Software Model Checking I
Dynamic v.s. Static Analysis

<table>
<thead>
<tr>
<th>Pros</th>
<th>Static Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Analysis (i.e., testing)</td>
<td>Static Analysis (i.e. model checking)</td>
</tr>
<tr>
<td>• Real result</td>
<td>• Complete analysis result</td>
</tr>
<tr>
<td>• No environmental limitation</td>
<td>• Fully automatic</td>
</tr>
<tr>
<td>• Binary library is ok</td>
<td>• Concrete counter example</td>
</tr>
<tr>
<td>Cons</td>
<td></td>
</tr>
<tr>
<td>• Incomplete analysis result</td>
<td>• Consumed huge memory space</td>
</tr>
<tr>
<td>• Test case selection</td>
<td>• Takes huge time for verification</td>
</tr>
<tr>
<td></td>
<td>• False alarms</td>
</tr>
</tbody>
</table>

Pros
- Real result
- No environmental limitation
- Binary library is ok

Cons
- Incomplete analysis result
- Test case selection
- Consumed huge memory space
- Takes huge time for verification
- False alarms
Motivation for Software Model Checking

• Data flow analysis (DFA): fastest & least precision
 – “May” analysis,
• Abstract interpretation (AI): fast & medium precision
 – Over-approximation & under-approximation
• Model checking (MC): slow & complete
 – Complete value analysis
 – No approximation

• Static analyzer & MC as a C debugger
 • Handling complex C structures such as pointer and array
 • DFA: might-be
 • AI: may-be
 • MC: can-be or should-be
Model Checking Background

- Undergraduate CS classes contributing to this area

- Discrete math
- Algorithm
- PL
- Automata

- OS
- System programming
- Cyber physical system
- Intro. to SE

- Embedded Systems
- Software Engineering
- Programming Languages
- Algorithms

- Requirement properties
- System modeling
- System spec.
- Req. spec.
- Logic: $\square(\Phi \rightarrow \Diamond \Omega)$

Model Checking

Counter example(s)
OK or
Operational Semantics of Software

• A system execution σ is a sequence of states $s_0s_1...$
 – A state has an environment $\rho: \text{Var} \rightarrow \text{Val}$

• A system has its semantics as a set of system executions
active type A() {
byte x;
again:
 x++;
 goto again;
}

active type A() {
byte x;
again:
 x++;
 goto again;
}

active type B() {
byte y;
again:
 y++;
 goto again;
}

Example

\[\text{Diagram showing state transitions for active types A and B.} \]
Pros and Cons of Model Checking

• Pros
 – Fully automated and provide complete coverage
 – Concrete counter examples
 – Full control over every detail of system behavior
 • Highly effective for analyzing
 – embedded software
 – multi-threaded systems

• Cons
 – State explosion problem
 – An abstracted model may not fully reflect a real system
 – Needs to use a specialized modeling language
 • Modeling languages are similar to programming languages, but simpler and clearer
Companies Working on Model Checking
Model Checking History

1981 Clarke / Emerson: CTL Model Checking
 Sifakis / Quielle
1982 EMC: Explicit Model Checker
 Clarke, Emerson, Sistla
1990 Symbolic Model Checking
 Burch, Clarke, Dill, McMillan
1992 SMV: Symbolic Model Verifier
 McMillan
1998 Bounded Model Checking using SAT
 Biere, Clarke, Zhu
2000 Counterexample-guided Abstraction Refinement
 Clarke, Grumberg, Jha, Lu, Veith
Example. Sort (1/2)

• Suppose that we have an array of 4 elements each of which is 1 byte long
 – unsigned char a[4];
• We want to verify sort.c works correctly
• Hash table based explicit model checker (ex. Spin) generates at least 2^{32} (= $4 \times 10^9 = 4G$) states
 • 4G states x 4 bytes = 16 Gbytes, no way...
• Binary Decision Diagram (BDD) based symbolic model checker (ex. NuSMV) takes 200 MB in 400 sec
1. #include <stdio.h>
2. #define N 5
3. int main(){
4. int data[N], i, j, tmp;
5. /* Assign random values to the array*/
6. for (i=0; i<N; i++){
7. data[i] = nondet_int();
8. }
9. /* It misses the last element, i.e., data[N-1]*/
10. for (i=0; i<N-1; i++)
11. for (j=i+1; j<N-1; j++)
12. if (data[i] > data[j]){
13. tmp = data[i];
14. data[i] = data[j];
15. data[j] = tmp;
16. }
17. /* Check the array is sorted */
18. for (i=0; i<N-1; i++)
19. assert(data[i] <= data[i+1]);
20. }
21. }

• SAT-based Bounded Model Checker
 • Total 19099 CNF clause with 6224 boolean propositional variables
 • Theoretically, 2^{6224} choices should be evaluated!!!
Overview of SAT-based Bounded Model Checking

Requirements → Formal Requirement Properties
\(\square (\Phi \rightarrow \Diamond \Omega) \)

C Program → Abstract Model

Model Checker

- Satisfied
- Not satisfied
- Okay
- Counter example

Requirements → Formal Requirement Properties in C
(ex. assert(x < a[i]);)

C Program

Translation to SAT formula → SAT Solver

- Satisfied
- Not satisfied
- Okay
- Counter example
SAT Basics (1/3)

- **SAT = Satisfiability**
 - = Propositional Satisfiability

- **NP-Complete problem**
 - We can use SAT solver for many NP-complete problems
 - Hamiltonian path
 - 3 coloring problem
 - Traveling sales man’s problem

