elements of T are called theorems
Let U be a set of formulas. T (U) = {A | U ² A} is called the
theory of U. The formulas of U are called axioms and the
theory T (U) is axiomatizable.

Is T (U) theory?

Examples of theory
U = { pÇqÇr, q→r, r→p}
Interpretation v1, v3 and v4 are models
of U
Which of the followings are true?

U ² p
U ² q→r
U ² r Ç ¬q
U ² p Æ ¬q

Theory of U, i.e,T (U)
U ⊆ T (U)

because for all formula A ∈ U, A ² A
p ∈ T (U)

because U ² p
q→r ∈ T (U)

because U ² q→r
p Æ (q→r) ∈ T (U)

because U ² p Æ (q→r)
since U ² p and U ² q→r ∴

…

p q r pÇqÇr q→r r→p

v1 T T T T T T

v2 T T F T F T

v3 T F T T T T

v4 T F F T T T

v5 F T T T T F

v6 F T F T F T

v7 F F T T T F

v8 F F F F T T

Ex. Theory of Euclidean geometry
A set of 5 axioms U = {A1,A2,A3,A4,A5} such that

A1:Any two points can be joined by a unique straight line.
A2:Any straight line segment can be extended indefinitely in a
straight line.
A3:Given any straight line segment, a circle can be drawn having
the segment as radius and one endpoint as center.
A4:All right angles are congruent.
A5:For every line l and for every point P that does not lie on l
there exists a unique line m through P that is parallel to l.

Euclidean theory TEuclid= T (U) = { A | U ² A}
I.e.,Teuclid is axiomatizable by the above 5 axioms
Ex. one logical consequence of the axioms

given a line segment AB, an equilateral triangle
exists that includes the segment as one of its
sides.

Ex2. Model checking (formal verification)
A file system M can be specified by the following 7 formulas (i.e., a file
system model M = { A1,A2,A3,A4,A5,A6,A7})

A1:A file system object has one or no parent.
sig FSObject { parent: lone Dir }

A2:A directory has a set of file system objects
sig Dir extends FSObject { contents: set FSObject }

A3:A directory is the parent of its contents
fact defineContents { all d: Dir, o: d.contents | o.parent = d }

A4: A file in the file system is a file system object
sig File extends FSObject {}

A5: All file system objects are either files or directories
fact fileDirPartition { File + Dir = FSObject }

A6: There exists only one root
one sig Root extends Dir { }{ no parent }

A7: File system is connected
fact fileSystemConnected { FSObject in Root.*contents }

We can prove that this file system does not have a cyclic path
A: No cyclic path exists

assert acyclic { no d: Dir | d in d.^contents }
M ² A (i.e., this file system M does not have cyclic path)

root

D1 D2

F1 F2 D11

F111

