
.
CS Dept. KAIST1

Software Development Cycle

A SW Development Framework for SW with High Assurance

Formal
require-

ment
Spec.

Formal
system

modeling

Model
analysis/

verification

Model-
assisted

code
generation

Model-
based
testing

Runtime
monitoring

and
checking

System
design

Requirement
analysis

Design
analysis

Implement-
ation

Testing Monitoring

http://www.kaist.ac.kr/main2.html
http://www.kaist.ac.kr/main2.html

SW Development and Testing Model
(a.k.a. V model)

Moonzoo Kim
Provable SW Lab/422

Manual
Labor

Abstraction

Foundation of Software Testing

Multiple targets for software testing
1. Does the test cases represent the requirement spec correctly?

 Scenario based testing (black-box testing)
2. Is the design spec implemented as program correctly?

Model-based testing (grey-box testing)
3. Does the program satisfy test cases correctly?

 Code-based testing (white-box testing)

2017-09-12
3

Spec

Program Test case

• A pair of requirement spec and
system design spec

3. execution

• A pair of test input and expected test
output for the input

• Code that implements the system
specification and satisfies the
requirements

Test
oracle

Black Box Testing

Moonzoo Kim /114

• A main goal of testing is to generate multiple test cases,
one of which may reveal a bug.

• Black box testing concerns only input/output of a target
program (i.e., ignore program code)
– Ex1. Requirement specification based testing
– Ex2. Random (input generation) testing
– Ex3. Category partitioning method
– Ex4. T-way testing

• Advantage of black box testing
– Intuitive and simple
– Requires little expertise on program/code analysis techniques
– Requires less effort compared to white-box testing

• cheaper but less effective

Example of Blackbox Testing Techniq
ue:

The Category-Partition Method for Specifying and
Generating Functional Tests (Thomas J. Ostrand a

nd Marc J.Balcer
[CACM ,1988])

Slides from Prof. Shmuel Sagiv’s lecture notes
msagiv@post.tau.ac.il

mailto:%20msagiv@post.tau.ac.il

Content:
• Introduction.
• The category-partition method:

- characteristics.
- the method.
- examples.

• Other methods.

The goal of functional testing

• To find discrepancies between the actual beha
vior of the implemented system’s function and
the desired behavior as described in the syste
m’s functional specification.

How to achieve this goal ?

• Tests have to be execute for all the system fun
ctions.

• Tests have to be designed to maximize the cha
nces of finding errors in the software.

Functional test can be derived from 3 sour
ces:
1. The software specification.

2. Design information.

3. The code itself.

Partition - The standard approach

• The main idea is to partition the input domai
n of function being tested, and then select tes
t data for each class of the partition.

• The problem of all the existing techniques is th
e lack of systematic.

The category partition method - main c
haracteristics:

• The test specification :
- is concise and uniform representation of

the test information for a function.
- it can be easily modified.
- it gives the tester a logical way to control

the volume of tests.

The category partition method - main c
haracteristics (cont.):

• Using generator tool help us :
- to provides an automated way to produce

thorough tests.
- to avoid impossible or undesirable tests.

• The method emphasizes both the specification
coverage and the error detection aspects of te
sting.

A strategy for test case generation

1. Transform the system’s specification to be
more concise and structured.

2. Decompose the specification into functional un
it - to be tested independently.

3. Identify the parameters and environment
conditions.

A strategy for test case generation (cont
)

4. Find categories that characterize each paramet
er and environment condition.

5. Every category should be partitioned into distin
ct choices .

⇓

formal test specification

A strategy for test case generation (cont
)

6.

⇓

⇓

test frames - set of choices, one from

each category.

test cases - test frame with specific

values for each choices.

test scripts - sequence of test cases.

?

Example
Command: find

Syntax: find <pattern> <file>

Function: The find command is used to locate one or

more instance of a given pattern in a text file. All lines in the file that contain the
pattern are written to standard output. A line containing the pattern is written
only once, regardless of the number of times the pattern occurs in it.

The pattern is any sequence of characters whose length does not exceed the ma
ximum length of a line in the file .To include a blank in the pattern, the entire p
attern must be enclosed in quotes (“).To include quotation mark in the pattern ,
two quotes in a row (“ “) must be used.

