
Software Model Checking

Moonzoo Kim

Operational Semantics of Software

• A system execution σ is
a sequence of states
s0s1…
– A state has an

environment ρs:Var-> Val

• A system has its
semantics as a set of
system executions

2

x:0,y:0

x:0,y:1

x:1,y:2

x:1,y:3

x:2,y:4

s0

s1

s2

s3

s4

x:5,y:1

x:5,y:2

x:5,y:3

x:5,y:4

s11

s12

s13

s14

x:7,y:3

x:7,y:4

s21

s22

발표자
프레젠테이션 노트
We view the program execution as a sequence of states. A state consists of variable environment rho and time stamp t. This viewpoint states that information of program remains between two consecutive states.
Furthermore, a state in the execution indicates that something happens at the time instant corresponding to the state.

As the execution has more states, more computational resource is required to analyze the execution. Therefore, to reduce the overhead, if possible, we need to abstract out unnecessary states in terms of properties. For example, for property p, we don’t need variable x. Thus removing states …
Furthermore, not every value of y is important because only s0 and s6 affects the property. Thus, we might want to remove states s1-s5. We will discuss this abstraction in more detail later

Example
active type A() {
byte x;
again:

x=x+1;;
goto again;

}

3

x:0

x:1

x:2

x:255

active type A() {
byte x;
again:

x=x+1;;
goto again;

}

active type B() {
byte y;
again:

y++;
goto again;

}

x:0,y:0

x:1,y:0

x:2,y:0

x:255,y:0

x:0,y:1

x:1,y:1

x:0,y:255

x:1,y:255

x:255,y:255

x:2,y:1 x:2,y:255

Note that model checking analyzes ALL possible execution scenarios
while testing analyzes SOME execution scenarios

Pros and Cons of Model Checking
• Pros

– Fully automated and provide complete coverage
– Concrete counter examples
– Full control over every detail of system behavior

• Highly effective for analyzing
– embedded software
– multi-threaded systems

• Cons
– State explosion problem
– An abstracted model may not fully reflect a real

system
– Needs to use a specialized modeling language

• Modeling languages are similar to programming languages,
but simpler and clearer

4

Companies Working on Model Checking

5

http://www.google.co.kr/imgres?imgurl=http://www.grupogeek.com/wp-content/uploads/2007/05/microsoft-logo.jpg&imgrefurl=http://lawiscool.com/2007/10/&h=360&w=450&sz=11&tbnid=j_WDRg2Y5x8J::&tbnh=102&tbnw=127&prev=/images?q=microsoft&hl=ko&usg=__w1mmGrXL0Ac5il_fo7xQOnH9_1M=&sa=X&oi=image_result&resnum=102&ct=image&cd=1
http://www.mathworks.com/
http://www.mathworks.com/
http://www.ibm.com/kr/ko/
http://kr.sun.com/
http://kr.sun.com/
http://www.mathworks.com/
http://www.cadence.com/us/pages/default.aspx
http://www.samsung.com/sec/index.html

Model Checking History

6/24

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000

Example. Sort (1/2)

• Suppose that we have an array of 5 elements each of
which is 1 byte long
– unsigned char a[5];

• We wants to verify sort.c works correctly
– main() { sort(); assert(a[0]<= a[1]<= a[2]<=a[3]<=a[4]);}

• Hash table based explicit model checker (ex. Spin)
generates at least 240 (= 1012 = 1 Tera) states

• 1 Tera states x 1 byte = 1 Tera byte memory required, no way…

• Binary Decision Diagram (BDD) based symbolic model
checker (ex. NuSMV) takes 100 MB in 100 sec on Intel
Xeon 5160 3Ghz machine

7/24

9 14 2 200 64

Example. Sort (2/2)

8/24

1. #include <stdio.h>
2. #define N 20
3. int main(){//Selection sort that selects the smallest # first
4. unsigned int data[N], i, j, tmp;
5. /* Assign random values to the array*/
6. for (i=0; i<N; i++){
7. data[i] = nondet_int();
8. }
9. /* It misses the last element, i.e., data[N-1]*/
10. for (i=0; i<N-1; i++)
11. for (j=i+1; j<N-1; j++)
12. if (data[i] > data[j]){
13. tmp = data[i];
14. data[i] = data[j];
15. data[j] = tmp;
16. }
17. /* Check the array is sorted */
18. for (i=0; i<N-1; i++){
19. assert(data[i] <= data[i+1]);
20. }
21. }

•SAT-based Bounded Model Checker
•Total 161,311 CNF clause with 41,646
boolean propositional variables
•Theoretically, 241,646 choices should be
evaluated!!!

