Software Development Cycle

A SW Development Framework for SW with High Assurance

Requirement System Design Implement- Testing Monitoring
analysis design analysis ation

Formal - i
. Formal Model Model Model- Runtime
require- : assisted onitoring
system analysis/ based
ment . pea: code . and
modeling verification testing

Spec. generatio checking

http://www.kaist.ac.kr/main2.html

SW Development and Testing Model
(a.k.a. V model)

Manual
Labor

2/42

A\

Requirements
Specification

L

Architectural
Design

L
Detailed
Design

Test

Y A

System
Test

B

Integration
Test

y N

Acceptance

e

Source

——— e ——

Code

Unit Test

4

Abstraction

Moonzoo Kim KAIST

Provable SW Lab

Foundation of Software Testing

* A pair of requirement spec and
e ~ system design spec

TP Spec '?G/Of@ g
Q. o 0 P
O 0
3. execution
Program > Test case

* Code that implements the system

* A pair of test input and expected test

specification and satisfies the
output for the input

requirements

Multiple targets for software testing

1. Does the test cases represent the requirement spec correctly?
— Scenario based testing (black-box testing)

2. Isthe design spec implemented as program correctly?
- Model-based testing (grey-box testing)

3. Does the program satisfy test cases correctly?
- Code-based testing (white-box testing)

2022-09-06

Black Box Testing

* A main goal of testing is to generate multiple test cases,
one of which may reveal a bug.

* Black box testing concerns only input/output of a target
program (i.e., ignore program code)
— Ex1. Requirement specification based testing
— Ex2. Random (input generation) testing

— Ex3. Category partitioning method
— Ex4. T-way testing

e Advantage of black box testing
— Intuitive and simple

— Requires little expertise on program/code analysis techniques

— Requires less effort compared to white-box testing
* cheaper but less effective

KAIST

SW
Reliability

Whitebox Testing

(Model ’
Checking

Concolic

Testing
earcn-

based
o) ..

ik i,
Req. based ; 211, B AE =0f AP
http.//dic.sten.or.kr/

[

SW Testing Cost

Requirement based Blackbox Testing VS
Logic based Whitebox Testing

Black Box Test White Box Test
Functional test based on the Logical analysis based on
Def.) P
requirement specification target source code
V'e.W User Developer
point
Bug Interface and/or performance
detection Logical problems
o problem
criteria
Verification &
Validation High (user) Low (testing)
level
Internal errors due to
Target bugs Observable external errors logic problem, uncovered
stmt.
o ction boundary Loon, control stracture | 212 FIFIEIEI0|E B2 004 Ly B
Technique ~ —orooony Parthon, oundary — toop, ConTol STUCI® hitp:/blog. skby.net/%EB%B8%94%EB%9E %9
value analysis, etc. test
B 9I%EB%B0%95%EC%8A4%A4-
detelé?ion Low Hiah %ED %85%8CHEC%8A4%A4%ED %8A4%B8-
ability g %ED%99%94%EC%9D %B4%ED %8A4%B8%
EB%B0%95%EC%8A4%A4-
of TC Small Large %ED%85%8C%EC%8A4%A4%ED %8A4%B8/
Application Beta test Alpha test

If a requirement is specified as an assert statement
requirement can be tested through whitebox texting

http://blog.skby.net/%EB%B8%94%EB%9E%99%EB%B0%95%EC%8A%A4-%ED%85%8C%EC%8A%A4%ED%8A%B8-%ED%99%94%EC%9D%B4%ED%8A%B8%EB%B0%95%EC%8A%A4-%ED%85%8C%EC%8A%A4%ED%8A%B8/

Example of Blackbox Testing Technique:

The Category-Partition Method for Specifying and
Generating Functional Tests
(Thomas J. Ostrand and Marc J.Balcer [CACM, 1988])

The original slides from Prof. Shmuel Sagiv’s lecture notes
msagiv(@post.tau.ac.il

mailto:%20msagiv@post.tau.ac.il

Content:

* |ntroduction.

* The category-partition method:
- characteristics.
- the method.
- examples.

* Other methods.

The goal of functional testing

* To find discrepancies between the actual beha
vior of the implemented system’s function and
the desired behavior as described in the syste
m’s functional specification.

How to achieve this goal ?

e Tests have to be execute for all the system fun
ctions.

* Tests have to be designed to maximize the cha
nces of finding errors in the software.

Functional test can be derived from 3 sour
ces:

1. The software specification.

2. Design information.

3. The code itself.

Partition - The standard approach

* The main idea is to partition the input domain
of function being tested, and then select test da
ta for each class of the partition.

 The problem of all the existing techniques is the
lack of systematic.

