Concolic Testing of the Multi-sector
Read Operation for
Flash Memory File System

Moonzoo Kim and Yunho Kim
Provable Software Lab,

CS Dept, KAIST, South Korea
http://pswlab.kaist.ac.kr

KAIST

Summary of the Talk

File : Unified
System Paging Storage
Platform

ector .
. ranslatio

Layer oS
ocC dapt—
tion
odule

% FUJIFILM

- ow Leve
3 ¢

xD-Picture Card

115 ()
256 OneNAND — Flash Memory Devices

Provable Software Lab @ KAIST has applied various formal verification

technologies to the Unified Storage Platform code
OneNAND™ flash memory

for the Samsung

Conventional model checking: NuSMV and Spin [Spin 08]
Software model checking: C-Bounded Model Checker [ASE 08]

In this talk, yet another approach using concolic testing.

. . . . M Ki
2/29 Concolic Testing of the I\/IuIU-sgctor Read Operation alégrr]cj\c/);bléngvflt I(AIST
for Flash Memory File System

[N PN

Overview

Part I: Background
— Overview of the Unified Storage Platform (USP)

— Summary of the Previous Studies on USP
* Prioritized read operation (PRO)@ Demand Paging Manager (DPM)
* Semaphore matching (SM)@ Block Management Layer (BML)
e Semaphore exception handling (SEH)@ STL~BML
e Multi-sector read operation (MSR) @ Sector Translation Layer (STL)

Part Il: Concolic testing experiments on MSR
— Overview of Concolic Testing
— Multisector Read Operation

— Experiments on MSR by using Concolic Testing
* Testbed and experiment setup
* Experiments with a constraint-based environment model
* Experiments with an explicit-writing environment model

— Analysis of the Symbolic Path Formulas
— Lessons Learned

Conclusion

KAIST

Overview of the Unified Storage Platform

e Characteristics of OneNAND® flash

— Each memory cell can be written Source:
.. . App3 Software Center
limited number of times only of Samsung

Electronics ‘06

e Logical-to-physical sector mapping

e Bad block management
* Wear-leveling Unified
Storage

— XIP by emulating NOR interface Platform
through demand-paging scheme e

e Multiple processes access the
device concurrently 0S
Urgent read operation should have Adapt-
a higher priority ation
Synchronization among processes Module
is crucial Low L_eve .LLD
Device Drive
e |

— Performance enhancement

e Multi-sector read/write
. Asynchronous operations OneNAND Flash Memory Devices

* Deferred operation result check
Unit Testing of Flash Memory Device Driver through
4/29 a SAT-based Model Checker

Moonzoo Kim et

al. Provable SW MIST

[N PN

Summary of the Previous Studies (1/2)

Main target function: multi-sector read @ STL
— Data intensive application due to SAMs and PUNs

— Deterministic behaviors, except initial setting of data distribution
— Data abstraction is barely possible for SAMs

Performance comparison [Spin 08]

— SAT-based bounded model checker (CBMC) > explicit model checking (Spin) > symbolic
model checker (NuSMV)

— CEGAR based software model checker (i.e. Blast) failed to analyze MSR due to its limitation on
array/pointer operations

100000 -+ . .
Time complexity LS = 6
10000
3
81000
j]
—]
100 — =4=Spin
- == NuSMV
=t CBMC
10 -
> A rfumber’of ph§sica| uhits 10
5/29

100000

=
o
o
o
o

Megabytes
o
o
o

100

10

Space complexity LS = 6

1A

B Spin

=== NuSMV
e CBMC

5

6 7 8 9
A number of physical units

10

KAIST

Summary of the Previous Studies (2/2)

e However, we are still limited to miniature
world (~10 PUNSs) for the complete analysis.
Thus, we may try

— Theorem proving without bound (WHY approach)
— Testing

e Applying concolic testing aiming for high coverage and
better scalability

Moonzoo Kim et

al. Provable SW MIST

Concolic Testing of the Multi-sector Read Operation

6/29 for Flash Memory File System

Part Il: Concolic testing experiments on MSR

Moonzoo Kim et

al. Provable SW l(AIST

Concolic Testing of the Multi-sector Read Operation

7123 for Flash Memory File System

Concolic (CONCrete + symbOLIC) Testing

Automated Scalable Unit Testing of real-world C Programs

— Execute unit under test on automatically generated test inputs so that
all possible execution paths are explored

e (a.k.a) explicit path model checking
In a nutshell

— Use concrete execution over a concrete input to guide symbolic
execution

* A symbolic path formula is obtained at the end of an execution

— One branch condition of the path formula is negated to generate the
next execution path

