CS492B Analysis of Concurrent Programs

Code Coverage-based Testing
of Concurrent Programs

Prof. Moonzoo Kim
Computer Science, KAIST

Coverage Metric for Software Testing

* A coverage metric defines a set of test requirements on a target

program which a complete test should satisfy

— A test requirement (a.k.a., test obligation) is a condition over a target
program

— An execution covers a test requirement when the execution satisfies the
test requirement

— The coverage level of a test (i.e., a set of executions) is the ratio of the
test requirements covered by at least one execution to the number of all
test requirements

* A coverage metric is used for assessing progress of a test
— Measure the quality of a test (to assess whether a test is sufficient or not)
— Detect missing cases of a test (to find next test generation target)

Code Coverage-based Testing of Concurrent Programs 2

Code Coverage Metric and Test Generation

* A code coverage metric derives test requirements from the
elements of a target program code
— Standard methodology in testing sequential programs
— E.g. branch/statement coverage metrics

 Many test generation techniques for sequential programs aim
to achieve high code coverage fast

— Empirical studies have shown that a test achieving high code coverage
tends to detect more faults in the sequential program testing domain

Code Coverage-based Testing of Concurrent Programs

Concurrency Code Coverage Metric

Many concurrency coverage metrics have been proposed,
which are specialized for concurrent program tests

— Derive test requirements from synchronization operations or
shared memory access operations

A concurrency coverage metric is a good solution to alleviate
the limitation of the random testing techniques

Is a test achieving higher concurrency coverage better for
detecting faults?

How can we generate concurrent executions to achieve high
concurrency coverage?

How can we overcome the limitations of existing concurrency
coverage metrics?

Code Coverage-based Testing of Concurrent Programs 4

Part |.
The Impact of Concurrent Coverage
Metrics on Testing Effectiveness

Code Coverage for Concurrent Programs

Test requirements of code coverage|e1: int data ;
for concurrent programs capture

different thread interaction cases 16: thread1() { 20: thread2() {

11: lock(m); 21: lock(m);

Several metrics have been proposed |[12: if (data ..){ 22: data = 0;
.. 13: data =1 ; e

— Synchronization coverage:

blocking, blocked, follows, 18: unlock(m);

29: unlock(m);

4
synchronization-pair, etc. Sync.-Pair: E——
— Data access coverage: {(11, 21), {(12, 22),
PSet, all-use, LR-DEF, (21,12), ..]| (22,13), - }

access-pair, statement-pair, etc.

Code Coverage-based Testing of Concurrent Programs 6

Concurrent Coverage Example — “follows” Coverage

* Structure: a requirement has two code lines of lock operations <I , |, >

* Condition: <l , |,> is covered when 2 different threads hold a lock
consecutively at two lines |, and |,

10:thread1() { 20 thread2() {
113 lock(m) ; 213 lock(m) ;
- unlock(m) ; . unlock(m) ;
131 lock(m) ; 231 lock(m) ;
14: unlock(m) ; 24: unlock(m) ;
15:} 251}
- thread1() - - thread2()- e
11: lock(m) <11, 23>
12: unlock(m) <13 21>
<11, 21> is covered g% lljg?‘gcak)(m) <13, 23>,
) <21, 11>
23: lock ’ ’
24 ugcl:oc(:rl?(m) <21, 13>,
- <23, 11>,
13: lock(m) <j:|' <23, 13> is covered =23 3=

v 14: unlock(m)

Code Coverage-based Testing of Concurrent Programs 7

Is Concurrent Coverage Good for Testing?

« A common belief about concurrent coverage metrics is that
“As more test requirements for the metrics are covered,
testing becomes more likely to detect faults”.

* A few automated testing techniques for concurrent programs
utilize concurrent coverage information
— Saturation-based testing [Sherman et al., ESEC/FSE 09],
— Coverage-guided systematic testing [Wang et al., ICSE 11],
— Coverage-guided thread scheduling [Hong et al., ISSTA 12],
— Search-based testing w/ concurrent coverage [Krena et al., PADTAD 10]

Is this hypothesis really true?
- We have to provide empirical evidence

Code Coverage-based Testing of Concurrent Programs 8

Research Questions 1

* Does coverage impact fault finding?

coverage
Fault .
. metric A
finding
coverage

/. metric B
coverage

\/\/-\ metric C

Coverage

Measure correlation of fault finding and coverage to check whether
concurrent coverage is a good predictor of testing effectiveness

Code Coverage-based Testing of Concurrent Programs 9

Research Questions 1a

* Does coverage impact fault finding more than test
suite size ?

Fault Fault
finding A + 5 executions finding
A W
W
Coverage Test suite size
* Because of coverage increase ? Compare the correlation of
* Because of test size increase? fault finding and test suite size

Code Coverage-based Testing of Concurrent Programs 10

Research Question 2

* |Is testing controlled to have high coverage more
effective than random testing with equal size test suites?

(" Coverage) (Coverage)
t, [T t', I TN [1]
t, [[] t, [D P B
t t'
JoEEE T T (GO
IR BN N [TTTTTTTTT]
Random test suite: Coverage controlled test suite:
a test suite having arbitrary a test suite controlled to
three executions have 100% coverage

Does a coverage-directed test suite have better fault
finding ability than random test suite of equal size?

