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Motivation for Concurrency Analysis

Most of my subjects (interviewee) have
found that the hardest bugs to track
CODERS down are in concurrent code

AT WORK

RERECTRONE O THE CRAFT OF FROGEAMPENG

And almost every one seem to think that
ubiquitous multi-core CPUs are going to
force some serious changes in the way
software is written

P. Siebel, Coders at work (2009) -- interview with 15 top programmers of our times:
Jamie Zawinski, Brad Fitzpatrick, Douglas Crockford, Brendan Eich, Joshua Bloch, Joe Armstrong,

Simon Peyton Jones, Peter Norvig, Guy Steele, Dan Ingalls, L Peter Deutsch, Ken Thompson,
Fran Allen, Bernie Cosell, Donald Knuth

Unintended/unexpected thread scheduling (a.k.a., interleaving
scenarios) raises hard to detect concurrency errors .




Concurrent Programming is Error-prone

Correctness of concurrent programs is hard to achieve
— Interactions between threads should be carefully performed
— Alarge # of thread executions due to non-deterministic thread scheduling
— Testing technique for sequential programs do not properly work

2 process
, 30 state

|4 processes, 55043 states
| 3 processes, 853 state!

Ex. Peterson mutual exclusion (Fr¢

SWTV group @ KAIST
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Concurrency

* Concurrent programs have very high complexity
due to non-deterministic scheduling PO

x=y+1 y=z+1 z=x+1

* EX. int x=0, y=0, z =0; q0 y=z+1|:
. v.llll
void p() {x=y+1; y=z+1; z= x+1;} >
. Z=X+1 .
— Total 20 interleaving scenarios x=y+1 E
V y yllllw
= (3+3)!/(3!x3!)
— However, only 11 unique outcomes | Trail1: 22,3 Trail7: 2,1,3
Trail2: 3,24  Trail8: 2,3,3
Trail3: 3,2,3  Trail9: 4,3,5
Trail4: 2,4,3  Trail10: 4,3,2
Trail5: 54,6  Trail11: 2,1,2
Trail6: 5,4,3
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Read-Write Locks KAIST

typedef struct {
int readers;
int writer:
pthread cond t readers proceed;
pthread cond t writer proceed;
int pending writers;
pthread mutex t read write lock:
} mylib rwlock t;

voild mylib rwlock init (mylib rwlock t *1) {
1l -> readers = 1 -» writer = 1 -» pending writers = 0;
pthread mutex init(&(l -»> read write lock), NULL);
pthread cond init(&(l -> readers proceed), NULL):

Read-Write Locks KAIST

vold mylib rwlock rlock(mylib rwleck t *1) |

/% if there is a write lock or pending writers, perform
condition wait.. else inerement count of readers and
grant read lock */

pthread mutex lock(&(l => read write lock)):
while ((1 -> pending writers > 0} || (1 -> writer > 0}))
pthread cond wait({&(l -> readers proceed),
&(1l -> read write locgk]}):

1 -> readers ++;
pthread mutex unlock(&(l -> read write lock)):

pthread cond init(&(l -> W

| Very difficult to find

Read-Wri|

concurrency bugs

void mylib rwlock wlock (mylib rwlock t *1) {
f* if there are readers or writers, increment pending
writers count and wait. On being woken, decrement
pending writers count and increment writer count #/

pthread mutex lock(&(l -> read write lock)):

while ({1 -> writer > 0) || (1 -> readers > 0}) {
1 -> pending writers ++;
pthread cond wait(&(l -> writer proceed),

&(1l => read write lock)):

}

1 -»> pending writers --;

1 -> writer ++;

pthread mutex unlock(&(l -»> read write lock)):

Locks KAIST

vold mylib rwlock unlock{mylib rwlock t *1) |

f* if there is a write lock then unlock, else if there are
read locks, decrement count of read locks. If the count
iz 0 and there is a pending writer, let it through, else
if there are pending readers, let them all go through */

pthread mutex lock({&({l -> read write lock));
if (1 =-> writer > 0)
1 -» writer = 0;
else if (1 -> readexra > 0)
1 -» readers --;
pthread mutex unlock(&(l -> read write lock)):
if ((1 => readers == () && (1 =-> pending writers > 0))
pthread cond signal (&(1 -> writer proceed)) :
else if (1 -> readexra > 0)
pthread cond broadcast (£(l -> readers proceed));




Operational Semantics of Software

So@

« A system execution o Is
a sequence of states
S)S7e..

— A state has an
environment p_lar-> Val
« A system has its
semantics as a set of
system executions




Model Checker Analyzes All Possible Scheduling

active type A() {
byte X;
again:

X++:

goto again;

}

active type A() {
byte Xx;
again:
X++;
goto again;

}

active type B() {
byte y;
again:
y++;
goto again;

}
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Coverage

AII-DU-PathS/_\

Hierarchy of SW Coverage Criteria
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