
Industrial Application of Concolic Testing
to Detect Crash Bugs

- A Case Study on libexif
Yunho Kim, Moonzoo Kim, YoungJoo Kim, and Yoonkyu Jang

Provable SW Lab, KAIST, Samsung Electronics

South Korea

Content

 Provable SW Lab 2/70

• Motivation and project scope
• libexif case study
• Lessons learned and conclusion

Main Talk Summary

 Provable SW Lab 3/70

• Industry builds products based on OSS heavily
• Concolic testing is a good technique for testing

open source programs with modest effort
– We applied concolic testing to an open-source

program libexif and detected 6 crash bugs in 4
man-week (reported 2 security bugs to CVE)

Motivation

 Provable SW Lab 4/70

• Effective SW code testing is expensive
– Test oracle should be defined

• Explicit high-level requirements are necessary
• Target code knowledge is necessary to insert

concrete low-level assert

– High test coverage should be achieved
• Deep understanding of target code is necessary

to write test cases that achieve high coverage

Problems in the Current Industrial Practice (1/2)

 Provable SW Lab 5/70

• Industry uses many open source software(OSS)
in their smartphone platforms
– Samsung’s cases: Android(30+ OSS packages),

Tizen(40+ OSS packages)

• Most of OSS are shipped in smartphones

without high quality assurance

Problems in the Current Industrial Practice (2/2)

 Provable SW Lab 6/70

• Industry does not have enough resources to test open
source program code due to time constraints
– Field engineers do not have deep knowledge of target

program code
– Writing effective test cases is a time-consuming task

Automated software testing techniques with
modest testing setup effort to test open
source program

Project Scope

 Provable SW Lab 7/70

• Goal: To evaluate effectiveness and efficiency of concolic testing for
testing open source programs

• Our team: 1 professor, 2 graduate students, and 1 Samsung
Electronics senior engineer
– Total M/M: 4 persons £ 1 week

• We tested an open source program libexif used by Samsung

smart phones
– libexif consists of 238 functions in C (14KLOC, 3696 branches)

• We used CREST-BV and KLEE as concolic testing tools and Coverity

Prevent as a static analysis tool
– We compared CREST-BV and Coverity Prevent in terms of bug detection

capability
– We compared the two concolic testing tools in terms of TC generation

speed and bug detection capability

CREST-BV and KLEE

 Provable SW Lab 8/70

• CREST-BV and KLEE are concolic testing tools
– They can analyze target C programs
– They are open source tools

• CREST-BV

– An extended version of CREST with bit-vector support
– Instrumentation-based concolic testing tool

• Insert probes to extract symbolic path formula

• KLEE
– Implemented on top of the LLVM virtual machine

• Modify VM to extract symbolic path formula
– Implements POSIX file system environment model

Effectiveness of Concolic Testing

 Provable SW Lab 9/70

• Concolic testing is effective to detect hidden bugs
in open-source programs with modest effort
– We took only 1 week to detect 6 crash bugs in
libexif without background of the target program

– Previous case studies
• Industrial Application of Concolic Testing on Embedded

Software: Case Study, ICST 2012
• Concolic Testing of the Multi-sector Read Operation for Flash

Storage Platform Software, FACJ 2012

• Concolic testing was more effective than static
analysis in this project
– All the detected bugs were not detected by Coverity

Prevent

EXchangeable Image file Format(EXIF)

 Provable SW Lab 10/70

• EXIF is a standard that specifies metadata for
image and sound files

Header

EXIF

Tag Value
Width 200
Height 430
Date 110522

… …

Maker
note

Tag Value
ISO 200

Focus AI Focus
… …

• EXIF defines image
structure, characteristics,
and picture-taking
conditions

• Maker note is manufacturer-
specific metadata

– Camera manufactures define a
large number of their own
maker note tags

– Ex. Canon has 400+ tags, Fuji
has 200+ tags, and so on

– No standard

11/70

Exif structure

12/2/2013 11

Test Experiment Setting

 Provable SW Lab 12/70

• Max time is set to 15, 30 and 60 minutes

• We used test-mnote.c in libexif as a
test driver program

• HW setting
– Intel Core2duo 3.6 GHz, 16GB RAM running Fedora

9 64bit

Testing Strategies

 Provable SW Lab 13/70

• Open source oriented approach for test oracles
– Focusing on runtime failure/crash bugs only

