Software Model Checking I
Dynamic v.s. Static Analysis

<table>
<thead>
<tr>
<th>Pros</th>
<th>Dynamic Analysis (i.e., testing)</th>
<th>Static Analysis (i.e. model checking)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Real result</td>
<td>• Complete analysis result</td>
</tr>
<tr>
<td></td>
<td>• No environmental limitation</td>
<td>• Fully automatic</td>
</tr>
<tr>
<td></td>
<td>• Binary library is ok</td>
<td>• Concrete counter example</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cons</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Incomplete analysis result</td>
<td>• Consumed huge memory space</td>
</tr>
<tr>
<td></td>
<td>• Test case selection</td>
<td>• Takes huge time for verification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• False alarms</td>
</tr>
</tbody>
</table>
Motivation for Software Model Checking

- Data flow analysis (DFA): fastest & least precision
 - “May” analysis,
- Abstract interpretation (AI): fast & medium precision
 - Over-approximation & under-approximation
- Model checking (MC): slow & complete
 - Complete value analysis
 - No approximation

- Static analyzer & MC as a C debugger
 - Handling complex C structures such as pointer and array
 - DFA: might-be
 - AI: may-be
 - MC: can-be or should-be
Model Checking Background

- Undergraduate CS classes contributing to this area

- Discrete math
- Algorithm
- PL
- Automata

- OS
- System programming
- Cyber physical system
- Intro. to SE

Embedded Systems
Software Engineering
Programming Languages
Algorithms

OK
or

Counter example(s)
Operational Semantics of Software

- A system execution σ is a sequence of states $s_0s_1...$
 - A state has an environment $\rho_s: \text{Var} \rightarrow \text{Val}$
- A system has its semantics as a set of system executions
active type A() {
 byte x;
 again:
 x++;
 goto again;
}

active type A() {
 byte x;
 again:
 x++;
 goto again;
}

active type B() {
 byte y;
 again:
 y++;
 goto again;
}
Pros and Cons of Model Checking

• Pros
 – Fully automated and provide complete coverage
 – Concrete counter examples
 – Full control over every detail of system behavior
 • Highly effective for analyzing
 – embedded software
 – multi-threaded systems

• Cons
 – State explosion problem
 – An abstracted model may not fully reflect a real system
 – Needs to use a specialized modeling language
 • Modeling languages are similar to programming languages, but simpler and clearer
Companies Working on Model Checking
Model Checking History

1981 Clarke / Emerson: CTL Model Checking
 Sifakis / Quielle
1982 EMC: Explicit Model Checker
 Clarke, Emerson, Sistla
1990 Symbolic Model Checking
 Burch, Clarke, Dill, McMillan
1992 SMV: Symbolic Model Verifier
 McMillan
1998 Bounded Model Checking using SAT
 Biere, Clarke, Zhu
2000 Counterexample-guided Abstraction Refinement
 Clarke, Grumberg, Jha, Lu, Veith
Example. Sort (1/2)

• Suppose that we have an array of 5 elements each of which is 1 byte long
 – unsigned char a[5];

• We wants to verify sort.c works correctly

• Hash table based explicit model checker (ex. Spin) generates at least $2^{40} (= 10^{12} = 1$ Tera) states
 • 1 Tera states x 1 byte = 1 Tera byte memory required, no way...

• Binary Decision Diagram (BDD) based symbolic model checker (ex. NuSMV) takes 100 MB in 100 sec on Intel Xeon 5160 3Ghz machine

Example. Sort (2/2)

1. #include <stdio.h>
2. #define N 5
3. int main(){
 //Selection sort that selects the smallest # first
4. unsigned int data[N], i, j, tmp;
5. /* Assign random values to the array*/
6. for (i=0; i<N; i++){
7. data[i] = nondet_int();
8. }
9. /* It misses the last element, i.e., data[N-1]*/
10. for (i=0; i<N-1; i++)
11. for (j=i+1; j<N-1; j++)
12. if (data[i] > data[j]){
13. tmp = data[i];
14. data[i] = data[j];
15. data[j] = tmp;
16. }
17. /* Check the array is sorted */
18. for (i=0; i<N-1; i++){
19. assert(data[i] <= data[i+1]);
20. }
21. }

• SAT-based Bounded Model Checker
• Total 19637 CNF clause with 6762 boolean propositional variables
• Theoretically, 2^{6762} choices should be evaluated!!!

