
Linear Temporal Logic

Moonzoo Kim
CS Dept. KAIST

1

Review: Model checking
 Model checking

 In a model-based approach, the system is represented by a
model M . The specification is again represented by a
formula Á.
 The verification consists of computing whether M satisfies Á M ² Á

 Caution: M ² Á represents satisfaction, not semantic entailment

 In model checking,
 The model M is a transition systems and
 the property Á is a formula in temporal logic

 ex. � p, � q, } q, � } q

p
p

p,q

2

Motivation for Temporal Logic

 So far, we have analyzed sequential programs only
 assert is a convenient way of specify requirement properties
 Safety properties are enough for sequential programs

 “Bad thing never happens”
 Ex. Mutual exclusion

 For concurrent programs, we need more than assert to specify
important requirement properties conveniently
 Liveness properties

 “Good thing eventually happens”
 Ex. Deadlock freedom
 Ex. Starvation freedom

 Temporal logic is an adequate logic for describing requirement
properties for concurrent system

3

Motivating Example (1/2)
 Mutual exclusion protocol

 Alice and Bob are neighbors, and they share a yard.
 Alice owns a cat and Bob owns a dog.
 Alice and Bob should coordinate that both pets are never in the

yard at the same time.
 We would like to design a mutual exclusion protocol to

satisfy
1. Mutual exclusion

 pets are excluded from being in the yard at the same time
2. Deadlock-freedom

 Both pets want to enter the yard, then eventually at least one of
them succeeds

3. Starvation-freedom/lock-out freedom
 If a pet wants to enter the yard, it will eventually succeed

Quoted from “The art of multiprocessor
programing” by M.Herlihy et al,
published by Morgan Kaufmann 2008

4

Motivating Example (2/2)

 One protocol design: Alice and Bob set up a flag pole at
each house
 Protocol @ Alice

1. Alice raises her flag
2. When Bob’s flag is lowered, she unleashes her cat
3. When her cat comes back, she lowers her flag

 Protocol @ Bob
1. He raises his flag
2. While Alice’s flag is raised

1. Bob lowers his flag
2. Bob waits until Alice’s flag is lowered
3. Bob raises his flag

3. As soon as his flag is raised and hers is down, he unleashes his dog
4. When his dog comes back, he lowers his flag

5

Linear time temporal logic (LTL)

 LTL models time as a sequence of states, extending
infinitely into the future
 sometimes a sequence of states is called a

computation path or an execution path, or simply a path
 Def 3.1 LTL has the following syntax

 Á ::= T | ? | p | : Á | Á Æ Á | Á Ç Á | Á ! Á

| X Á | F Á | G Á | Á U Á | Á W Á | Á R Á
where p is any propositional atom from some set Atoms

 Operator precedence
 the unary connectives bind most tightly. Next in the order

come U, R, W, Æ, Ç, and !

!

F p ! G r Ç : q U p

ÇF

p G

r :

q

U

p

6

Semantics of LTL (1/3)

 Def 3.4 A transition system (called model) M = (S, !, L)
 a set of states S
 a transition relation ! (a binary relation on S)

 such that every s 2 S has some s’ 2 S with s ! s’
 a labeling function L: S ! P (Atoms)

 Example
 S={s0,s1,s2}
 !={(s0,s1),(s1,s0),(s1,s2),(s0,s2),(s2,s2)}
 L={(s0,{p,q}),(s1,{q,r}), (s2,{r})}

 Def. 3.5 A path in a model M = (S, !, L) is an infinite sequence of
states si1

, si2
, si3

,… in S s.t. for each j¸ 1, sij
! sij+1

. We write the
path as si1

! si2
! …

 From now on if there is no confusion, we drop the subscript index i for
the sake of simple description

 We write ¼i for the suffix of a path starting at si.
 ex. ¼3 is s3 ! s4 ! …

7

Semantics of LTL (2/3)
 Def 3.6 Let M = (S, !, L) be a model and ¼ = s1 ! … be a

path in M. Whether ¼ satisfies an LTL formula is defined by
the satisfaction relation ² as follows:
 Basics: ¼ ²>, ¼ 2?, ¼ ²p iff p 2 L(s1) , ¼ ² :Á iff ¼ 2 Á
 Boolean operators: ¼ ² p Æ q iff ¼ ² p and ¼ ² q

 similar for other boolean binary operators
 ¼ ² X Á iff ¼2 ² Á (next ○)
 ¼ ² G Á iff for all i ¸ 1, ¼i ² Á (always �)
 ¼ ² F Á iff there is some i ¸ 1, ¼i ² Á (eventually })
 ¼ ² Á U Ã iff there is some i ¸ 1s.t. ¼i ² Ã and for all j=1,…,i-1 we have