Input domain

1 2

Pl @ Py
LY 4

p3 p4

1 Z
@ 3 O p

A strategy for test case generation

1. Transform the system’s specification to be
more concise and structured.

2. Decompose the specification into functional unit
- to be tested independently.

3. Identify the parameters and environment
conditions.

A strategy for test case generation (cont)

4. Find categories that characterize each paramet
er and environment condition.

5. Every category should be partitioned into distin
ct choices .

U

formal test specification

A strategy for test case generation (cont)

6.test frames - set of choices, one from}

U each category.

test cases - test frame with specific

values for each choices.

U

test scripts - sequence of test cases.

Example

Command: find

Syntax: find <pattern> <file>

Function: The find command is used to locate one or

more instance of a given pattern in a text file. All lines in the file that contain the
pattern are written to standard output. A line containing the pattern is written
only once, regardless of the number of times the pattern occurs in it.

The pattern is any sequence of characters whose length does not exceed the ma
ximum length of a line in the file .To include a blank in the pattern, the entire p
attern must be enclosed in quotes (“).To include quotation mark in the pattern,
two quotes in a row (“ “) must be used.

Example:
find john myfile
display lines in the file myfile which contain john

find “john smith” in myfile

display lines in the file myfile which contain john smith

find “john”” smith” in myfile
display lines in the file myfile which contain john” smith

Categories

Parameters: Embedded quotes:
Pattern size: no embedded quotes
empty 3 one embedded quotes
4 single character several embedded quotes

many character

longer than any line in the file File name:
good file name

Quoting: 3 o file with this name

pattern is quoted
3 pattern is not quoted

pattern is improperly quoted Environments:
Number of occurrence of pattern in file:

omitted

Embedded blanks: 3 none
no embedded blank exactly one
3 one embedded blank more than one

several embedded blanks

Pattern occurrences on target line:

onc

2

more than one

Adding Constraints between Categories
to Reduce #of TC'S

Parameters:
Pattern size:
empty [property Empty]
single character [property NonEmpty]
many character [property NonEmpty |
longer than any line in the file [property NonEmpty |
Quoting:
pattern is quoted [property Quoted]
pattern is not quoted [if NonEmpty]
pattern is improperly quoted [if NonEmpty]
Embedded blanks:
no embedded blank [if NonEmpty]
one embedded blank [if NonEmpty and Quoted]

several embedded blanks [if NonEmpty and Quoted]

Embedded quotes:

no embedded quotes [if NonEmpty]

one embedded quotes [if NonEmpty]

several embedded quotes [if NonEmpty]
File name:

good file name
no file with this name
omitted

Environments:
Number of occurrence of pattern in file:

none [if NonEmpty]
exactly one [if NonEmpty] [property Match]
more than one [if NonEmpty] [property Match]

Pattern occurrences on target line:
one [if Match]
more than one [if Match]

Parameters:

Pattern size:
empty
single character
many character
longer than any line in the file

Quoting:
pattern is quoted
pattern is not quoted
pattern is improperly quoted

Embedded blanks:
no embedded blank
one embedded blank
several embedded blanks

[property Empty]
[property NonEmpty]
[property NonEmpty |
[error]

[property quoted]
[if NonEmpty]
[error]

[if NonEmpty]
[if NonEmpty and Quoted]
[if NonEmpty and Quoted]

Embedded quotes:

no embedded quotes [if NonEmpty]

one embedded quotes [if NonEmpty]

several embedded quotes [if NonEmpty]
File name:

good file name
no file with this name [error]

omitted

Environments:

Number of occurrence of pattern in file:

none [if NonEmpty]
exactly one [if NonEmpty] [property Match]
more than one [if NonEmpty] [property Match]

Pattern occurrences on target line:
one [if Match]
more than one [if Match]

White Box Testing (1/2)

White box testing concerns program code itself

Many different viewpoints on “program code”
— program code as a graph (i.e., structural coverage)
— program code as a set of logic formulas (i.e., logical coverage)

— program code as a set of execution paths (i.e.,
behavioral/dynamic coverage)

Advantages:

— More effective than blackbox testing in general

— Can measure the testing progress quantitatively based on
coverage achieved

Should be used with blackbox testing together for maximal
bug detection capability

— Blackbox testing and whitebox testing often explore different
segments of target program space

KAIST

White Box Testing (2/2)

* Coverage is a good predictor/indicator of testing

effectiveness

— Utilizing correlation between structural coverage and
fault detection ability

Fault
finding

/

K—e

coverage
metric A

coverage
metric B

coverage
\/\/—\ metric C

Coverage

Bug Observability/Detection Model:

Reachability, Infection, Propagation,
and Revelation (RIPR)