Code Coverage-based Testing of Concurrent Programs 11

Concurrent Coverage Metric Studied
e Study 8 concurrent coverage metrics

— Select basic & representative metrics from 20 existing metrics
— The selected coverage metrics are classified with respect to
(1) type of constructs and (2) number of code element

Synchronization Data access
operation Operation
Singular b IOCk”,qg' blocked LR-Def [Lu et al., FSE 07]
[Edelstein et al., 2012]
o blo.cl.<ed-p air, follows Pset [Yu et al, ISCA 09],
Pairwise [Trainin et al, PADTAD 09],
. Def-Use [Tasiran et al., ESE 12]
sync-pair [Hong et al., ISSTA 12]

Code Coverage-based Testing of Concurrent Programs

Experiment Subjects

Type Program LOC 1\.Ium: Fau_lty
threads | versions
Alarmclock 125 4 1
Single Clean 51 3 1
fault Piper 71 9 1
program | Producerconsumer 87 5 1
Stringbuffer 416 3 1
Twostage 52 3 1
. ArrayList 5866 29 42
hf;‘f;ﬂg“ BoundedBuffer 1437 3 37
e Vector 709 Sl 88

e Single fault programs

— 6 programs in concurrency bug bench. [Neha et al., PADTAD 09]

— Each program has a fault with low error density [Dwyer et al., FSE 06]
* Mutation testing

— Generate 34~88 incorrect versions (valid mutants) for each program

* Used concurrent mutation operators [Bradbury et al., MUTATION 06]
* Each version is created by applying one mutation operator once

Code Coverage-based Testing of Concurrent Programs 13

Experiment Process - Single Fault Programs

Program w/ * Step 1. Generate test executions
fault — Use 13 random testing configurations
— Generate 1000 executions per testing
Qting configuration
e Step 2. Construct test suites by
Test 13000 resampling test executions
executions | executions — Generate 100,000 random test suites of

(=13 x1000) ,
sizes 1 — 1000

Test suite .
— Ger!erate 109 test suite controlled tc?
achieve maximum overage per metric

(size: 1~1000)

(max. coverage)

Random Cc()%erg?é% * Step 3. Measure metrics for test suites
test suites test suites — Measure 8 coverage metrics

— Measure fault finding

100,000 test suites 800 test suites (=8 x100)

Code Coverage-based Testing of Concurrent Programs 14

Experiment Process — Mutation Testing

Faulty versions .
Version 1 Step 1. Generate test executions

version 2 . — Use 13 random testing configurations

. | Version M
— Generate 2000 executions per mutant and
per testing configuration

* 51 mutants
@ forVector, gtan 2. Construct test suites by

resampling test executions

Test 1,326,000)
= executions — Generate 100,000 random test suites of
executions | for Vector sizes 1 — 2000 per mutant

(= 51x13x2000)

) — Generate 100 test suites controlled to
Test suite _ _
construction achieve maximum coverage per mutant
and per coverage metric

Random C%?]‘ﬁg?lied e Step 3. Measure metrics for test suites
t.es.t fyzlgeoso test suites — Measure 8 coverage metrics
(size:) (max. coverage) - .
— Measure fault finding (mutation score)

5,100,000 40,800
(=51 x100,000) (=51 x 8 x 100)

Code Coverage-based Testing of Concurrent Programs 15

RQ 1: Does Coverage Achieved Impact Fault Finding ?

Compute the correlations of coverage metrics and fault finding as well as

the correlations of test suite size and fault finding by Pearson’s r

Results of mutation testing subjects

— Coverage metrics have stronger correlations than test suite size

— Ex. Vector

Corr. Size-FF # ‘ ‘

Sync-pair

PSet

LR-DEF
Follows
Def-Use
Blocking
Blocked-pair
Blocked

T T T T T

0O 02 04 06 08 1
Corr. cov. and fault finding

Avg. Fault Detection

30

25

20

15

—-
-3
——

= e

- LR-Def

- Sync-pair

Blocked

Blocked-pair ‘

Blocking
Def-Use

Follows

.
.
s

PSet

A/
[

/)

|

20 40 60
Coverage (%)

Code Coverage-based Testing of Concurrent Programs

80

100

16

RQ 1: Does Coverage Achieved Impact Fault Finding ?

* Results of single fault subjects

— There is a coverage metric having high correlation for each subject
— Ex. Stingbuffer

- i —
Corr. Size-FF —_ ‘ ‘ ‘ —B— Blocked
Sync-pair --B- Blocked-pair
—— '
PSet Blocking
[| --*- Detf-Use |
LR-DEF
Follows
Follows | --e- LR-Def |
Def-Use PSet
Blocking | --A-- Sync-pair | N
Blocked-pair
Blocked ' ' I I 1 |

RQ 1: Is concurrent coverage good predictor of test. effectiveness?
=>» Yes. The metrics estimate fault finding of a testing properly

Code Coverage-based Testing of Concurrent Programs 17

RQ 2: Does Coverage Controlled Testing Detect More Faults?