¼j ² Á (strong until)
 ¼ ² Á W Ã iff either (weak until)

 either there is some i ¸ 1 s.t. ¼i ² Ã and for all j=1,…,i-1 we have ¼j ² Á
 or for all k ¸ 1 we have ¼k ² Á

 ¼ ² Á R Ã iff either (release)
 either there is some i ¸ 1 s.t. ¼i ² Á and for all j=1,…,i we have ¼j ² Ã
 or for all k ¸ 1 we have ¼k ² Ã

8

slide quoted from Caltech 101b.2 “Logic Model Checking” by Dr.G.Holzmann9

slide quoted from Caltech 101b.2 “Logic Model Checking” by Dr.G.Holzmann10

slide quoted from Caltech 101b.2 “Logic Model Checking” by Dr.G.Holzmann11

slide quoted from Caltech 101b.2 “Logic Model Checking” by Dr.G.Holzmann12

13

Semantics of LTL (3/3)
 Def 3.8 Suppose M = (S, !, L) is a model, s 2 S, and Á

an LTL formula. We write M,s ² Á if for every execution
path ¼ of M starting at s, we have ¼ ² Á
 If M is clear from the context, we write s ² Á

 Example
 s0 ² p Æ q since ¼ ² p Æ q for every path ¼ beginning in s0
 s0 ² :r, s0 ² >
 s0 ² X r, s0 2 X (q Æ r)
 s0 ² G :(p Æ r), s2 ² G r
 For any s of M, s ² F(:q Æ r) ! F G r

 Note that s2 satisfies :q Æ r
 s0 2 G F p

 s0 ! s1 ! s0 ! s1 … ² G F p
 s0 ! s2 ! s2 ! s2 … 2 G F p

 s0 ² G F p ! G F r
 s0 2 G F r ! G F p

M

14

Practical patterns of specification
 For any state, if a request occurs, then it

will eventually be acknowledge
 G(requested ! F acknowledged)

 A certain process is enabled infinitely
often on every computation path
 G F enabled

 Whatever happens, a certain process
will eventually be permanently
deadlocked
 F G deadlock

 If the process is enabled infinitely often,
then it runs infinitely often
 G F enabled ! G F running

 An upwards traveling lift at the second
floor does not change its direction when
it has passengers wishing to go to the
fifth floor
 G (fllor2 Æ directionup Æ ButtonPressed5

! (directionup U floor5)

 It is impossible to get to a state where a
system has started but is not ready
 Á = G :(started Æ :ready)
 What is the meaning of (intuitive)

negation of Á ?
 For every path, it is possible to get to

such a state (startedÆ:ready).
 There exists a such path that gets to

such a state.
 we cannot express this meaning directly

 LTL has limited expressive power
 For example, LTL cannot express

statements which assert the existence
of a path
 From any state s, there exists a path ¼

starting from s to get to a restart state
 The lift can remain idle on the third floor

with its doors closed
 Computation Tree Logic (CTL) has

operators for quantifying over paths and
can express these properties

15

Summary of practical patterns
G p always p invariance

F p eventually p guarantee

p ! (F q) p implies eventually q response

p ! (q U r) p implies q until r precedence

G F p always, eventually p recurrence
(progress)

F G p eventually, always p stability (non-
progress)

F p ! F q eventually p implies eventually q correlation

16

Equivalences between LTL formulas

 Def 3.9 Á ≡ Ã if for all models M and all paths ¼ in M: ¼ ² Á iff ¼ ² Ã

 :G Á ≡ F :Á, :F Á ≡ G :Á, :X Á ≡ X :Á

 : (Á U Ã) ≡ :Á R :Ã, :(Á R Ã) ≡ :Á U :Ã

 F (Á Ç Ã) ≡ F Á Ç F Ã
 G (Á Æ Ã) ≡ G Á Æ G Ã
 F Á ≡ T U Á, G Á ≡ ? R Á

 Á U Ã ≡ Á W Ã Æ F Ã
 Á W Ã ≡ Á U Ã Ç G Á

 Á W Ã ≡ Ã R (Á Ç Ã)
 Á R Ã ≡ Ã W (Á Æ Ã)

17

Adequate sets of connectives for LTL (1/2)

 X is completely orthogonal to the other connectives
 X does not help in defining any of the other connectives.
 The other way is neither possible