N Exec time
(CBMC 4.6 i5
3.4Ghz)

Mem # of var # of clause

20 2 sec 25M 41,646 161,311

30 41 sec 167M 92,961 363,586

40 156 sec 400M 165,826 648,811

50 430 sec 686M 261,141 1,018,486

100 14 hours 5.9 GB 1,060,216 4,108,876

1000 33 hours OOM
(>64GB)

? ?

Overview of SAT-based Bounded
Model Checking

Requirements C Program

Formal Requirement
Properties

(Φ Ω)

Model Checker

↓
Abstract Model

↓

Okay

Satisfied
Not satisfied

Counter
example

Requirements

C Program
Formal Requirement
Properties in C
(ex. assert(x < a[i]);)

Translation to
SAT formula

↓

No bug

The formula is
unsatisfiable

The formule is
satisfiable

Counter example

SAT Solver

SAT Basics (1/3)

• SAT = Satisfiability
= Propositional Satisfiability

• NP-Complete problem
– We can use SAT solver for many NP-complete

problems
• Hamiltonian path
• 3 coloring problem
• Traveling sales man’s problem

• Recent interest as a verification engine

10/24

SAT
problem

Propositional
Formula

SAT

UNSAT

SAT Basics (2/3)

• A set of propositional variables and Conjunctive
Normal Form (CNF) clauses involving variables
– (x1 v x2’ v x3) ∧ (x2 v x1’ v x4)
– x1, x2, x3 and x4 are variables (true or false)

• Literals: Variable and its negation
– x1 and x1’

• A clause is satisfied if one of the literals is true
– x1=true satisfies clause 1
– x1=false satisfies clause 2

• Solution: An assignment that satisfies all clauses

11/24

SAT Basics (3/3)
• DIMACS SAT Format

– Ex. (x1 ∨ x2’ ∨ x3)

∧ (x2 ∨ x1’ ∨ x4)

p cnf 4 2
1 -2 3 0
2 -1 4 0

º x1 x2 x3 x4 f

º 1 T T T T T

º 2 T T T F T

º 3 T T F T T

º 4 T T F F T

º 5 T F T T T

º 6 T F T F F

º 7 T F F T T

º 8 T F F F F

º 9 F T T T T

º 10 F T T F T

º 11 F T F T F

º 12 F T F F F

º 13 F F T T T

º 14 F F T F T

º 15 F F F T T

º 16 F F F F T

Model/
solution

Model Checking as a SAT problem (1/6)

• Control-flow simplification
– All side effect are removed

• i++ => i=i+1;

– Control flow is made explicit
• continue, break => goto

– Loop simplification
• for(;;), do {…} while() => while()

13/24

Model Checking as a SAT problem (2/6)

• Unwinding Loop

14/24

x=0;
if (x < 2) {
y=y+x;
x=x+1;;
if (x < 2) {
y=y+x;
x=x+1;;
if (x < 2) {
y=y+x;
x=x+1;;

}}}
/*Unwinding assertion*/
assert (! (x < 2))

Unwinding the loop 3 times
x=0;
while(x < 2){
y=y+x;
x=x+1;;

}

Original code

x=0;
if (x < 2) {
y=y+x;
x=x+1;;

}
/* Unwinding assertion */
assert(!(x < 2))

Unwinding the loop 1 times

x=0;
if (x < 2) {
y=y+x;
x=x+1;;
if (x < 2) {
y=y+x;
x=x+1;;

}}
/* Unwinding assertion */
assert(!(x < 2))