— The next execution path formula is solved by SMT solver to generate
concrete input values, and so on

— No false positives or scalability problem

Logical to Physical Sector Mapping

1:N mapping from a LUN to PUNs

LUNO LUN 1 LUN 2 LUN 3 LUN 4 LUNS LUN 6
Y v v

PUN 3 PUN 2 PUN1 PUN 6 PUN 4
v

PUN 0 PUN 5

STEP 0

STEP 1

STEP 2

STEP 3

STEP 4 STEP 5
LONO} {LUNO} ["LUNO! {"LUNO? {'LUNO: { LUNO :
[[[[[[
PUN 1 PUN 1 PUN 1 PUN 1 PUN 1 PUN 1
LSO LSO LSO LS 6 LS-0
LS 1 LS4 LS4 LS4
LS 1 LS 1 LS 1
LSO LSO
! } } } |
Empty Write LSO WriteLS1 Modify LS1 Modify LS 0 PUN 4
Physical Unit
LS 2
Sector mapping T

Write LS 2

Concolic Testing of the Multi-sector Read Operation
for Flash Memory File System

LUNO
........ (-
SAM1
: : PUN 1
Logical offset | Physical offset
0 3 LSO
1 2 LSt
2 >~ .S 1
3 A LSO
|
SAM4 PUN 4
Logical offset | Physical offset
0 ¢ LS2
1
2 0
3

Sector Allocation Map (SAM)

In flash memory, logical
data are distributed over
physical sectors.

Moonzoo Kim et
al. Provable SW

[N PN

KAIST

Examples of Possible Data Distribution

LUO LUL

SAMO~SAMA ! PU0~/EDU4 SAMO~SAM4 PUO~PU4
Sector 0 (1 0 E 3 3| B
Sector1 | |1 11 AB F 0 2 D
Sector2 | 2 C 3 F
Sector 3 3 D 1 AIC| E

(a) A distribution of (b) Another distribution of
"ABCDEF" "ABCDEF"
e Assumptions * Exponentially many

distributions according to
size of data and # of PUNs

_ — ex> 2.7 x 108 distributions for
— each sector is 1 byte long 6 sectors long data over 10

PUNSs

— there are 5 physical units
— each unit has 4 sectors

Loop Structure of MSR

O1:curLU = LUO;

02:while(numScts >0) { Loopl: iterates over LUs until all data are read

03: readScts = # of sectors to read in the current LU

04: while(readScts >0) { Loop?2: iterates until the current LU is read completely

05: curPU = LU->firstPU;

06: while(curPU = NULL) { | Loop3: iterates over PUs linked to the current LU

07: while(...) { Loop4: identify consecutive PS's in the current PU

08: conScts = # of consecutive PS’s to read in curPU

09: offset = the starting offset of these consecutive PS’s in curPU

10: }

11: BML_READ(curPU, offset, conScts); . MSR reads consecutive physical

12: readScts = readScts - conScts; sectors together for improving

13: curPU = curPU->next; read performance

14: } e Statistics

15: } — 157 lines long, 4 level nested

16: curLU = curLU->next; loops

173} — 4 parameters to specify logical
data to read (from where, to
where, how long, read flag

Environment Modeling

* Environment model creation

— The environment of MSR (i.e., PUs and SAMs configurations) can be described

by invariant rules. Some of them are
1. One PU is mapped to at most one LU
2. Valid correspondence between SAMs and PUs:

If the i th LS is written in the k th sector of the j th PU, then the i th offset

of the j th SAM is valid and indicates the k’'th PS,
Ex> 1st LS (‘B’) is in the 2nd sector of the 5th PU, then SAMS5[1] ==

i=1 k=2 =5

3. For one LS, there exists only one PS that contains the value of the LS:

The PS number of the i th LS must be written in only one of the (i mod 4)
th offsets of the SAM tables for the PUs mapped to the corresponding LU.

