GNU gcov (1/4) [from Wikipedia]

e QCOV is a source code coverage analysis and statement-
by-statement profiling tool.

e gCOV generates exact counts of the number of times
each statement in a program has been executed

e gcovV does not produce any time-based data (you
should use gproT for this purpose) and works only on
code compiled with the GCC suite.

GNU gcov (2/4)

To use gcov, each source file should be compiled with
-fprofile-arcs and —ftest-coverage, which
generates a . gcno file that is a graph file of the source file.

After the instrumented target program completes its
execution, execution statistics is recorded ina .gcda file.

gcov creates a human readable logfile .gcov from a
binary . gcda file, which indicates how many times each line
of a source file has executed.

gcov[b] [-c] [-v] [-n] [-1] [-f] [-0 directory] sourcefile

-a: Write individual execution counts for every basic block.
— -b: Write branch frequencies to the output file
— -c: Write branch frequencies as the number of branches taken
— -f: Output summaries for each function in addition to the file level summary.

— -0 The directory where the object files live. Gcov will search for ".bb', ".bbg', and ".da’ files in this
directory

GNU gcov (3/4)

« For example, if you measure
coverage of example.c,

[moonzoo@verifier gcov]$ |
example.c

[moonzoo@verifier gcov]$ gcc -fprofile-arcs
-ftest-coverage example.c

[moonzoo@verifier gcov]$ a.out 5

i=5

j=2

[moonzoo@verifier gcov]$ gcov -b example.c
File 'example.c’

Lines executed:78.57% of 14

Branches executed:100.00% of 10

Taken at least once:50.00% of 10

Calls executed:60.00% of 5
example.c:creating 'example.c.gcov'

1 #include <stdio.h>
2 int main(int argc, char **argv){

3 int i=0,=0;

4 if (argc < 2) {

5 printf("Usage:.. #Wn");exit(-1);}
6 | = atoi(argv[1]);

7 printf("i=%dWn",i);

8

9 if(i==0)

10]=0;

11 else {

12 if i ==1)

13 =1,

14 if(>1&&i < 10)
15]=2;

16}

17 printf("j=%d¥%n"));

18 }

GNU gcov (4/4)

1 #include <stdio.h>
2 int main(int argc, char **argv){

SV~ UTA W

11
12
13
14
15
16
17
18 }

int i=0,)=0;
if (argc < 2) {

printf("Usage:... Wn"),exit(-1);}
I = atoi(argv[1]),
printf("i=%dWn",i);

if(i == 0)
J=0;

else {
ﬁ(|:: 1)

j=
if (1 > 1 &80 < 10)
J=2;

}
printf("j=%dWn"));

Note that a "branch" for gcov is anything that

Executed
function
info

Not executed —

Call info

Non-executable
statement N

causes the code to execute non-straight line

Conditional statement with a compound
condition (i.e., a Boolean formula containing
&& or | |) has more than 2 branches

Branch info for
each condition

////’oranc

-Source:example.c
-Graph: example _gcno
-Data:example_gcda
Runs:1

-Programs:1
-#1nCclude <stdig.h>

HOOOOO

— b function main called 1 returned

100% blocks executed 71%
1: 2:1nt main(int argc,

t 1=0,)=0;
int i=0,j 3y ¢

1 4'
branch 0 taken O% gfalfthrough)
~branch 1 taken
HHAAH. 51

char **argv){

printf("Usage:.\n"");exit(-1);}
—pcall 0 néver exécuted
cal 1 never executed

1: 6: —at0|(argv[l])
call 2 retugned 100%
printf""1=%d\n"",1);
call 0 returned’ 100%

—>_8

b cater 0u (Hbiinraudd
branch 0 taken O% Sfa Ithroug)
branch 1 taken

HHHHHE 10: J=0;

— 11: else

1: 12: (i 1)
branch 0 taken O% gfallthrough)
pranch 1 taken

T - 13: {

1: 14: g 1>1&&1<10)
branch 0 taken 100% (fal through)
branch 1 taken 0%
branch 2 taken 100% (fallthrough)

h 3 taken 0%)
1: 15: J=2;
—: 16: }
i tf("l:/d\lz:')
rin =%d\n"", J);
gall 6 returnéd 100%
1: 18:}

"“Branches executed” vs.
"Taken at least once”

* For measuring branch coverage, be
careful to use “Taken at least once”, not
“Branches executed”

Ex \ execution

Branch executed: 100%
Taken at least once: 50%

	GNU gcov (1/4) [from Wikipedia]
	GNU gcov (2/4)
	GNU gcov (3/4)
	GNU gcov (4/4)
	“Branches executed” vs. �“Taken at least once”

