Propositional Calculus - Semantics (2/3)

Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

Overview

- 2.1 Boolean operators
- 2.2 Propositional formulas
- 2.3 Interpretations
- 2.4 Logical equivalence and substitution
- 2.5 Satisfiability, validity, and consequence
- 2.6 Semantic tableaux
- 2.7 Soundness and completeness

Logical equivalence

- Def 2.13. Let $A_1, A_2 \in \mathcal{F}$. If $\nu(A_1) = \nu(A_2)$ for all/every interpretation ν , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$
- Example 2.14. Is $p \lor q$ equivalent to $q \lor p$?

р	q	ν (p ∨ q)	$ u(oldsymbol{q} ee oldsymbol{p})$
Τ	Τ	Т	Т
Τ	F	Т	Т
F	Τ	Т	Т
F	F	F	F

Logical equivalence

- We can extend the result of example 2.14 from atomic propositions to general formulas
- Theorem 2.15 Let A_1 and A_2 be any formulas. Then $A_1 \lor A_2 \equiv A_2 \lor A_1$.
 - Proof
 - Let ν be an arbitrary interpretation for $A_1 \lor A_2$. Then, ν is an interpretation for $A_2 \lor A_1$, too.
 - Similarly, ν is an interpretation for A_1 and A_2
 - Therefore, $\nu(A_1 \lor A_2)$ =T iff $\nu(A_1)$ =T or $\nu(A_2)$ =T iff $\nu(A_2 \lor A_1)$ =T

Logical equivalence

Definition 2.22

- The unary operator \neg is defined from a set of operators $\{o_1, \dots, o_n\}$ iff $\neg A_1 \equiv A$, where A is constructed from occurrences of A_1 and the operators in the set.
- Similarly, a binary operator o is defined from a set of operators $\{o_1, \ldots, o_n\}$ if and only if there is a logical equivalence $A_1 \circ A_2 \equiv A$, where A is a formula constructed from occurrences of A_1 and A_2 using the operator $\{o_1, \ldots, o_n\}$.
- Examples
 - \leftrightarrow is defined from { \rightarrow , \land } because $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$
 - \rightarrow is defined from { \neg , \lor } because $A \rightarrow B \equiv \neg A \lor B$
 - \land is defined from { \neg , \lor } because $A \land B \equiv \neg(\neg A \lor \neg B)$

Object language v.s. metalanguage

- Note that '≡' is not a binary operator used in propositional logic (object language).
- '≡' (metalanguage) is used to explain a relationship between two formulas.
- Theorem 2.16
 - $A_1 \equiv A_2$ if and only if $A_1 \leftrightarrow A_2$ is true in every interpretation

Logical substitution

- Logical equivalence justifies substitution of one formula for another
- Defn 2.17 A is subformula of B if the formation tree for A occurs as a subtree of the formation tree for B. A is proper subformation of B if A is a subformation of B, but A is not identical to B.

• Example 2.18 The formula $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow \neg q)$ contains the following proper subformulas:

 $p \rightarrow q, \neg p \rightarrow \neg q, \neg p, \neg q, p \text{ and } q$

Logical substitution

Def. 2.19

- If A is a subformula of B and A' is any formula,
- then B', the substitution of A' for A in B, denoted B{A ← A'}, is the formula obtained by replacing all occurrences of the subtree for A in B by the tree for A'.
- Theorem 2.21 Let A be a subformula of B and let A' be a formula such that A ≡ A'. Then B ≡ B{A ← A'}
- One of the most important applications of substitution is simplication

• Ex. $p \land (\neg p \lor q) \equiv (p \land \neg p) \lor (p \land q) \equiv false \lor (p \land q) \equiv p \land q$

Satisfiability v.s. validity

Definition 2.24

- A propositional formula A is satisfiable iff $\nu(A)=T$ for some interpretation ν .
 - A satisfying interpretation is called a model for *A*.
- A is valid, denoted \vDash A, iff ν (A) = T for all interpretation ν .
 - A valid propositional formula is also called a tautology.

Theorem 2.25

- A is valid iff $\neg A$ is unsatisfiable.
- A is satisfiable iff $\neg A$ is falsifiable.

Satisfiability v.s. validity

Definition 2.26

- Let V be a set of formulas. An algorithm is a decision procedure for V if given an arbitrary formula A ∈ F, it terminates and return the answer 'yes' if A ∈ V and the answer 'no' if A ∉ V
- By theorem 2.25, a decision procedure for satisfiability can be used as a decision procedure for validity.
 - Suppose \mathcal{V} is a set of all satisfiable formulas
 - To decide if A is valid, apply the decision procedure for satisfiability to ¬A

This decision procedure is called a refutation procedure

Satisfiability v.s. validity

• Example 2.27 Is $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$ valid?