Vi, j, k (LS[i] = PU[j].sect[k] — (SAM [j].valid[i mod m| = true
& SAMjl.of fset[i mod m| = k
& Vp.(SAM [p).valid[i mod m] = false)

where p # j and PU|[p] is mapped tu[,’TJ”l LU))

SAMS5

Logical offset | Physical offset

0

3

2

1
2
3

.S 1('B))

LS 0(‘A")

Experiment Setup

e Hypotheses
— H1: Concolic testing is effective for analyzing the MSR code

— H2: Concolic testing is more efficient than model checking for
analyzing the MSR code

e Effectiveness evaluation through mutation analysis

— We injected the three types of frequent bugs and one corner
case bug

* 3instances of off-by-1 bugs b,; to b,
— Ex. while(numScts>0) -> while(numScts>1)

* 3instances of invalid condition bugs b,, to b,
— Ex. if(SAM[i].offset[j]1=0xFF) -> if(SAM[i].offset[j]==0xFF)

* 3instances of missing statement bugs b,, to b,;
— Ex. Missing nScts=1 in the second loop

* Acorner case bugb_

— readScts = readScts - conScts - (PU[1].sect[3]=="A" && PU[0].sect[0]=="B’ &&
PU[2].sect[3]=="C’ && PU[1].sect[1]=="D’ && PU[4].sect[3]=="F’ &&
PU[3].sect[2]=="F')

Testbed for the Concolic Testing

* Intel Core2Duo 3Ghz processor and 16 gigabytes of memory
e For concolic testing, CREST 0.1.1 with DFS option was used

— CREST does not support dereferencing of pointers and array index
variables in the symbolic analysis.

* the target MSR code was modified to use an array representation of the
SAMs and PUs.

— gcc4.3.0, Yices 1.0.19
e For model checking, CBMC 2.6 and MiniSAT 1.14 were used.

— The target MSR codes used for concolic testing and model checking
are identical

Constraint-based Environment Model

 We have to specify test input
variables as symbolic variables

— punli].sect]j]
— SAM([i].offset[j]

e and put constrains on them
— If assigned input value does

not satisfy the constraints (i.e.

invalid test case generated), a
current iteration terminates
immediately without testing
MSR (goto out);

for (i=0; i<NUM_PUN; i++){ for (j=0; j<SECT_PER_U; j++){
CREST_unsigned_char(punli].sect[j]);
CREST_unsigned_char(SAM[i].offset[j]); } }

for (i=0; i<NUM_LS_USED; i++){
for (j=0; j<NUM_PUN; j++){
for (k=0; k<SECT_PER_U; k++){
if (pun[j]l.sectlk] == "a'+i){
if i < SECT_PER_U && j < NUM_PUN_LUNO ||
SECT_PER_U <= i &8& j >= NUM_PUN_LUNO){
valid[i] = 1;
telse{ goto OUT; }
}else continue;
if (I(!(a" + i == pun[jl.sect[k]) ||
(SAM[j].offset[((i>=SECT_PER_U)?
(i-SECT_PER_U):)]==k)
){ goto OUT; }

Vi, j, k (LS[i] = PU[j].sect[k] — (SAM [j].valid[i mod m] = true
& SAM(j).of fset[i modm] = k
& Vp.(SAM [pl.valid[i mod m] = false)

where p # j and PU|[p] is mapped tUl'I’TJth LU))

Result w/ Constraint-based Model (1/2)

14%

1.60.E+07

9
1.40.E+07 3 12%
w 120.E+07 s 10%
¢ S
& LO0.E+07 e 8%
Ly
% 8.00.E+06 o 6%
- o
S 6.00.E+06 2 4%
* T
4.00.E+06 § 2%
2.00.E+06 . I -
0.00.E+00 _—
4 PUsw/ 4 PUsw/ 5 PUsw/ 5 PUs w/
4 PUs w/4 PUs w/5 PUs w/5 PUs w/
5 lSes 6LlSes 5 LlSes 6 LSes . 5 LSes . 6 LSes 51L1Ses 6 LSes
(a) Total number of test cases generated (b) Ratio of valid test cases/all test cases

e Only ~10% of generated test cases are valid
— Causing significant overhead

e However, valid test cases generated cover all distribution cases

— i.e. 100% path coverage achieved

— Consequently, all bugs b,, to b;; as well as b, were detected
Concolic Testing of the Multi-sector Read Operation Moonzoo Kim et al. KA'S‘I‘

16/29 for Flash Memory File System Provable SW Lab

Result w/ Constraint-based Model (2/2)