Unwinding the loop 2 times

/*# of loop iter. is constant*/
for(i=0,j=0; i < 5; i++) {

j=j+i;
}

/*# of loop iter. is constant*/
for(i=0,j=0; j < 10; i++) {

j=j+i;
}

/* Complex but still constant
of loop iterations */
for(i=0; i < 5; i++) {

for(j=i; j < 5;j++) {
for(k= i+j; k < 5; k++) {

m += i+j+k;
}

}
}

Ex. Constant # of Loop Iterations

/* # of loop iter. Is unknown */
for(i=0,j=0; i^6-4*i^5 -17*i^4 != 9604 ; i++) {

j=j+i;
}

/* x: unsigned integer input
It iterates 0 to 232-1 times*/

for(i=0,j=0; i < x; i++) {
j=j+i;

}

/* j: unsigned integer input */
for(i=0; j < 10; i++) {

j=j+i;
}

Ex. Variable # of Loop Iterations
Depending on Input

/* a: unsigned integer array input */
for(i=0,sum=0; (i<2) || (sum<10) ;i++) {

sum += a[i];
}
/* Minimum # of iteration? Maximum # of iteration? */

Model Checking as a SAT problem (3/6)

• From C Code to SAT Formula

17/24

x=x+y;
if (x!=1)
x=2;

else
x=x+1;

x1==x0+y0;
if (x1!=1)

x2==2;
else

x3==x1+1;

P ≡ x1==x0+y0
∧ x2==2
∧ x3==x1+1

Note that solutions/models of P represent feasible execution scenarios of the original code

Ex1. W/ initial values x=1 and y=0, x becomes 2 at the end.
See that P is true w/ the following corresponding solution (x0,x1,x2,x3,y0) = (1,1,2,2,0)

Ex2. See that P is false w/ (x0,x1,x2,x3,y0) = (1,1,2,3,0).
Note that no corresponding execution scenario of the original code

Original code Static single assignment (SSA)

Generate SSA constraint
of the original code:

Every feasible execution
scenario of the original code

has its corresponding
solution of P and vice versa.

Model Checking as a SAT problem (4/6)

• From C Code to SAT Formula

18/24

x=x+y;
if (x!=1)
x=2;

else
x=x+1;

assert(x<=3);

x1==x0+y0;
if (x1!=1)

x2==2;
else

x3==x1+1;
x4==(x1!=1)?x2:x3;
assert(x4<=3);

P ≡ x1==x0+y0 ∧ x2==2 ∧ x3==x1+1 ∧ ((x1!=1∧x4==x2)∨(x1==1∧x4==x3))
A ≡ x4 <= 3

Check if P ∧ ¬ A is satisfiable.
- If it is satisfiable, the assertion is violated (i.e., the program is buggy w.r.t A)
- If it is unsatisfiable, the assertion is never violated (i.e., program is correct w.r.t. A)

Question: Why not P ∧ A but P ∧ ¬ A?

Original code Convert to static single assignment (SSA)

Generate constraints

σ1 σ2 σn

fex = σ1∨σ2…∨σn

σn

α1

β1 β2

σ1=α1∧β2 σ2=α1∧β2

Note that a whole execution tree (i.e. all target program executions) can be
represented as a single SSA formulae.
- A whole execution tree can be represented as a disjunction of SSA formulas

each of which represents an execution (i.e. fex = ∨ σi) since ∨ represents
different worlds/scenarios.
- Each execution can be represented as a SSA formula (saying σi)
- Each execution can be represented using ∧ and ∨ for corresponding

execution segments

x1==x0+y0
∧ x2==2
∧ x3==x1+1

x1 !=1
∧ x4==x2

x1==1
∧ x4==x3

1:x=x+y;
2:if (x!=1)
3: x=2;
4:else
5: x=x+1;;
6:assert(x<=3);

x1==x0+y0;
if (x1!=1)

x2==2;
else

x3==x1+1;
x4==(x1!=1)?x2:x3;
assert(x4<=3);

P ≡ x1==x0+y0 ∧ x2==2 ∧ x3==x1+1 ∧ ((x1!=1∧x4==x2)∨(x1==1∧x4==x3))
A ≡ x4 <= 3

Observations on the code
1. An execution scenario starting with x==1
and y==0 satisfies the assert
2. The code is correct (i.e., no bug w.r.t. A)

-case 1: x==1 at line 2=> x==2 at line 6
-case 2: x!=1 at line 2 => x==2 at line 6

Original code Convert to static single assignment (SSA)