<table>
<thead>
<tr>
<th>SAT</th>
<th>VSIDS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicts</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Decisions</td>
<td>2435</td>
<td></td>
</tr>
<tr>
<td>Time(sec)</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNSAT</th>
<th>VSIDS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicts</td>
<td>35067</td>
<td></td>
</tr>
<tr>
<td>Decisions</td>
<td>161406</td>
<td></td>
</tr>
<tr>
<td>Time(sec)</td>
<td>0.95</td>
<td></td>
</tr>
</tbody>
</table>
Overview of SAT-based Bounded Model Checking

Requirements \Downarrow
Formal Requirement Properties
$\Box (\Phi \rightarrow \Diamond \Omega)$

Model Checker

Satisfied

Okay

C Program \Downarrow
Abstract Model

Not satisfied

Counter example

Requirements \Downarrow
Formal Requirement Properties in C
(ex. assert(x < a[i]);)

Translation to SAT formula

Satisfied

Okay

SAT Solver

Not satisfied

Counter example

C Program
SAT Basics (1/3)

- SAT = Satisfiability
 = Propositional Satisfiability

- NP-Complete problem
 - We can use SAT solver for many NP-complete problems
 - Hamiltonian path
 - 3 coloring problem
 - Traveling sales man’s problem

- Recent interest as a verification engine
SAT Basics (2/3)

• A set of propositional variables and Conjunctive Normal Form (CNF) clauses involving variables
 – \((x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_1' \lor x_4)\)
 – \(x_1, x_2, x_3 \text{ and } x_4\) are variables (true or false)

• Literals: Variable and its negation
 – \(x_1 \text{ and } x_1'\)

• A clause is satisfied if one of the literals is true
 – \(x_1=\text{true} \text{ satisfies clause 1}\)
 – \(x_1=\text{false} \text{ satisfies clause 2}\)

• Solution: An assignment that satisfies all clauses
SAT Basics (3/3)

- DIMACCS SAT Format
 - Ex. \((x_1 \lor x_2' \lor x_3) \land (x_2 \lor x_1' \lor x_4)\)

 \[
 \begin{array}{c}
 p \text{ cnf 4 2} \\
 1 \ -2 \ 3 \ 0 \\
 2 \ -1 \ 4 \ 0 \\
 \end{array}
 \]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Model/solution
Software Model Checking as a SAT problem (1/4)

• Control-flow simplification
 – All side effect are removed
 • i++ => i=i+1;
 – Control flow is made explicit
 • continue, break => goto
 – Loop simplification
 • for(;;), do {...} while() => while()
Software Model Checking as a SAT problem (2/4)

• Unwinding Loop

Original code

```c
x=0;
while(x < 2){
    y=y+x;
    x++;
}
```

Unwinding the loop 1 times

```c
x=0;
if (x < 2) {
    y=y+x;
    x++;
}
/* Unwinding assertion */
assert(!(x < 2))
```

Unwinding the loop 2 times

```c
x=0;
if (x < 2) {
    y=y+x;
    x++;
}
if (x < 2) {
    y=y+x;
    x++;
}
/* Unwinding assertion */
assert(!(x < 2))
```

Unwinding the loop 3 times

```c
x=0;
if (x < 2) {
    y=y+x;
    x++;
}
if (x < 2) {
    y=y+x;
    x++;
}
if (x < 2) {
    y=y+x;
    x++;
}
/* Unwinding assertion */
assert(!(x < 2))
```
Examples

/* Straight-forward constant upperbound */
for(i=0,j=0; i < 5; i++) {
 j=j+i;
}

/* Constant upperbound*/
for(i=0,j=0; j < 10; i++) {
 j=j+i;
}

/* Complex upperbound */
for(i=0; i < 5; i++) {
 for(j=i; j < 5;j++) {
 for(k= i+j; k < 5; k++) {
 m += i+j+k;
 }
 }
}