• Null-pointer dereference, divide-by-zero, out-of-bound
memory accesses, etc

• How to setup effective and efficient symbolic
input?
1. Baseline concolic testing
2. Focus on the maker note tags with concrete image

files

Baseline Concolic Testing

 Provable SW Lab 14/70

• Input EXIF metadata size fixed at 244 bytes
– Minimal size of a valid EXIF metadata generated by

a test program in libexif

• 244 bytes long
minimal symbolic
input file

Header

EXIF Tag Value
… …

……
In CREST-BV
1:char array[244];
2:for (i=0;i<244;i++)
3: sym_char(array[i]);

244 bytes

Testing Result of Baseline (1/2)

 Provable SW Lab 15/70

• One out-of-bound memory access bug was
detected (CVE-2012-2836)

CREST-BV KLEE

TC gen. speed 20.6 0.7

0

5

10

15

20

25

TC
 g

en
.
sp

ee
d
(#

/s
)

Test case generation speed

(Avg. of the all search strategies for each tool)

CREST-BV KLEE

Branch Coverage(%) 22.3 20.4

0

5

10

15

20

25

B
ra

n
ch

 C
o
ve

ra
g
e(

%
)

Branch Coverage of CREST-BV and KLEE

(Sum of all search strategies for each tool)

• KLEE is slower due to
– Overhead of VM
– Complex symbolic execution

features such as symbolic
pointer dereference

exif_data_load_data() in exif-data.c
1:if (offset + 6 + 2 > ds) { return; }
2:n = exif_get_short(d+6+offset, ...)

Testing Result of Baseline (2/2)

 Provable SW Lab 16/70

• We analyzed uncovered code to improve
branch coverage
– 5 among 238 functions take 27% of total branches

• Baseline concolic testing could not generate

maker notes in a given time
– We focused on maker notes to improve code

coverage

Focus on the Maker Note

 Provable SW Lab 17/70

• Focus on the maker note tags with concrete image
files.
– We used 6 image files from http://exif.org
– We used concrete header and standard EXIF metadata and

set maker note as symbolic inputs

• Set maker note
tags in the image
as symbolic inputs

Header

EXIF

Tag Value
Width 200
Height 430
Date 110522

… …

Maker
note

Tag Value
ISO 200

Focus AI Focus
… …

• Header and
standard EXIF
metadata are
concrete

http://exif.org/

18/70

Rationale for the Focus on Maker Note

12/2/2013 18

• We expect that the libexif code that handles maker notes is error-prone due
to lack of official specification

• Note that 5 functions among the top 10 largest functions are related to
maker notes
– These 5 functions takes around 27% of total libexif branches

Rank Function name # of
branches

Cum. # of
branches

Cum. # of
branches
/Total(%)

1 mnote_olympus_entry_get_value 508 508 14.3
2 exif_entry_get_value 396 904 25.5
3 exif_entry_initialize 204 1108 31.3
4 mnote_canon_entry_get_value 146 1254 35.4
5 mnote_pentax_entry_get_value 140 1394 39.4
6 exif_entry_fix 140 1534 43.3
7 mnote_fuji_entry_get_value 100 1634 46.1
8 exif_mnote_data_olympus_load 96 1730 48.8
9 exif_loader_write 92 1822 51.4

10 exif_data_load_data_content 72 1894 53.5

Testing Result of Maker Note (1/2)

 Provable SW Lab 19/70

• KLEE detected 1 null-pointer-dereference
• CREST-BV detected the null-pointer-

dereference bug and 4 divide-by-zero bugs

CREST-BV KLEE

TC gen. speed 16.4 1.3

0

5

10

15

20

TC
 g

en
.
sp

ee
d
(#

/s
)

Test case generation speed

(Avg. of the all search strategies for each tool)

