Propositional Calculus
- Deductive Systems

Moonzoo Kim
CS Dept. KAIST

moonzoo@cs.kaist.ac.kr
Deductive proofs (1/3)

- Suppose we want to know if ϕ belongs to the theory $\mathcal{T}(U)$.
 - By Thm 2.38 $U \models \phi$ iff $\models A_1 \land \ldots \land A_n \rightarrow \phi$ where $U = \{ A_1, \ldots, A_n \}$
 - Thus, $\phi \in \mathcal{T}(U)$ iff a decision procedure for validity answers ‘yes’

- However, there are several problems with this semantic approach
 - The set of axioms may be infinite
 - e.x. Hilbert deductive system \mathcal{H} has an axiom schema $(A \rightarrow (B \rightarrow A))$, which generates an infinite number of axioms by replacing schemata variables A, B and C with infinitely many subformulas (e.g. $\phi \land \psi, \neg \phi \lor \psi$, etc)
 - e.x. 2. Peano and ZFC theories cannot be finitely axiomatized.
 - Very few logics have decision procedures for validity of ϕ
 - e.x. propositional logic has a decision procedure using truth table
 - e.x2. predicate logic does not have such decision procedure

- There is another approach to logic called deductive proofs.
 - Instead of working with semantic concepts like interpretation/model and consequence
 - we choose a set of axioms and a set of syntactical rules for deducing new formulas from the axioms
Def 3.1

A deductive system consists of
- a set of axioms and
- a set of inference rules

A proof in a deductive system is a sequence of sets of formulas s.t. each element is either an axiom or it can be inferred from previous elements of the sequence using a rule of inference.

If \{A\} is the last element of the sequence, A is a theorem, the sequence is a proof of A, and A is provable, denoted \(\vdash A \)

Example of a proof of \((p \lor q) \rightarrow (q \lor p)\) in gentzen system \(G\)

\[
\begin{align*}
\{\neg p, q, p\}.\{\neg q, q, p\}.\{\neg(p \lor q), q, p\}.\{\neg(p \lor q), (q \lor p)\}.\{(p \lor q) \rightarrow (q \lor p)\}
\end{align*}
\]

axioms:
- tree representation of this proof is more intuitive
Deductive proofs has following benefits

- There may be an infinite number of axioms, but only a finite number of axioms will appear in any proof.
- Any particular proof consists of a finite sequence of sets of formulas, and the legality of each individual deduction can be easily and efficiently determined from the syntax of the formulas.
- The proof of a formula clearly shows which axioms, theorems and rules are used and for what purposes.
 - Such a pattern (i.e. relationship between formulas) can then be transferred to other similar proofs, or modified to prove different results.
 - Lemmas and corollaries can be obtained and can be used later.

But with a new problem

- Deduction is defined purely in terms of syntactical formula manipulation.
- But it is not amenable to systematic search procedures.
 - No brute-force search is possible because any axiom can be used.
Def 3.2 The Gentzen system \mathcal{G} is a deductive system.

- The axioms are the sets of formulas containing a complementary pairs of literals.
 - ex. \(\{ \neg p, p, p \land q \} \) can be an axiom, but \(\{ \neg p, q, p \land q \} \) is not.
- The rules of inferences are:
 - note that a set of formulas in \mathcal{G} is an implicit disjunction.

\[
\begin{array}{c}
\text{premise} \\
\vdash U_1 \cup \{ \alpha_1, \alpha_2 \}
\end{array}
\quad
\begin{array}{c}
\text{conclusion} \\
\vdash U_1 \cup \{ \alpha \}
\end{array}
\]

\[
\begin{array}{c}
\text{premise} \\
\vdash U_1 \cup \{ \beta_1 \} \\
\vdash U_2 \cup \{ \beta_2 \}
\end{array}
\quad
\begin{array}{c}
\text{conclusion} \\
\vdash U_1 \cup U_2 \cup \{ \beta \}
\end{array}
\]

<table>
<thead>
<tr>
<th>α</th>
<th>α_1</th>
<th>α_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg \neg A$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>$\neg (A_1 \land A_2)$</td>
<td>$\neg A_1$</td>
<td>$\neg A_2$</td>
</tr>
<tr>
<td>$A_1 \lor A_2$</td>
<td>A_1</td>
<td>A_2</td>
</tr>
<tr>
<td>$A_1 \rightarrow A_2$</td>
<td>$\neg A_1$</td>
<td>A_2</td>
</tr>
<tr>
<td>$A_1 \uparrow A_2$</td>
<td>$\neg A_1$</td>
<td>$\neg A_2$</td>
</tr>
<tr>
<td>$\neg (A_1 \downarrow A_2)$</td>
<td>A_1</td>
<td>A_2</td>
</tr>
<tr>
<td>$\neg (A_1 \leftrightarrow A_2)$</td>
<td>$\neg (A_1 \rightarrow A_2)$</td>
<td>$\neg (A_2 \rightarrow A_1)$</td>
</tr>
<tr>
<td>$A_1 \oplus A_2$</td>
<td>$\neg (A_1 \rightarrow A_2)$</td>
<td>$\neg (A_2 \rightarrow A_1)$</td>
</tr>
</tbody>
</table>