100000
A =5 LS CREST Constraint . 100%
=5 LS CBMC)
10000 l/ —<=6 LS CREST Constraint 2 80% _
—e—6 LS CBMC b = Concolic
1000 o 60% exe
T g Yices
ig 100 T 40%
-S M System
=
10 o 20% - exe
: N
0%
1 4 PUs w/ 4 PUs w/ 5 PUs w/ 5 PUs w/
4PUs 5PUs 6PUs 7PUs 8PUs 5 lSes 6 LSes 5 1Ses 6 LSes
(a) Total analysis time (b) Time ratio of analysis steps

e Concolic testing is order of magnitude slower than CBMC

— Concolic execution, SMT solving, system execution (i.e process fork and
release) constitutes the overall overhead

— Particularly, numerous invalid test cases (~90% of all test cases) worsen
the performance

Concolic Testing of the Multi-sector Read Operation Moonzoo Kim et al. I(AIST

17/2 .
/29 for Flash Memory File System Provable SW Lab

Explicit Environment Model

Explicit environment
model writes data to
physical sectors explicitly

e Thus, creating invalid test
cases much less than the
constraint-based model

Test input variables
— idxPU and idxSect for
each logical data
CREST has a limitation on
array index variable

— We should expand array
index variables using switch
statements

01:for (i=0; i< NUM_LS; i++){

02: unsigned char idxPU, idxSect;
03: CREST_unsigned_char(idxPU);
04: CREST_unsigned_char(idxSect);
05: ...

06: // The switch statements encode the following
statements:

07: // PU[idxPu].sect[idxSect]= LS[i];
08: // SAM[idxPu].sect[i]= idxSect;
09: switch(idxPU){

10: case 0O: switch(idxSect) {

11: case 0: PU[O].sect[0] = LSIi];

12: SAMIO].offset[i] = idxSect; break;
13: case 1: PU[idxPU].sect[1] = LSIi];

14: SAMIO].offset[i] = idxSect; break;
15: o}

16: break;

17: case 1: switch(idxSect) {

Result w/ Explicit Environment Model (1/2)

70%

1.40.E+07
__60%
1.20.E+07 S
9O 50%
«» 1.00.E+07 2 0P
@ &
© o 40%
U 8.00.E+06 a
%]
~ 6.00.E+06 % 30%
Y ()]
o =
* 4.00.E+06 T 20%
S
| I I fifinin
0.00.E+00 - - - 0% -
E S| g © | & ©| & © e © | g © | ©| & ©
s 53| &8 3| &8 3| & = c S| & 5| & 3|8 3
2 3/ 2 2 §| & 3 2 $ |2 |2 &% 3
(@) (@) (@) (@) o o o o
(@] (@] (@] (@] |9 O [®) (®)
4 PUs 5 Lses|4 PUs 6 Lses|5 PUs 5 Lses|5 PUs 6 Lses 4 PUs 5 Lses|4 PUs 6 Lses|5 PUs 5 Lses|5 PUs 6 Lses
(a) Total number of test cases generated (b) Ratio of valid test cases/all test cases

e ~60% of generated test cases are valid
— total test cases generated is 1/5 of the constraint-based one

e Again, valid test cases generated cover all distribution cases
— Consequently, all bugs b,, to b;; as well as b, were detected

Moonzoo Kim et

al. Provable SW KA'ST

[N PN

Concolic Testing of the Multi-sector Read Operation

19/29 for Flash Memory File System

Result w/ Explicit Environment Model (2/2)

100000
=®=5 LS CREST constraint 100%
@5 LS CREST explicit <
10000 S
i =5 LS CBMC 5 80% = Concolic
—8—6 LS CREST constraint E‘ exe
‘
w000 | ——6 LS CREST explicit GE) 60% B Yices
g —8—6 LS CBMC =
E c 40%
100 k) B System
2 20% exe
10 o
0%
1 4 PUs w/ 4 PUs w/ 5 PUs w/ 5 PUs w/
(a) Total analysis time (b) Time ratio of analysis steps

 Still, concolic testing is order of magnitude slower
than CBMC

— In this case, SMT solving is a major bottleneck, taking
~75% of total execution time

Moonzoo Kim et

al. Provable SW I(AIST

[N PN

Concolic Testing of the Multi-sector Read Operation

20/29 for Flash Memory File System

Analysis of the Symbolic Path Formulas

e Background on the SMT path formulas
generated by CREST

e Path formula reduction techniques of CREST
e Statistics on the path formulas

KAIST

Background on the SMT path formulas
generated by CREST

A symbolic path formula ¢’ generated by CREST is a conjunction of atomic clauses
cl, c2, ...cn (i.e., path conditions without boolean connectives)