Example:
find john myfile

display lines in the file myfile which contain john

find “john smith” in myfile
display lines in the file myfile which contain john smith

find “john”” smith” in myfile
display lines in the file myfile which contain john” smith

Categories
Parameters:

Pattern size:
empty
single character
many character
longer than any line in the file

Quoting:
pattern is quoted

pattern is not quoted
pattern is improperly quoted

Embedded blanks:
no embedded blank

one embedded blank
several embedded blanks

Embedded quotes:
no embedded quotes

one embedded quotes
several embedded quotes

File name:
good file name
no file with this name
omitted

Environments:
Number of occurrence of pattern in file:

none
exactly one
more than one

Pattern occurrences on target line:
one
more than one

Total Tests frames:
1944 (=4*3*3*3*3*3*2)

Test Frame - Example:

Pattern size : empty
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : no embedded quote
File name : good file name
Number of occurrence of pattern in file : none
Pattern occurrence on target line : one

Adding Constraints to Reduce #of TC’S

Parameters:
Pattern size:

empty [property Empty]
single character [property NonEmpty]
many character [property NonEmpty]

longer than any line in the file [property NonEmpty]

Quoting:
pattern is quoted [property Quoted]

pattern is not quoted [if NonEmpty]
pattern is improperly quoted [if NonEmpty]

Embedded blanks:
no embedded blank [if NonEmpty]

one embedded blank [if NonEmpty and Quoted]
several embedded blanks [if NonEmpty and Quoted]

Embedded quotes:
no embedded quotes [if NonEmpty]

one embedded quotes [if NonEmpty]
several embedded quotes [if NonEmpty]

File name:
good file name
no file with this name
omitted

Environments:
Number of occurrence of pattern in file:

none [if NonEmpty]
exactly one [if NonEmpty] [property Match]
more than one [if NonEmpty] [property Match]

Pattern occurrences on target line:
one [if Match]
more than one [if Match]

Total Tests frames:
678

Parameters:
Pattern size:

empty [property Empty]
single character [property NonEmpty]
many character [property NonEmpty]

longer than any line in the file [error]

Quoting:
pattern is quoted [property quoted]

pattern is not quoted [if NonEmpty]
pattern is improperly quoted [error]

Embedded blanks:
no embedded blank [if NonEmpty]

one embedded blank [if NonEmpty and Quoted]
several embedded blanks [if NonEmpty and Quoted]

Embedded quotes:
no embedded quotes [if NonEmpty]

one embedded quotes [if NonEmpty]
several embedded quotes [if NonEmpty]

File name:
good file name
no file with this name [error]
omitted

Environments:
Number of occurrence of pattern in file:

none [if NonEmpty]

exactly one [if NonEmpty] [property Match]

more than one [if NonEmpty] [property Match]

Pattern occurrences on target line:
one [if Match]
more than one [if Match]

Total Tests frames:
125

Total Tests frames:
40

[single]

[single]

[single]

Test Frame :
Test case 28 : (Key = 3.1.3.2.1.2.1.)

Pattern size : many character
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : one embedded quote
File name : good file name
Number of occurrence of pattern in file : exactly none
Pattern occurrence on target line : one

Command to set up the test:
copy/testing/sources/case_28 testfile

find command to perform the test:
find “has” “one quote” testfile

Instruction for checking the test :
the following line should be display:

This line has “ one quote on it

White Box Testing (1/2)

Moonzoo Kim /1125

• White box testing concerns program code itself
• Many different viewpoints on “program code”

– program code as a graph (i.e., structural coverage)
– program code as a set of logic formulas (i.e., logical coverage)
– program code as a set of execution paths (i.e.,

behavioral/dynamic coverage)
• Advantages:

– More effective than blackbox testing in general
– Can measure the testing progress quantitatively based on

coverage achieved
• Should be used with blackbox testing together for maximal

bug detection capability
– Blackbox testing and whitebox testing often explore different

segments of target program space

White Box Testing (2/2)

• Coverage is a good predictor/indicator of testing
effectiveness
– Utilizing correlation between structural coverage and

fault detection ability

Fault
finding

Coverage

coverage
metric B

coverage
metric C

coverage
metric A

	Software Development Cycle
	SW Development and Testing Model �(a.k.a. V model)�
	Foundation of Software Testing
	Black Box Testing
	Example of Blackbox Testing Technique:��The Category-Partition Method for Specifying and Generating Functional Tests (Thomas J. Ostrand and Marc J.Balcer� [CACM ,1988])
	Content:
	The goal of functional testing
	How to achieve this goal ?
	Functional test can be derived from 3 sources:
	Partition - The standard approach
	The category partition method - main characteristics:
	The category partition method - main characteristics (cont.):
	A strategy for test case generation
	A strategy for test case generation (cont)
	A strategy for test case generation (cont)
	Example
	슬라이드 번호 17
	Categories
	Test Frame - Example:
	Adding Constraints to Reduce #of TC’S
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	Test Frame :
	White Box Testing (1/2)
	White Box Testing (2/2)