8 α-rules

<table>
<thead>
<tr>
<th>β</th>
<th>β_1</th>
<th>β_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_1 \land B_2$</td>
<td>B_1</td>
<td>B_2</td>
</tr>
<tr>
<td>$\neg (B_1 \lor B_2)$</td>
<td>$\neg B_1$</td>
<td>$\neg B_2$</td>
</tr>
<tr>
<td>$\neg (B_1 \rightarrow B_2)$</td>
<td>B_1</td>
<td>$\neg B_2$</td>
</tr>
<tr>
<td>$\neg (B_1 \uparrow B_2)$</td>
<td>B_1</td>
<td>B_2</td>
</tr>
<tr>
<td>$B_1 \downarrow B_2$</td>
<td>$\neg B_1$</td>
<td>$\neg B_2$</td>
</tr>
<tr>
<td>$B_1 \leftrightarrow B_2$</td>
<td>$B_1 \rightarrow B_2$</td>
<td>$B_2 \rightarrow B_1$</td>
</tr>
<tr>
<td>$\neg (B_1 \oplus B_2)$</td>
<td>$B_1 \rightarrow B_2$</td>
<td>$B_2 \rightarrow B_1$</td>
</tr>
</tbody>
</table>

7 β-rules
Soundness and completeness of G

- Note that there are close relationships between a deductive proof of ϕ and semantic tableau of ϕ

A proof in G

\[
\neg p, q, p \quad \neg q, q, p
\]

\[
\downarrow \quad \checkmark
\]

\[
\neg (p \lor q), q, p
\]

\[
\downarrow
\]

\[
\neg (p \lor q), (q \lor p)
\]

\[
\downarrow
\]

\[
(p \lor q) \rightarrow (q \lor p)
\]

Semantic tableau

\[
\neg [(p \lor q) \rightarrow (q \lor p)]
\]

\[
\downarrow
\]

\[
p \lor q, \neg (q \lor p)
\]

\[
\downarrow
\]

\[
p \lor q, \neg q, \neg p
\]

\[
\checkmark \quad \checkmark
\]

\[
p, \neg q, \neg p
\]

\[
q, \neg q, \neg p
\]

\[
\times \quad \times
\]
Soundness and completeness of \(\mathcal{G} \)

- Thm 3.6 Let \(U \) be a set of formulas and \(\bar{U} \) be the set of complements of formulas in \(U \). Then \(\vdash \bar{U} \) in \(\mathcal{G} \) iff there is a closed semantic tableau \(T \) for \(\bar{U} \)

- Proof of completeness,
 - \(\vdash \bar{U} \) in \(\mathcal{G} \) if there exists a closed \(T \) for \(\bar{U} \) exists
 - induction on the height of \(T \), \(h \)
 - \(h=0 \)
 - \(T \) consists of a single node labeled by \(\bar{U} \), a set of literals containing a complementary pair (say \(\{p, \neg p\} \)), that is \(\bar{U} = \bar{U}_0 \cup \{p, \neg p\} \)
 - Obviously \(U = U_0 \cup \{\neg p, p\} \) is an axiom in \(\mathcal{G} \), hence \(\vdash U \)
Soundness and completeness of G

- **Proof of completeness (continued)**
 - $\vdash \tilde{U}$ in G if there exists a closed T for \tilde{U} exists
 - $h > 0$
 - Some tableau α or β rule was used at the root n of T on a formula $\tilde{A} \in \tilde{U}$, that is $\tilde{U} = \tilde{U}_0 \cup \{\tilde{A}\}$
 - **Case of α rule**
 - A tableau α-rule was used on (a formula such as) $\tilde{A} = \neg (A_1 \lor A_2)$ to produce the node n' labeled $\tilde{U}' = \tilde{U}_0' \cup \{\neg A_1, \neg A_2\}$. The subtree rooted at n' is a closed tableau for \tilde{U}', so by the inductive hypothesis, $\vdash \tilde{U}_0' \cup \{A_1, A_2\}$. Using the α-rule in G, $\vdash \tilde{U}_0 \cup \{A_1 \lor A_2\}$, that is $\vdash \tilde{U}$
 - **Case of β rule**
 - A tableau β-rule was used on (a formula such as) $\tilde{A} = \neg (A_1 \land A_2)$ to produce the node n' and n'' labeled $\tilde{U}' = \tilde{U}_0' \cup \{\neg A_1\}$, $\tilde{U}'' = \tilde{U}_0'' \cup \{\neg A_2\}$, respectively. By the inductive hypothesis, $\vdash \tilde{U}_0 \cup \{A_1\}$ and $\vdash \tilde{U}_0 \cup \{A_2\}$. Using the β-rule in G, $\vdash \tilde{U}_0 \cup \{A_1 \land A_2\}$, that is $\vdash \tilde{U}$