— CREST transforms a target C program P into a canonical form P’
¢’ is a conjunction of 8 path conditions

— x3 at line 1 is a symbolic variable name for idxSect which indicates an offset of a
physical sector containing the first logical sector (i.e., ‘A’)

— Line 2 and line 3 specify that idxSect is an 8 bit unsigned integer

— Line 4 (i.e., x3<4) indicates idxSect should be less than a number of sectors per
unit (4 in our experiments).

— Line 5 to line 8 (x340, x341, x3%42, and x3=3) correspond to the switch

statements which test the value of idxSect. _ .
define x3:int)

— Finally, line 9 is a negated path condition and it assert (>= x3 0))
assert (<= x3 255))

1:(
2:(
. 3(
|r1d|cates that |dx§ec’F contains an invalid value Ieaeert (< (4 4 (%3 1) O)
(i.e., x3=255), which is clearly not true. 5:(assert (/= (+ 0 (* x3 1)) 0)

* Since Yices detects that ¢’ is unsatisfiable, CREST gfgassert (/=(+-1(*x31))0)
8:(
9:(

generates another path formula by negating a assert (/= (+ -2 (*x3 1)) 0))

different path conditienof@ ::22 Ez g: :25(; >((§x13))1()))))0))

Path Formula Reduction Techniques (1/2)

e Syntactic contradiction check:

— Given a generated path formula¢’:cl1 N ... A —xn
with a negated path condition —n, CREST checks
whether there exists ¢i which is syntactically identical
to cn (i.e., @’ is unsatisfiable because ci is
contradictory to —x<n).

— For example, givena ¢: x=0 N ... N x~A0withx~40
as —, CREST detects that ¢is unsatisfiable because
c.(x = 0) is identical to c.(x = 0) and removes ¢.

KAIST

Path Formula Reduction Techniques (2/2)

e Slicing for the negated path condition:
— Suppose that ¢j of ¢ is to be negated to generate ¢’

— Then, ¢’ consists of —j and only path conditions of ¢ which
are dependent on ¢j through variables in terms of
satisfiability.

— CREST invokes Yices on this simplified ¢’ and get a solution
for those variables.

e Thus, the next input values are the same as the previous input
values except the variables in the solution.

* Note that this technique utilizes the fact that path formulas share
many path conditions in common

— For example, givengp:a<b Nc<d Nd<e Ne<fwithe
< f as a path condition to negate, CREST generates ¢’: c<d
NAd<e /A —e<f)withouta<b

e since a < b is not dependent on e nor f.

KAIST

of formulas

Symbolic Path Formula statistics

16000000

14000000

12000000

10000000

8000000

6000000

4000000

2000000

Distribution of # of asserts(invar)

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
of asserts

5)
88 86 97

=6—4 PUNs 5 LS
=#—4 PUNs 6 LS
=#=5 PUNs 5 LS
=>=5 PUNs 6 LS

25/13

Symbolic Path Formula statistics

3000000

Distribution of # of asserts(assign)

2500000

2000000

Average 144 15.9

1500000

of formulas

1000000

500000

N

oy

!

glv| -

v ag

1 357 911131517

19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

of asserts

16.3 17.7

=4=4 PUNs 5 LS
=#—4 PUNs 6 LS

5 PUNs 5 LS
=>=5 PUNs 6 LS

Lessons Learned

Effectiveness of Concolic Testing
Low Efficiency of Concolic Testing

— Poorer performance compared to CBMC

— But still it can be practically scalable by aiming branch coverage, not
path coverage

Importance of an Environment Model

— Environment model constitutes an important part of any serious
verification tasks

Hard characteristic of MSR for Concolic testing
— Different values of one SAM entries leads to different execution paths
— Hard to apply abstraction

Future Works

e Study characteristics of symbolic path formulas
— Apply heuristics to optimize solving performance
e Build a concolic testing tool which overcomes the

limitation of CREST and can be tuned for embedded
software environment

— Currently discussing with Samsung Advanced Institute of
Technology.

e Build a mock flash FTL, which can be used in a concolic
testing framework

— Inspired by Microsoft [AST 2909]

KAIST