 Each of the sets {U,X}, {R,x}, {W,X} is adequate
 {U,X}

 Á R Ã ≡ : (: Á U : Ã)
 Á W Ã ≡ Ã R (Á Ç Ã) ≡ : (:Ã U :(Á Ç Ã))

 {R,X}
 Á U Ã ≡ : (:Á R :Ã)
 Á W Ã ≡ Ã R (Á Ç Ã)

 {W,X}
 Á U Ã ≡ : (: Á R : Ã)
 Á R Ã ≡ Ã W (Á Æ Ã)

18

Adequate sets of connectives for LTL (2/2)

 Thm 4.10 Á U Ã ≡ :(:Ã U (:Á Æ :Ã)) Æ F Ã
 Proof: take any path s0 ! s1 ! s2 ! … in any model

 Suppose s0 ² Á U Ã
 Let n be the smallest number s.t. sn ² Ã

 We know that such n exists from Á U Ã. Thus, s0 ² F Ã
 For each k < n, sk ² Á since Á U Ã

 We need to show s0 ² :(:Ã U (:Á Æ :Ã))
 case 1: for all i, si 2 :Á Æ :Ã. Then, s0 ² :(:Ã U (:Á Æ :Ã))
 case 2: for some i, si ² :Á Æ :Ã. Then, we need to show

 (*)for each i >0, if si ² :Á Æ :Ã, then there is some j < i with sj 2 :Ã (i.e. sj ² Ã)
 Take any i >0 with si ² :Á Æ :Ã. We know that i > n since s0 ² Á U Ã. So we can

take j=n and have sj ² Ã

 Conversely, suppose s0 ² :(:Ã U (:Á Æ :Ã)) Æ F Ã
 Since s0 ² F Ã, we have a minimal n as before s.t. sn ² Ã

 case 1: for all i, si 2 :Á Æ :Ã (i.e. si ² Á Ç Ã). Then s0 ² Á U Ã
 case 2: for some i, si ² :Á Æ :Ã. We need to prove for any i <n, si ² Á

 Suppose si 2 Á (i.e., si ² :Á). Since n is minimal, we know si ² :Ã. So by (*)
there is some j <i<n with sj ² Ã, contradicting the minimality of n. Contradiction

19

Mutual exclusion example

 When concurrent processes share a resource, it may be
necessary to ensure that they do not have access to the
common resource at the same time
 We need to build a protocol which allows only one process to

enter critical section
 Requirement properties

 Safety:
 Only one process is in its critical section at anytime

 Liveness:
 Whenever any process requests to enter its critical section, it

will eventually be permitted to do so
 Non-blocking:

 A process can always request to enter its critical section
 No strict sequencing:

 processes need not enter their critical section in strict
sequence

20

1st model
 We model two processes

 each of which is in
 non-critical state (n) or
 trying to enter its critical state

(t) or
 critical section (c)

 No self edges
 each process executes like

n! t ! c ! n ! …
 but the two processes interleave

with each other
 only one of the two

processes can make a
transition at a time
(asynchronous interleaving)

21

1st model for mutual exclusion

 Safety: s0 ² G : (c1 Æ c2)
 Liveness s0 2 G(t1 ! F c1)

 see s0!s1!s3!s7!s1!s3 !s7…
 Non-blocking

 for every state satisfying ni,
there is a successor satisfying ti
 s0 satisfies this property

 We cannot express this property
in LTL but in CTL
 Note that LTL specifies that Á is satisfied for all paths

 No strict ordering
 there is a path where c1 and c2 do not occur in strict order
 Complement of this is

 G(c1 ! c1 W (:c1 Æ :c1 W c2))
 anytime we get into a c1 state, either that condition persists indefinitely, or it ends

with a non-c1 state and in that case there is no further c1 state unless and until we
obtain a c2 state

22

2nd model for mutual exclusion

 All 4 properties are satisfied
 Safety
 Liveness
 Non-blocking
 No strict sequencing

	�Linear Temporal Logic ���Moonzoo Kim�CS Dept. KAIST� �
	Review: Model checking
	Motivation for Temporal Logic
	Motivating Example (1/2)
	Motivating Example (2/2)
	Linear time temporal logic (LTL)
	Semantics of LTL (1/3)
	Semantics of LTL (2/3)
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	Semantics of LTL (3/3)
	Practical patterns of specification
	Summary of practical patterns
	Equivalences between LTL formulas
	Adequate sets of connectives for LTL (1/2)
	Adequate sets of connectives for LTL (2/2)
	Mutual exclusion example
	1st model
	1st model for mutual exclusion
	2nd model for mutual exclusion