CREST-BV KLEE

Branch Coverage(%) 68.1 49.5

0

20

40

60

80

B
ra

n
ch

 C
o
ve

ra
g
e(

%
)

Branch Coverage of CREST-BV and KLEE

(Sum of all search strategies for each tool)

Testing Result of Maker Note (2/2)

 Provable SW Lab 20/70

• Null-pointer-dereference bug

• Divide-by-zero bug (CVE-2012-2837)

mnote_canon_tag_get_description() in mnote-canon-tag.c
1: table[] = { …
2: {MNOTE_CANON_TAG_CUSTOM_FUNCS, "CustomFunctions",
 N_("Custom Functions"), ""},
3: {0, NULL, NULL, NULL} // Last table entry
…
4:for(i=0;i<sizeof(table)/sizeof(table[0]);i++)
5: //t is a maker note tag read from an image
6: if (table[i].tag==t) {
7: //Null-pointer dereference occurs when t is 0!!!
8: if(!*table[i].description)
9: return "";

mnote_olympus_entry_get_value() in mnote-olympus-entry.c
1:vr=exif_get_rational(...);
2://Added for concolic testing
3:assert(vr.denominator!=0);
4:a = vr.numerator / vr.denominator;

21/70

Total result (Baseline + MakerNote)
• Different testing strategies improve coverage
• Total # of covered branches: 1717 (46.5%) among 3696

branches in 1.5 days
– 110 branches are covered by only the Baseline strategy
– 734 branches are covered by only the MakerNote strategy
– 873 branches are covered by both

• In fact, we generated test cases quicker by
using multiple machines

110 873 734

1979

Branches universe

Strategy1 Strategy2

Comparison between CREST-BV and Prevent

 Provable SW Lab 22/70

• Prevent failed to detect bugs detected by concolic
testing
– Prevent generated 14 false warnings out of total 15

warnings

• Prevent detected the following null-pointer
dereference bug in 5 minutes
– KLEE/CREST-BV did not detect the bug because our test

driver program does not call the buggy function

23/70

Summary of the Challenges

23

• Libexif is a hard target for concolic testing
– Hard to specify assertions

• Requirement specification is very large and complex (182 page official
documents + unofficial maker note specifications)

• Code size is large (14k LOC) and components are hard to understand
due to strong connectivity

– Hard to generate valid inputs
• Libexif requires strictly structured/formatted input

– If any one byte of an EXIF header input violates EXIT structure, that entire
input is thrown away

– Search space is very large
• 10,000 test cases are too little compared to

a number of all possible execution paths of
a large program such as libexif

• For example, in another study, 700,000
test cases for grep (12k lines) covers
only 42% of branches.

Lessons Learned from Real-world Application

 Provable SW Lab 24/70

• Practical strength of concolic testing
– 1 null-pointer dereference, 1 out-of-bound memory access, and 4

divide-by-zero in 4 man-weeks
– Note that

• libexif is very popular OSS used by millions of users
• we did not have background on libexif!!!

• Importance of testing strategy

– Still state space explosion is a big obstacle
– Average length of symbolic path formula = 100(baseline strategy)
=> In theory, there can exist 2100 different execution paths

• Advantages of CREST-BV over KLEE and Prevent
– Concolic testing can supplement static analysis

	Industrial Application of Concolic Testing to Detect Crash Bugs�- A Case Study on libexif
	Content
	Main Talk Summary
	Motivation
	Problems in the Current Industrial Practice (1/2)
	Problems in the Current Industrial Practice (2/2)
	Project Scope
	CREST-BV and KLEE
	Effectiveness of Concolic Testing
	EXchangeable Image file Format(EXIF)
	Exif structure
	Test Experiment Setting
	Testing Strategies
	Baseline Concolic Testing
	Testing Result of Baseline (1/2)
	Testing Result of Baseline (2/2)
	Focus on the Maker Note
	Rationale for the Focus on Maker Note
	Testing Result of Maker Note (1/2)
	Testing Result of Maker Note (2/2)
	Total result (Baseline + MakerNote)
	Comparison between CREST-BV and Prevent
	Summary of the Challenges
	Lessons Learned from Real-world Application

