Homework #1
1. (50 points) Answer the following questions about the graph I.

(a) Draw the graph using DOT language

A. Youcanuse nullO [shape=point] todraw an arrow to an initial node

B. You can visualize your graph using http://www.webgraphviz.com/ or graphviz

utilities

(b) List all of the du-paths with respect to x. (Note: Include all du-paths, even those that are
subpaths of some other du-path).
(c) For each test path, determine which du-paths that test path du-tours (i.e., satisfying the
def-clear requirement). For this part of the exercise, you should consider both direct touring
and sidetrips. Hint: A table is a convenient format for describing this relationship.
(d) List a minimal test set that satisfies all defs coverage with respect to x. (Direct tours only.)
Use the given test paths.
(e) List a minimal test set that satisfies all uses coverage with respect to x. (Direct tours only.)
Use the given test paths.
(F) List a minimal test set that satisfies all du-paths coverage with respect to x. (Direct tours
only.) Use the given test paths.

Graph I.
N=1{0,1, 2 3,4, 5 6, 7}
Ny = {0}
Ny = {7}

E={(0,1), (1,2), (1,7), (2,3), (2,4), (3,2),
def(0) = def(3) = use(5) = use(7) = {x}

Test Paths:
tl =]
2 = |
t3 = |
td =]
th =

6 = |

=
“'.
-1

=1

[=N=N=N=N=y=

R
DR
O
1 o o
S e

N A

[e

-t =
=
=1

2. (50 points) Use the following method printPrimes() which prints n small prime numbers with
a given input n for questions a-e below. Answer the question based on the given control
flow graph.

(a) Consider test cases t1:(n = 3) and t2:(n = 5). Although these tour the same prime paths in
printPrimes(), they do not necessarily find the same faults. Design a simple fault that t2
would be more likely to discover than t1 would (note that the fault should not change the
control flow graph).

(b) For printPrimes(), find a test case such that the corresponding test path visits the edge
that connects the beginning of the whi le statement to the second for statement without
going through the body of the while loop.

(c) Enumerate the test requirements for Node Coverage, Edge Coverage, and Prime Path
Coverage for the graph for printPrimes(). Please write down the test requirements for prime
path in an increasing order of a size of test requirements.

(d) List a set of test paths that achieve Node Coverage but not Edge Coverage on the graph.
(e) List a set of test paths that achieve Edge Coverage but not Prime Path Coverage on the
graph.

http://www.webgraphviz.com/
http://www.webgraphviz.com/

W~ OO W N

/** e sie 3 o o o e S o S o 3K s s sk o ok ok s sl Sk e sk S i S ol o S Sl S SR SRR sl sl i ol o ok sk ok sl i s ok ok R R s ke sk ok ok
*# Finds and prints n prime integers
* Jeff 0ffutt, Spring 2003

o o ok sk 3ok o ok oK oK oK ok o 3ok o6 ok ok ok ok ok ok ok ook ok ok ok ok ok ok ok sk kR ok ok ok kok sk ok Rk ok ok ok ok ok ok ok kok ok k)

private static void printPrimes (int n)

{
int curPrime; // Value currently considered for primeness
int numPrimes; // Number of primes found so far.
boolean isPrime; // Is curPrime prime?

int [] primes = new int [MAXPRIMES]; // The list of prime numbers.

// Initialize 2 into the list of primes.
primes [0] = 2;

numPrimes = 1;
curPrime = 2;

while (numPrimes < n)
{

curPrime++; // next number to consider
isPrime = true;
for (int i = 0; i <= numPrimes-1; i++)
{ // for each previous prime.
if (isDivisible (primes[i], curPrime))
{ // Found a divisor, curPrime is not prime.
isPrime = false;
break; // out of loop through primes.
}
+
if (isPrime)
{ // save it!
primes [numPrimes] = curPrime;
numPrimes++;
}
} // End while

// Print all the primes out.
for (int i = 0; i <= numPrimes-1; i++)
{
System.out.println ("Prime: " + primes([i]);
}
} // end printPrimes

n is initialized
primes[0] = 2
numPrimes = 1
curPrime =2

Primes < n

curPrime++
[2 | isPrime=true

\" 4 i=o0

numprimest1
|

12 Jprint |
AN ‘| |
|

/ isDi ible(primes[i], curPrime)

| NOT isDipisible()
5\ isPrime = false

]
|
' i > numPrimes-1
|
o break

&

primes[numPrimes] = curPrime
numPrimes++