/* Upperbound unknown */
for(i=0,j=0; i^6-4*i^5 -17*i^4 != 9604 ; i++) {
 j=j+i;
}
Model Checking as a SAT problem (3/4)

- From C Code to SAT Formula

Original code

```c
x=x+y;
if (x!=1)
x=2;
else
  x++;
assert(x<=3);
```

Convert to static single assignment (SSA)

```c
x1=x0+y0;
if (x1!=1)
  x2=2;
else
  x3=x1+1;
x4=(x1!=1)?x2:x3;
assert(x4<=3);
```

Generate constraints

\[C \equiv x_1=x_0+y_0 \land x_2=2 \land x_3=x_1+1 \land (x_1!=1 \land x_4=x_2 \lor x_1=1 \land x_4=x_3) \]

\[P \equiv x_4 <= 3 \]

Check if \(C \land \neg P \) is satisfiable, if it is then the assertion is violated

\(C \land \neg P \) is converted to Boolean logic using a bit vector representation for the integer variables \(y_0, x_0, x_1, x_2, x_3, x_4 \)
Model Checking as a SAT problem (4/4)

• Example of arithmetic encoding into pure propositional formula

Assume that \(x, y, z\) are three bits positive integers represented by propositions \(x_0x_1x_2, y_0y_1y_2, z_0z_1z_2\)

\[C \equiv z = x + y \equiv (z_0 \leftrightarrow (x_0 \oplus y_0) \oplus (x_1 \land y_1) \lor (((x_1 \oplus y_1) \land (x_2 \land y_2))) \land (z_1 \leftrightarrow (x_1 \oplus y_1) \oplus (x_2 \land y_2)) \land (z_2 \leftrightarrow (x_2 \oplus y_2)) \]
/* Assume that x and y are 2 bit unsigned integers */
/* Also assume that x+y <= 3 */
void f(unsigned int y) {
 unsigned int x=1;
 x=x+y;
 if (x==2)
 x+=1;
 else
 x=2;
 assert(x ==2);
}
C Bounded Model Checker

- Targeting arbitrary ANSI-C programs
 - Bit vector operators (>>, <<, |, &)
 - Array
 - Pointer arithmetic
 - Dynamic memory allocation
 - Floating #

- Can check
 - Array bound checks (i.e., buffer overflow)
 - Division by 0
 - Pointer checks (i.e., NULL pointer dereference)
 - Arithmetic overflow/underflow
 - User defined assert(cond)

- Handles function calls using inlining
- Unwinds the loops a fixed number of times
 - Ex. cbmc --unwind 6 --unwindset c::f.0:64,c::main.0:64,c::main.1:64 max-heap.c
0. With a given C program (e.g., `int bin-search(int a[], int size_a, int key)`)

1. Define a requirement (i.e., `assert(i>=0 -> a[i]== key)`, where \(i\) is a return value of `bin-search()`)

2. Model an environment of the target program, which is uncontrollable and non-deterministic
 - Ex1. pre-condition of `bin-search()` such as input constraints
 - Ex2. For a target client program \(P\), a server program should be modeled as an environment of \(P\)

3. Tuning model checking parameters (i.e. loop bounds, etc.)
Modeling an Non-deterministic Environment with CBMC

1. Models an environment (i.e., various scenarios) using non-deterministic values
 1. By using undefined functions (e.g., x = non-det();)
 2. By using uninitialized local variables (e.g., f() { int x; ...})
 3. By using function parameters (e.g., f(int x) {...})

2. Refine/restrict an environment by using __CPROVER_assume()

```c
foo(int x) {
    __CPROVER_assume (0<x && x<10);
    x++;
    assert (x*x <= 100);
}

bar() {
    int y=0;
    __CPROVER_assume ( y > 10);
    assert(0);
}

int x = nondet();
bar() {
    int y;
    __CPROVER_assume (0<x && 0<y);
    if(x < 0 && y < 0)
        assert(0);
}
```