Observations on the P
1. A solution of P which assigns every free variable

with a value and makes P true satisfies A
- ex. (x0:1,x1:1,x2:2,x3:2,x4:2,y0:0)

2. Every solution of P represents a feasible
execution scenario

3. P ∧ ¬A is unsatisfiable because every
solution has x4 as 2

Model Checking as a SAT problem (5/6)

Model Checking as a SAT problem (6/6)

21/24

Assume that x,y,z are three bits positive integers represented by
propositions x0x1x2, y0y1y2, z0z1z2
P ≡ z=x+y ≡ (z0$ (x0©y0)©((x1Æy1) Ç (((x1©y1)Æ(x2Æy2)))

Æ(z1$ (x1©y1)©(x2Æy2))
Æ (z2$ (x2©y2))

Finally, P ∧ ¬ A is converted to Boolean logic using a bit vector
representation for the integer variables y0,x0,x1,x2,x3,x4
• Example of arithmetic encoding into pure propositional formula

Example

22/24

/* Assume that x and y are 2 bit
unsigned integers */
/* Also assume that x+y <= 3 */
void f(unsigned int y) {

unsigned int x=1;
x=x+y;
if (x==2)

x+=1;
else

x=2;
assert(x ==2);

}

Warning: # of Unwinding Loop (1/2)
1:void f(unsigned int n) { // n can be any number
2: int i,x;
3: for(i=0; i < 2+ n%7; i++) {
4: x = x/ (i-5);// div-by-0 bug
5: }//assert(!(i<2+n%7)) or __CPROVER_assume(!(i<2+n%7))
6:}

• Q: What is the maximum # of iteration?
– A: nmax=8

• What will happen if you unwind the loop more than nmax times?
– What will happen if you unwind the loop less than nmax times?

• What if w/ unwinding assertion assert(!(i <2+n%7)) (default behavior of CBMC)?
• What if w/o unwinding assertion?
• What if w/ __cprover_assume((!(i <2+n%7))), which is the case w/ –no-unwinding-

assertions ?

• What is the minimum # of iterations?
– A: nmin =2
– What will happen if you unwind the loop less than nmin times w/

–no-unwinding-assertions ?

σ1
σ2 σn

--unwind 8
--unwind 6

--unwind 4
--unwind 1 ???

Target
system
exec.

scenarios
to analyze

1:void f(unsigned int n) {
2: int i,x;
3: for(i=0; i < 2+ n%7; i++) {
4: x = x/ (i-5);// div-by-0 bug
5: }//assert(!(i<2+n%7)) or __CPROVER_assume(!(i<2+n%7))
6:}

Warning: # of Unwinding Loop (2/2)

Note that a bug usually causes a failure
even in a small # of loop iteration
because a static fault often affects all
dynamic execution scenarios
(a.k.a., small world hypothesis in model
checking)

Model checking (MC) v.s.
Bounded model checking (BMC)

• Target program is finite.
• But its execution is infinite
• MC targets to verify infinite execution

– Fixed point computation
– Liveness property check : <> f

• Eventually, some good thing happens
• Starvation freedom, fairness, etc

• BMC targets to verify finite execution only
– No loop anymore in the target program
– Subset of the safety property (practically useful

properties can still be checked)
• assert() statement

25/24

a

b c

a.b.c.a.b.c.a.b.c…

C Bounded Model Checker

• Targeting arbitrary ANSI-C programs
– Bit vector operators (>>, <<, |, &)
– Array
– Pointer arithmetic
– Dynamic memory allocation
– Floating #

• Can check
– Array bound checks (i.e., buffer overflow)
– Division by 0
– Pointer checks (i.e., NULL pointer dereference)
– Arithmetic overflow/underflow
– User defined assert(cond)

• Handles function calls using inlining
• Unwinds the loops a fixed number of times
• By default, CBMC 5.8 (and later) inserts loop unwinding assumption

to avoid unsound analysis results

26/24

발표자
프레젠테이션 노트
cbmc --unwindset "1:1,2:1,3:1" sort.c

CBMC Options (cbmc --help)

• --function <f>
– Set a target function to model check (default: main)