« Terminology - Graph coverage
- Test requirement satisfaction == Reachabillity
+ the fault in the code has to be reached

— Fault: static defectin a
program text (a.k.a a bug)

— Error: dynamic * Logic coverage
(intermediate) behavior - Test requirement satisfaction
that deviates from its == Reachability +Infection
(internal) intended goal - the fault has to put the program into an error state.
* A fault causes an error (i.e. - Note that a program is in an error state does not mean that
error |S a Symptom Of fault) |t W||| a|wayS prOduce the failure
— Failiure: dynamic - Mutation coverage
behavior which violates - Test requirement satisfaction
a ultimate goal of a == Reachability +Infection + Propagation
target program + the program needs to exhibit incorrect outputs
* Not every error leads to .
failure due to error * Furthermore, test oracle plays critical role to

masking or fault tolerance reveal failure of a target program (Revelation)

26

A2 X} 2HE 2| H|AE % Black Box Test

I

EE 235t)|
o o 1= E
(Equivalence
Partitioning

BARMEAYE

(Boundary
Value Analysis)

RF 0= 7Y
(Error Guessing)

el At
mE Pl
(Cause Effect
Graph)

SINESES
Eflo| E|lAg

SEHTHO
SIENS

AMOq
= O

]:[E—]EHO| olay 5|:|1|0|° HIAE HO|ATASE
CHlojE| AR Bt i

Y= U0 S ALECH FA 2ol of 27 2l =
250| M= g2 0180 f01 E|AE H0|AS dd

2P Al 7[-S0| AP 212 27
2 HOtE= YWY

Y= HIO|E 2F 27t =0
E°40f04 QRS LU

=2/ ZA0|LE AN Y2 ZAT 2SN, 3
O EHisi0] 82 ST HAEH0|AS Ty
AT otel ofztol AR

F

O, SEHE BN |=

/<) LA EEI0[E == 1004 ZF
http://blog.skby.net/%EB%BE% 94%EB%
9E%99%EB%BO% 95 %ECI%EAIAL-
%ED%85%8CHECKHEA%A4%EDIEA%B
8_
%ED%99%94%6EC%ID%B4%ED%EA%B
8%EB%B0%95%ECIHEA%AL-
%ED%85%8CHECIHEA%A4%EDIEA%B
&

http://blog.skby.net/%EB%B8%94%EB%9E%99%EB%B0%95%EC%8A%A4-%ED%85%8C%EC%8A%A4%ED%8A%B8-%ED%99%94%EC%9D%B4%ED%8A%B8%EB%B0%95%EC%8A%A4-%ED%85%8C%EC%8A%A4%ED%8A%B8/

Parameters:

Pattern size:
empty
single character
many character
longer than any line in the file

Quoting:
pattern is quoted
pattern is not quoted
pattern is improperly quoted

Embedded blanks:
no embedded blank
one embedded blank
several embedded blanks

[property Empty]
[property NonEmpty]
[property NonEmpty |
[error]

[property quoted]
[if NonEmpty]
[error]

[if NonEmpty]
[if NonEmpty and Quoted]
[if NonEmpty and Quoted]

Embedded quotes:

no embedded quotes [if NonEmpty]

one embedded quotes [if NonEmpty]

several embedded quotes [if NonEmpty] [single]
File name:

good file name
no file with this name [error]

omitted

Environments:

Number of occurrence of pattern in file:

none [if NonEmpty] [single]
exactly one [if NonEmpty] [property Match]
more than one [if NonEmpty] [property Match]

Pattern occurrences on target line:
one [if Match]
more than one [if Match] [single]

	Software Development Cycle
	SW Development and Testing Model �(a.k.a. V model)�
	Foundation of Software Testing
	Black Box Testing
	슬라이드 번호 5
	Requirement based Blackbox Testing VS Logic based Whitebox Testing
	Example of Blackbox Testing Technique:��The Category-Partition Method for Specifying and �Generating Functional Tests �(Thomas J. Ostrand and Marc J.Balcer [CACM,1988])
	Content:
	The goal of functional testing
	How to achieve this goal ?
	Functional test can be derived from 3 sources:
	Partition - The standard approach
	A strategy for test case generation
	A strategy for test case generation (cont)
	A strategy for test case generation (cont)
	Example
	슬라이드 번호 17
	Categories
	Adding Constraints between Categories�to Reduce #of TC’S
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	White Box Testing (1/2)
	White Box Testing (2/2)
	Bug Observability/Detection Model: �Reachability, Infection, Propagation, and Revelation (RIPR)
	슬라이드 번호 26
	사용자 관점의 테스트 방법, Black Box Test
	슬라이드 번호 28
	슬라이드 번호 29

