
The Spin Model Checker : Part I

Moonzoo Kim
KAIST



Hierarchy of SW Coverage Criteria

/60

Simple Round Trip 
Coverage

SRTCNode 
Coverage

NC

Edge 
Coverage

EC

Edge-Pair 
Coverage

EPC

Prime Path 
Coverage

PPC

Complete Path 
Coverage

CPC

Complete Round 
Trip Coverage

CRTC

All-DU-Paths 
Coverage

ADUP

All-uses 
Coverage

AUC

All-defs 
Coverage

ADC

Complete Value 
Coverage

CVC (SW) Model checking

Concolic testing

2



Model Checker Analyzes All Possible Scheduling

active type A() {
byte x;
again:

x++;
goto again;

}

x:0

x:1

x:2

x:255

active type A() {
byte x;
again:

x++;
goto again;

}

active type B() {
byte y;
again:

y++;
goto again;

}

x:0,y:0

x:1,y:0

x:2,y:0

x:255,y:0

x:0,y:1

x:1,y:1

x:0,y:255

x:1,y:255

x:255,y:255

x:2,y:1 x:2,y:255

3



Overview of the Spin Architecture

A few characteristics of Spin
Promela allows a finite state model only
Asynchronous execution
Interleaving semantics for concurrency
2-way process communication
Non-determinism
Promela provides (comparatively) rich set of constructs such as 
variables  and message passing, dynamic creation of processes, 
etc

System Spec.
In Promela

Req. Spec.
In LTL

Spin 
Model 

Checker
pan.c C compiler a.out

OKCounter 
Example (s)

4



Tcl GUI of  SPIN (ispin.tcl): Edit Window

5



Tcl GUI of  SPIN (ispin.tcl): Verification Window

6



Tcl GUI of  SPIN (ispin.tcl): Simulation Window

7



Overview of the Promela

byte x;
chan ch1= [3] of {byte};

active[2] proctype A() {
byte z;
printf(“x=%d\n”,x);
z=x+1;
ch1!z

}

proctype B(byte y) {
byte z;
ch1?z;

}

Init {
run B(2);

}

Similar to C syntax but 
simplified

No pointer
No real datatype such 
as float or real
No functions

Processes are 
communicating with 
each other using

Global variables
Message channels

Process can be 
dynamically created
Scheduler executes 
one process at a time 
using interleaving 
semantics

Global variables
(including channels)

Process (thread) 
definition and 

creation

Another 
process
definition

System 
initialization

8



Process Creation Example

run() operator creates a 
process and returns a 
newly created process 
ID
There are 6 possible 
outcomes due to non-
deterministic scheduling  

A0.A1.B, A0.B.A1
A1.A0.B, A1.B.A0
B.A0.A1, B.A1.A0

In other words, process 
creation may not
immediately start 
process execution

active[2] proctype A() {
byte x;
printf(“A%d is starting\n”);

}

proctype B() {
printf(“B is starting\n”);
}

Init {
run B();

}

9



Variables and Types

Basic types
bit
bool
Byte (8 bit unsigned integer)
short (16 bits signed integer)
Int (32 bits signed integer)

Arrays
bool x[10];

Records
typedef R { bit x; byte y;}

Default initial value of variables is 0
Most arithmetic (e.g.,+,-), relational (e.g. >,==) and 
logical operators of C are supported 

bitshift operators are supported too.