• --unwind n
– Unwinding all loops n-1 times and recursive functions n times

• –-unwindset c::f.0:64,c::main.1:64,max_heapify:3
– Unwinding the first loop in f 63 times, the second loop in main 63 times, and max_heapify (a

recursive function) 3 times

• --unwinding-assertions
– Convert unwinding assumption __CPROVER_assume(!(i<10)) into assert(!(i<10))

• --show-loops
– Show loop ids which are used in –unwindset

• --bounds-check, --div-by-zero-check, --pointer-check
– Check corresponding crash bugs

• --memory-leak-check, --signed-overflow-check, --unsigned-

overflow-check
– Check corresponding abnormal behaviors

27/24

발표자
프레젠테이션 노트
cbmc --unwindset "1:1,2:1,3:1" sort.c

CBMC Options (cbmc --help)
• --cover-assertions

– Checks if a user given assertion is reachable. Useful to check if you use __CPROVER_assume() incorrectly
or unwind a loop less than minimum number of loop iteration

• --dimacs
• Show a generated Boolean SAT formula in DIMACS format

• --trace (for cbmc 5.x)
– To generate a counter example

• --unwinding-assertions (for cbmc 5.x)
– To enable unwinding assertion

• Example:
– cbmc --bounds-check –-unwindset c::f.0:64,c::main.1:64,max_heapify:3 --

-–no-unwinding-assertions max-heap.c

28/24

발표자
프레젠테이션 노트
cbmc --unwindset "1:1,2:1,3:1" sort.c

Procedure of Software Model
Checking in Practice

0. With a given C program
(e.g.,int bin-search(int a[],int size_a, int key))

1. Define a requirement (i.e., assert(i>=0 -> a[i]== key)
where i is a return value of bin-search())

2. Model an environment/input space of the target program, which
is non-deterministic

– Ex1. pre-condition of bin-search() such as input constraints
– Ex2. For a target client program P, a server program should be modeled as

an environment of P

3. Tuning model checking parameters (i.e. loop bounds, etc.) 29/24

Target
program

Environ-
ment

Interaction

A program execution can be viewed as a sequence of interaction
between the target program and its environment

발표자
프레젠테이션 노트
More requirements:
The *first* index to the equivalent element should return
After bin-search(), all elements in a[] should be the same because incorrect program just changes the element of ith position
i < size_a
size_a > 0 or size_a >= 0?

Modeling an Non-deterministic Environment
with CBMC

1. Models an environment/input space using non-deterministic values
1. By using undefined functions (e.g., x= non-det();)
2. By using uninitialized local variables (e.g., f() { int x; …})
3. By using function parameters (e.g., f(int x) {…})

2. Refine/restrict an environment with __CPROVER_assume(assume)
- CBMC generates P ∧ assume ∧ ¬A

30/24

void foo(int x) {
__CPROVER_assume
(0<x && x<10);
x=x+1;;
assert (x*x <= 100);

}

int x = nondet();
void bar() {

int y;
__CPROVER_assume

(0<x && 0<y);
if(x < 0 && y < 0)

assert(0);
}

void bar() {
int y=0;
__CPROVER_assume
(y > 10);
assert(0);

}

	Software Model Checking
	Operational Semantics of Software
	Example
	Pros and Cons of Model Checking
	Companies Working on Model Checking
	Model Checking History
	Example. Sort (1/2)
	Example. Sort (2/2)
	Overview of SAT-based Bounded Model Checking
	SAT Basics (1/3)
	SAT Basics (2/3)
	SAT Basics (3/3)
	Model Checking as a SAT problem (1/6)
	Model Checking as a SAT problem (2/6)
	Ex. Constant # of Loop Iterations
	Ex. Variable # of Loop Iterations Depending on Input
	Model Checking as a SAT problem (3/6)
	Model Checking as a SAT problem (4/6)
	슬라이드 번호 19
	Model Checking as a SAT problem (5/6)
	Model Checking as a SAT problem (6/6)
	Example
	Warning: # of Unwinding Loop (1/2)
	Warning: # of Unwinding Loop (2/2)
	Model checking (MC) v.s. Bounded model checking (BMC)
	C Bounded Model Checker
	CBMC Options (cbmc --help)
	CBMC Options (cbmc --help)
	Procedure of Software Model Checking in Practice
	Modeling an Non-deterministic Environment with CBMC