р	q	$oldsymbol{ ho} ightarrow oldsymbol{q}$	$\neg \boldsymbol{q} ightarrow \neg \boldsymbol{p}$	$(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

Example 2.28 p V q is satisfiable but not valid

Logical consequence

- Definition 2.30 (extension of satisfiability from a single formula to a set of formulas)
 - A set of formulas $U = \{A_1, \dots, A_n\}$ is (simultaneously) satisfiable iff there exists an interpretation ν such that ν $(A_1) = \dots = \nu (A_n) = T$.
 - The satisfying interpretation is called a model of *U*.
 - *U* is unsatisfiable iff for every interpretation ν , there exists an *i* such that $\nu (A_i) = F$.

Logical consequence

- Let U be a set of formulas and A a formula. If A is true in every model of U, then A is a logical consequence of U.
 - Notation: U ⊨ A
 - If U is empty, logical consequence is the same as validity
- Theoem 2.38
 - $U \vDash A \text{ iff} \vDash A_1 \land \ldots \land A_n \rightarrow A \text{ where } U = \{A_1 \ldots A_n\}$
 - Note Theorem 2.16
 - $A_1 \equiv A_2$ if and only if $A_1 \leftrightarrow A_2$ is true in every interpretation

- Logical consequence is the central concept in the foundations of mathematics
 - Valid formulas such as p ∨ q ↔ q ∨ p are trivial and not interesting
 - Ex. Euclid assumed five formulas about geometry and deduced an extensive set of logical consequences.
- Definition 2.41
 - A set of formulas T is a theory if and only if it is closed under logical consequence.
 - \mathcal{T} is closed under logical consequence if and only if for all formula A, if $\mathcal{T} \vDash A$ then $A \in \mathcal{T}$.
 - The elements of *T* are called theorems
- Let U be a set of formulas. T(U) = {A | U ⊨ A} is called the theory of U. The formulas of U are called axioms and the theory T(U) is axiomatizable.
 - Is $\mathcal{T}(U)$ theory?

Examples of theory

- $\bullet U = \{ p \lor q \lor r, q \rightarrow r, r \rightarrow p \}$
- Interpretation v₁, v₃ and v₄ are models of U
- Which of the followings are true?
 - U ⊨ p
 - $U \models q \rightarrow r$
 - $U \models r \lor \neg q$
 - $U \models p \land \neg q$
- Theory of U, i.e, $\mathcal{T}(U)$
 - $U \subseteq \mathcal{T}(U)$
 - because for all formula $A \in U$, $A \models A$
 - p ∈ *T*(U)

. . .

KAIST

- because U ⊨ p
- $q \rightarrow r \in \mathcal{T}(U)$
 - because $U \vDash q \rightarrow r$
- $p \land (q \rightarrow r) \in \mathcal{T}(U)$
 - because $U \vDash p \land (q \rightarrow r)$

Ex. Theory of Euclidean geometry

- A set of 5 axioms U = $\{A_1, A_2, A_3, A_4, A_5\}$ such that
 - A₁:Any two points can be joined by a unique straight line.
 - A₂:Any straight line segment can be extended indefinitely in a straight line.
 - A₃:Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
 - A₄:All right angles are congruent.
 - A₅:For every line *I* and for every point P that does not lie on *I* there exists a unique line *m* through P that is parallel to *I*.
- Euclidean theory $\mathcal{T}_{Euclid} = \mathcal{T}(U) = \{A \mid U \vDash A\}$
 - I.e., \mathcal{T}_{euclid} is axiomatizable by the above 5 axioms
 - Ex. one logical consequence of the axioms
 - given a line segment AB, an equilateral triangle exists that includes the segment as one of its sides.

Ex2. Model checking (formal verification)

root

 D_2

D₁₁

F₁₁₁

 \mathbf{D}_1

 F_2

F₁

- A file system M can be specified by the following 7 formulas (i.e., a file system model M = { A₁,A₂,A₃,A₄,A₅,A₆,A₇})
 - A₁:A file system object has one or no parent.
 - sig FSObject { parent: lone Dir }
 - A₂:A directory has a set of file system objects
 - sig Dir extends FSObject { contents: set FSObject }
 - A₃:A directory is the parent of its contents
 - fact defineContents { all d: Dir, o: d.contents | o.parent = d }
 - A₄: A file in the file system is a file system object
 - sig File extends FSObject {}
 - A₅: All file system objects are either files or directories
 - fact fileDirPartition { File + Dir = FSObject }
 - A₆: There exists only one root
 - one sig Root extends Dir { }{ no parent }
 - A₇: File system is connected
 - fact fileSystemConnected { FSObject in Root.*contents }
- We can prove that this file system does not have a cyclic path
 - A: No cyclic path exists
 - assert acyclic { no d: Dir | d in d.^contents }
 - M ⊨ A (i.e., this file system M does not have cyclic path)