10



Finite  State Model

Promela spec generates only a finite state 
model because

Max # of active process <= 255
Each process has only finite length of codes
Each variable is of finite datatype
All message channels have bounded 
capability <= 255

11



Basic Statements

Each Promela statement is either
executable: 
Blocked

There are six types of statement
Assignment:  always executable

• Ex. x=3+x, x=run A()
Print: always executable

• Ex. printf(“Process %d is created.\n”,_pid);
Assertion: always executable

• Ex. assert( x + y == z)
Expression: depends on its value

• Ex. x+3>0, 0, 1, 2
• Ex. skip, true

Send: depends on buffer status
• Ex. ch1!m is executable only if ch1 is not full

Receive: depends on buffer status
• Ex. ch1?m is executable only if ch1 is not empty

12



Expression Statements

An expression is also a statement
It is executable if it evaluates to non-zero
1 : always executable
1<2:always executable
x<0: executable only when x < 0
x-1:executable only when x !=0

If an expression statement in blocked, it 
remains blocked until other process 
changes the condition

an expression e is equivalent to while(!e); in C

13



assert Statement

assert(expr)
assert is always executable
If expr is 0, SPIN detects this violation
assert is most frequently used checking 
method, especially as a form of 
invariance
• ex.  active proctype inv() { assert( x== 0);}

– Note that inv() is equivalent to [] (x==0) in LTL 
with thanks to interleaving semantics

14



Generation of all possible interleaving scenarios 

Original execution tree

Thread1
Thread2

After adding Inv() process

Thread1
Thread2

Inv()

𝜎𝜎1 𝜎𝜎11 𝜎𝜎12 𝜎𝜎13 𝜎𝜎14

Therefore, just a single assert(x==0) statement in Inv() can check if x==0 all the time

15



Program Execution Control 
Promela provides low-level control mechanism, i.e., goto
and label as well as if and do
Note that non-deterministic selection is supported
else is predefined variable which becomes true if all 
guards are false; false otherwise

proctype A() {
byte x;
starting: 
x= x+1;
goto starting;

}

proctype A() {
byte x;
if
::x<=0 -> x=x+1
::x==0 -> x=1
fi

}

proctype A() {
byte x;
do
:: x<=0 ->x=x+1; 
:: x==0 ->x=1;
:: else -> break
od 

}

int i; 
for (i : 1 .. 10) { 

printf("i =%d\n",i) 
} 

16



Critical Section Example

bool lock;
byte cnt;

active[2] proctype P() {
!lock -> lock=true;
cnt=cnt+1;
printf("%d is in the crt sec!\n",_pid);
cnt=cnt-1;
lock=false;

}

active proctype Invariant() {
assert(cnt <= 1);

}

[root@moonzoo spin_test]# ls
crit.pml
[root@moonzoo spin_test]# spin -a crit.pml 
[root@moonzoo spin_test]# ls
crit.pml  pan.b  pan.c  pan.h  pan.m  pan.t
[root@moonzoo spin_test]# gcc pan.c
[root@moonzoo spin_test]# a.out
pan: assertion violated (cnt<=1) (at depth 8)
pan: wrote crit.pml.trail
Full statespace search for:

never claim             - (none specified)
assertion violations    +
acceptance   cycles     - (not selected)
invalid end states      +

State-vector 36 byte, depth reached 16, errors: 1
119 states, stored
47 states, matched

166 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)
4.879   memory usage (Mbyte)
[root@moonzoo spin_test]# ls
a.out  crit.pml  crit.pml.trail pan.b  pan.c  pan.h  
pan.m  pan.t

17



Critical Section Example (cont.)
[root@moonzoo spin_test]# spin -t -p crit.pml
Starting P with pid 0
Starting P with pid 1
Starting Invariant with pid 2

1:    proc  1 (P) line   5 "crit.pml" (state 1)       [(!(lock))]
2:    proc  0 (P) line   5 "crit.pml" (state 1)       [(!(lock))]
3:    proc  1 (P) line   5 "crit.pml" (state 2)       [lock = 1]
4:    proc  1 (P) line   6 "crit.pml" (state 3)       [cnt = (cnt+1)]

1 is in the crt sec!
5:    proc  1 (P) line   7 "crit.pml" (state 4)       [printf('%d is in the crt sec!\\n',_pid)]
6:    proc  0 (P) line   5 "crit.pml" (state 2)       [lock = 1]
7:    proc  0 (P) line   6 "crit.pml" (state 3)       [cnt = (cnt+1)]