- Recent interest as a verification engine
SAT Basics (2/3)

• A set of propositional variables and Conjunctive Normal Form (CNF) clauses involving variables
 – \((x_1 \lor x_2' \lor x_3) \land (x_2 \lor x_1' \lor x_4)\)
 – \(x_1, x_2, x_3\) and \(x_4\) are variables (true or false)

• Literals: Variable and its negation
 – \(x_1\) and \(x_1'\)

• A clause is satisfied if one of the literals is true
 – \(x_1=\text{true}\) satisfies clause 1
 – \(x_1=\text{false}\) satisfies clause 2

• Solution: An assignment that satisfies all clauses
SAT Basics (3/3)

• DIMACS SAT Format

 – Ex. \((x_1 \lor x_2' \lor x_3)\)
 \(\land (x_2 \lor x_1' \lor x_4)\)

\[
p \text{ cnf 4 2} \\
1 -2 3 0 \\
2 -1 4 0
\]
Software Model Checking as a SAT problem (1/4)

• Control-flow simplification
 – All side effect are removed
 • \texttt{i++} \Rightarrow \texttt{i=i+1};
 – Control flow is made explicit
 • \texttt{continue, break} \Rightarrow \texttt{goto}
 – Loop simplification
 • \texttt{for(;;), do {...} while()} \Rightarrow \texttt{while()}

Software Model Checking as a SAT problem (2/4)

• Unwinding Loop

Original code

```plaintext
x=0;
while (x < 2) {
    y = y + x;
    x++;
}
```

Unwinding the loop 1 times

```plaintext
x=0;
if (x < 2) {
    y = y + x;
    x++;
}
/* Unwinding assertion */
assert(! (x < 2))
```

Unwinding the loop 3 times

```plaintext
x=0;
if (x < 2) {
    y = y + x;
    x++;
}
if (x < 2) {
    y = y + x;
    x++;
}
if (x < 2) {
    y = y + x;
    x++;
}
/* Unwinding assertion */
assert (! (x < 2))
```
Examples

/* Straight-forward constant upperbound */
for(i=0, j=0; i < 5; i++) {
 j = j + i;
}

/* Constant upperbound */
for(i=0, j=0; j < 10; i++) {
 j = j + i;
}

/* Complex upperbound */
for(i=0; i < 5; i++) {
 for(j=i; j < 5; j++) {
 for(k = i+j; k < 5; k++) {
 m += i+j+k;
 }
 }
}

/* Upperbound unknown */
for(i=0, j=0; i^6-4*i^5 -17*i^4 != 9604 ; i++) {
 j = j + i;
}
Model Checking as a SAT problem (3/4)

- From C Code to SAT Formula

Original code

```c
x=x+y;
if (x!=1)
  x=2;
else
  x++;
assert(x<=3);
```

Convert to static single assignment (SSA)

```c
x1=x0+y0;
if (x1!=1)
  x2=2;
else
  x3=x1+1;
x4=(x1!=1)?x2:x3;
assert(x4<=3);
```

Generate constraints

\[
C \equiv x_1=x_0+y_0 \land x_2=2 \land x_3=x_1+1 \land (x_1 != 1 \land x_4=x_2 \lor x_1=1 \land x_4=x_3)
\]

\[
P \equiv x_4 <= 3
\]

Check if \(C \land \neg P \) is satisfiable, if it is then the assertion is violated

\(C \land \neg P \) is converted to Boolean logic using a bit vector representation for the integer variables \(y_0, x_0, x_1, x_2, x_3, x_4 \)
Model Checking as a SAT problem (4/4)

• Example of arithmetic encoding into pure propositional formula

Assume that x, y, z are three bits positive integers represented by propositions $x_0x_1x_2, y_0y_1y_2, z_0z_1z_2$

$C \equiv z = x + y \equiv (z_0 \leftrightarrow (x_0 \oplus y_0) \oplus ((x_1 \land y_1) \lor (((x_1 \oplus y_1) \land (x_2 \land y_2))))$

$\land (z_1 \leftrightarrow (x_1 \oplus y_1) \oplus (x_2 \land y_2))$

$\land (z_2 \leftrightarrow (x_2 \oplus y_2))$
Example

/* Assume that x and y are 2 bit unsigned integers */
/* Also assume that x+y <= 3 */
void f(unsigned int y) {
 unsigned int x=1;
 x=x+y;
 if (x==2)
 x+=1;
 else
 x=2;
 assert(x ==2);
}

C Bounded Model Checker

• Targeting arbitrary ANSI-C programs
 – Bit vector operators (>>, <<, |, &)
 – Array
 – Pointer arithmetic
 – Dynamic memory allocation
 – Floating #

• Can check
 – Array bound checks (i.e., buffer overflow)
 – Division by 0
 – Pointer checks (i.e., NULL pointer dereference)
 – Arithmetic overflow/underflow
 – User defined assert(cond)

• Handles function calls using inlining
• Unwinds the loops a fixed number of times
Modeling with CBMC

• Models an environment (i.e., various scenarios) using non-determinism
 1. By using undefined functions
 2. By using uninitialized local variables
 3. By using function parameters
 4. By explicitly using `__CPROVER_assume()`

```c
foo(int x) {
    __CPROVER_assume (0<x && x<10);
    x++;
    assert (x*x <= 100);
}

bar() {
    int y=0;
    __CPROVER_assume ( y > 10);
    assert(0);
}

int x = nondet();
bar() {
    int y;
    __CPROVER_assume (0<x && 0<y);
    if(x < 0 && y < 0)
        assert(0);
}
```