KAIST

Concurrency Analysis for

Correct Concurrent Programs:
Fight Complexity Systematically and Efficiently

Moonzoo Kim
Computer Science, KAIST

Motivation for Concurrency Analysis

Most of my subjects (interviewee) have
found that the hardest bugs to track
CODERS down are in concurrent code

AT WORK

RERECTRONE O THE CRAFT OF FROGEAMPENG

And almost every one seem to think that
ubiquitous multi-core CPUs are going to
force some serious changes in the way
software is written

P. Siebel, Coders at work (2009) -- interview with 15 top programmers of our times:
Jamie Zawinski, Brad Fitzpatrick, Douglas Crockford, Brendan Eich, Joshua Bloch, Joe Armstrong,

Simon Peyton Jones, Peter Norvig, Guy Steele, Dan Ingalls, L Peter Deutsch, Ken Thompson,
Fran Allen, Bernie Cosell, Donald Knuth

Unintended/unexpected thread scheduling (a.k.a., interleaving
scenarios) raises hard to detect concurrency errors .

Concurrent Programming is Error-prone

Correctness of concurrent programs is hard to achieve
— Interactions between threads should be carefully performed
— Alarge # of thread executions due to non-deterministic thread scheduling
— Testing technique for sequential programs do not properly work

2 process
, 30 state

|4 processes, 55043 states
| 3 processes, 853 state!

Ex. Peterson mutual exclusion (Fr¢

SWTV group @ KAIST

3 /30

Concurrency

* Concurrent programs have very high complexity
due to non-deterministic scheduling PO

x=y+1 y=z+1 z=x+1

* EX. int x=0, y=0, z =0; q0 y=z+1|:
. v.llll
void p() {x=y+1; y=z+1; z= x+1;} >
. Z=X+1 .
— Total 20 interleaving scenarios x=y+1 E
V y yllllw
= (3+3)!/(3!x3!)
— However, only 11 unique outcomes | Trail1: 22,3 Trail7: 2,1,3
Trail2: 3,24 Trail8: 2,3,3
Trail3: 3,2,3 Trail9: 4,3,5
Trail4: 2,4,3 Trail10: 4,3,2
Trail5: 54,6 Trail11: 2,1,2
Trail6: 5,4,3

4/11

KAIST

Read-Write Locks KAIST

typedef struct {
int readers;
int writer:
pthread cond t readers proceed;
pthread cond t writer proceed;
int pending writers;
pthread mutex t read write lock:
} mylib rwlock t;

voild mylib rwlock init (mylib rwlock t *1) {
1l -> readers = 1 -» writer = 1 -» pending writers = 0;
pthread mutex init(&(l -»> read write lock), NULL);
pthread cond init(&(l -> readers proceed), NULL):

Read-Write Locks KAIST

vold mylib rwlock rlock(mylib rwleck t *1) |

/% if there is a write lock or pending writers, perform
condition wait.. else inerement count of readers and
grant read lock */

pthread mutex lock(&(l => read write lock)):
while ((1 -> pending writers > 0} || (1 -> writer > 0}))
pthread cond wait({&(l -> readers proceed),
&(1l -> read write locgk]}):

1 -> readers ++;
pthread mutex unlock(&(l -> read write lock)):

pthread cond init(&(l -> W

| Very difficult to find

Read-Wri|

concurrency bugs

void mylib rwlock wlock (mylib rwlock t *1) {
f* if there are readers or writers, increment pending
writers count and wait. On being woken, decrement
pending writers count and increment writer count #/

pthread mutex lock(&(l -> read write lock)):

while ({1 -> writer > 0) || (1 -> readers > 0}) {
1 -> pending writers ++;
pthread cond wait(&(l -> writer proceed),

&(1l => read write lock)):

}

1 -»> pending writers --;

1 -> writer ++;

pthread mutex unlock(&(l -»> read write lock)):

Locks KAIST

vold mylib rwlock unlock{mylib rwlock t *1) |

f* if there is a write lock then unlock, else if there are
read locks, decrement count of read locks. If the count
iz 0 and there is a pending writer, let it through, else
if there are pending readers, let them all go through */

pthread mutex lock({&({l -> read write lock));
if (1 =-> writer > 0)
1 -» writer = 0;
else if (1 -> readexra > 0)
1 -» readers --;
pthread mutex unlock(&(l -> read write lock)):
if ((1 => readers == () && (1 =-> pending writers > 0))
pthread cond signal (&(1 -> writer proceed)) :
else if (1 -> readexra > 0)
pthread cond broadcast (£(l -> readers proceed));

Operational Semantics of Software

So@

« A system execution o Is
a sequence of states
S)S7e..

— A state has an
environment p_lar-> Val
« A system has its
semantics as a set of
system executions

Model Checker Analyzes All Possible Scheduling

active type A() {
byte X;
again:

X++:

goto again;

}

active type A() {
byte Xx;
again:
X++;
goto again;

}

active type B() {
byte y;
again:
y++;
goto again;

}
KAIST

BN

|
G
&2
i
—&259)
|
£OYD —* EOY Do Ty 25
. eeeens NS
___, @, N5
| O_*5

Coverage

AII-DU-PathS/_\

Hierarchy of SW Coverage Criteria

Complete Value
Coverage

CvC

v

Complete Path
Coverage

CPC
I

Concaolic testing

v

Prime Path
Coverage

PPC

ADUP

v

Edge-Pair
Coverage

All-uses
Coverage

EPC
[

v

ALIJC

N

v

Edge
Coverage

All-defs
Coverage

EC
1

v

ADC

KAIST
B

Node
Coverage

NC

N

Complete Round
Trip Coverage

CRTC

v

Coverage

Simple Round Trip

SRTC

(SW) Model checking

KAJST °

	Concurrency Analysis for �Correct Concurrent Programs: �Fight Complexity Systematically and Efficiently
	Motivation for Concurrency Analysis
	Concurrent Programming is Error-prone
	Concurrency
	슬라이드 번호 5
	Operational Semantics of Software
	Model Checker Analyzes All Possible Scheduling
	Hierarchy of SW Coverage Criteria