0 is in the crt sec!
8:    proc  0 (P) line   7 "crit.pml" (state 4)       [printf('%d is in the crt sec!\\n',_pid)]

spin: line  13 "crit.pml", Error: assertion violated
spin: text of failed assertion: assert((cnt<=1))

9:    proc  2 (Invariant) line  13 "crit.pml" (state 1)       [assert((cnt<=1))]
spin: trail ends after 9 steps
#processes: 3

lock = 1
cnt = 2

9:    proc  2 (Invariant) line  14 "crit.pml" (state 2) <valid end state>
9:    proc  1 (P) line   8 "crit.pml" (state 5)
9:    proc  0 (P) line   8 "crit.pml" (state 5)

3 processes created
18



Revised Critical Section Example

bool lock;
byte cnt;

active[2] proctype P() {
atomic{ !lock -> lock=true;}
cnt=cnt+1;
printf("%d is in the crt sec!\n",_pid);
cnt=cnt-1;
lock=false;

}

active proctype Invariant() {
assert(cnt <= 1);

}

[root@moonzoo revised]# a.out
Full statespace search for:

never claim             - (none specified)
assertion violations    +
acceptance   cycles     - (not selected)
invalid end states      +

State-vector 36 byte, depth reached 14, errors: 0
62 states, stored
17 states, matched
79 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

4.879   memory usage (Mbyte)

19



Deadlocked Critical Section Example

bool lock;
byte cnt;

active[2] proctype P() {
atomic{ !lock -> lock==true;}
cnt=cnt+1;
printf("%d is in the crt sec!\n",_pid);
cnt=cnt-1;
lock=false;

}

active proctype Invariant() {
assert(cnt <= 1);

}

[[root@moonzoo deadlocked]# a.out
pan: invalid end state (at depth 3)

(Spin Version 4.2.7 -- 23 June 2006)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim             - (none specified)
assertion violations    +
acceptance   cycles     - (not selected)
invalid end states      +

State-vector 36 byte, depth reached 4, errors: 1
5 states, stored
0 states, matched
5 transitions (= stored+matched)
2 atomic steps

hash conflicts: 0 (resolved)

4.879   memory usage (Mbyte)
20



Deadlocked Critical Section Example (cont.)

[root@moonzoo deadlocked]# spin -t -p deadlocked_crit.pml
Starting P with pid 0
Starting P with pid 1
Starting Invariant with pid 2
1:    proc  2 (Invariant) line  13 "deadlocked_crit.pml" (state 1)    

[assert((cnt<=1))]
2: proc 2 terminates
3:    proc  1 (P) line   5 "deadlocked_crit.pml" (state 1)    [(!(lock))]
4:    proc  0 (P) line   5 "deadlocked_crit.pml" (state 1)    [(!(lock))]

spin: trail ends after 4 steps
#processes: 2

lock = 0
cnt = 0

4:    proc  1 (P) line   5 "deadlocked_crit.pml" (state 2)
4:    proc  0 (P) line   5 "deadlocked_crit.pml" (state 2)

3 processes created

21



Communication Using Message Channels

Spin provides communications through 
various types of message channels 

Buffered or non-buffered (rendezvous comm.)
Various message types
Various message handling operators

Syntax
chan ch1 = [2] of { bit, byte};

• ch1!0,10;ch1!1,20
• ch1?b,bt;ch1?1,bt

chan ch2= [0] of {bit, byte}

Sender     (1,20)  (0,10)    Receiver

22



Operations on Channels

Basic channel inquiry
len(ch)
empty(ch)
full(ch)
nempty(ch)
nfull(ch)

Additional message passing operators
ch?[x,y]: polling only
ch?<x,y>: copy a message without removing it
ch!!x,y: sorted sending (increasing order)
ch??5,y: random receiving
ch?x(y) == ch?x,y (for user’s understandability)

Be careful to use these operators inside of expressions 
They have side-effects, which spin may not allow

23



Faulty Data Transfer Protocol 
(pg 27, data switch model proposed at 1981 at Bell labs)

mtype={ini,ack, dreq,data, shutup,quiet, dead}
chan M = [1] of {mtype};
chan W = [1] of {mtype};

active proctype Mproc() 
{

W!ini; /* connection */
M?ack; /* handshake */

timeout ->   /* wait */
if /* two options: */
:: W!shutup; /* start shutdown */
:: W!dreq; /* or request data */

do
:: M?data -> W!data
:: M?data-> W!shutup; 

break
od

fi;
M?shutup;
W!quiet;
M?dead;

}

active proctype Wproc() {
W?ini; /* wait for ini*/
M!ack; /* acknowledge */

do /* 3 options: */
:: W?dreq-> /* data requested */

M!data /* send data */
:: W?data-> /* receive data   */

skip /* no response */
:: W?shutup->

M!shutup; /* start shutdown*/
break

od;

W?quiet;
M!dead;

}

Mproc Wproc

Channel W

Channel M
24



The Sieve of Eratosthenes (pg 326)
/*

The Sieve of Eratosthenes (c. 276-196 BC)
Prints all prime numbers up to MAX

*/
#define MAX     25
mtype = { number, eof };
chan root = [0] of { mtype, int };

init
{       int n = 2;

run sieve(root, n);
do
:: (n <  MAX) -> n++; root!number(n)
:: (n >= MAX) -> root!eof(0); break
od

}

proctype sieve(chan c; int prime)
{       chan child = [0] of { mtype, int };

bool haschild;  int n;
printf("MSC: %d is prime\n", prime);

end: do
:: c?number(n) ->

if
:: (n%prime) == 0 ->  printf("MSC: %d 

= %d*%d\n", n, prime, n/prime)
:: else ->

if
:: !haschild -> /* new prime */

haschild = true;
run sieve(child, n);

:: else ->
child!number(n)

fi;
fi

:: c?eof(0) -> break
od;
if
:: haschild ->  child!eof(0)
:: else
fi

} 25



Simulation Run
[moonzoo@verifier spin]$ spin sieve-of-eratosthenes.pml

MSC: 2 is prime
MSC: 3 is prime

MSC: 4 = 2*2
MSC: 5 is prime

MSC: 6 = 2*3
MSC: 8 = 2*4

MSC: 7 is prime
MSC: 9 = 3*3

MSC: 10 = 2*5
MSC: 12 = 2*6
MSC: 14 = 2*7

MSC: 11 is prime
MSC: 15 = 3*5

MSC: 13 is prime
MSC: 16 = 2*8
MSC: 18 = 2*9
MSC: 20 = 2*10

2
3

5

7

11

13

26


	The Spin Model Checker : Part I
	Hierarchy of SW Coverage Criteria
	Model Checker Analyzes All Possible Scheduling
	Overview of the Spin Architecture
	Tcl GUI of  SPIN (ispin.tcl): Edit Window
	Tcl GUI of  SPIN (ispin.tcl): Verification Window
	Tcl GUI of  SPIN (ispin.tcl): Simulation Window
	Overview of the Promela
	Process Creation Example
	Variables and Types
	Finite  State Model
	Basic Statements
	Expression Statements
	assert Statement
	Generation of all possible interleaving scenarios 
	Program Execution Control 
	Critical Section Example
	Critical Section Example (cont.)
	Revised Critical Section Example
	Deadlocked Critical Section Example
	Deadlocked Critical Section Example (cont.)
	Communication Using Message Channels
	Operations on Channels
	Faulty Data Transfer Protocol �(pg 27, data switch model proposed at 1981 at Bell labs)
	The Sieve of Eratosthenes (pg 326)
	Simulation Run