* Compare fault finding of a coverage-controlled test suite w.r.t.
a metric M and fault finding of random test suite of equal size

e Results of mutation testing

— Ex. Arraylist * Cov FF / Random FF: fault finding of
controlled test suites/random test suite (0~8.5)

Fault finding m Cov FF m Random FF
8

7 -

6 -

5 |

blocking blocked LR-Def blocked-pair Def-Use follows PSet Sync-pair
Code Coverage-based Testing of Concurrent Programs 18

RQ 2: Does Coverage Controlled Testing Detect More Faults?

* Results with single fault programs
— Generally, controlled test suites have higher fault finding abilities than random ones
— Coverage metrics have different performances depending on programs

— Ex. Stringbuffer * Cov. FF / Random FF: fault finding of coverage

controlled test suites /random test suite (0~1)

Fault finding m Cov FF ® Random FF

1
0.9
0.8 -
0.7 -
0.6 -
0.5 -
04 -

RQ 2: Is concurrent coverage proper for test generation ?

=2 Yes. Generating test suites toward high coverage can detect
more faults than random test generation

Code Coverage-based Tes'ting of Concurrent Programs - 19

Lessons Learned: Concurrent Coverage is Good Metric

1. Use concurrent coverage metrics to improve testing!
— Good predictor of testing effectiveness
— Good target for test generation

2. PSet is the best pairwise coverage metric used alone

— High correlation with fault finding in general
— High fault finding for controlled test suites w.r.t. PSet in all subjects

3. PSet + follows would be better than just a metric alone

— For some objects, there is a large difference in fault finding
depending on metrics

— A combined metric of data-access based and synchronization-
based coverage would provide reliable performance in general

Code Coverage-based Testing of Concurrent Programs 20

Part Il.
Testing Concurrent Programs to Achieve
High Synchronization Coverage

Code Coverage-based Testing of Concurrent Programs 21

Overview

* A testing framework for concurrent programs
— To achieve high test coverage fast

 Keyidea
1. Utilize coverage to test concurrent programs systematically
2. Manipulate thread scheduler to achieve high coverage fast

--
*

: i (Measure) (Test run '
: [threadl o coverage :
- |10: 1ock(8 { Pl & (Thread scheduling]
: o ol controller
- |15: unlock(m) 1(10,20), -} ¢

Coverage 9{(10'20)' Covered SPs

:| thread2 K :
20 1ock(8 { 7] estimator [7] (20,10),..} -]

target SPs : :|Uncovered SPs Threads :
: AN J _ J:
: Estimation phase i i Testing phase :

.

Code Coverage-based Testing of Concurrent Programs 22

Synchronization-Pair (SP) Coverage

10:foo() { 20:bar() {
11: synchronized(m){‘::|I Lock(m) ronized(m){
12: } <:|' unlock(m) 22: }
13: synchronized(m){ 23: synchronized(m){
14: } 24 }
}5:} 25:%
--Threadl: foo()-- --Thread2: bar()--
11: synchronized(m){
12: }
(11, 21) is covered ||:>213 syncﬁ?onized(m){
23: }
(21, 23) is covered 3: synchronized(m){
24: } -
13: synchronized(m){ 23 13) is covered
Vid: } (23, 13)

| Def. A pair of code locations < I4,1,>

is a SP coverage requirement, if

(1) [; and [, are lock statements
(2) [; and [, hold the same lock m

(3) [, holds m right after [, releases m

Covered SPs:
(11, 21), (21, 23), (23, 13)

Code Coverage-based Testing of Concurrent Programs 23

Synchronization-Pair (SP) Coverage

N

10:foo() { 20:bar() {
11: synchronized(m){ 21: synchronized(m){
12: } 22: }
13: synchronized(m){ 23: synchronized(m){
14: } 24 }
}5:} 25:})
--Threadl: foo()-- --Thread2: bar()--
11: synchronized(m){ 11:
12: } 12:
21: synEﬁ?Bnized(m){
22: }
4
Lo Yo WS A.._Al......_.:-.....llm){ 13:
14:
Covered SPs:
13: | (11, 21), (21, 23), (23, 13)
W14: \ 4

Def. A pair of code locations < I4, [,>

is a SP coverage requirement, if

(1) [, and [, are lock statements

(2) [, and [, hold the same lock m

--Threadl: foo()-- U --Thread2:bar()--

synchronized(m){

}

>

21: synchronized(m){

22: }

Y

E_ PR
—

Covered SPs:
(11, 21), (21, 13), (13, 23)

(m{

Code Coverage-based Testing of Concurrent Programs 24

Testing Framework for Concurrent Programs

(1) Estimates SP requirements,
(2) Generates test scheduling by

— monitor running thread status, and measure SP coverage
— suspend/resume threads to cover new coverage req.

--
*

5 . (Measure) 4 Test run N
1@?@32&%8{ coverage / [Thread scheduling]
. 10,20), -} L controller :
: [15: unlock(m) {(10,20),
: Coverage {(10,20),
‘| +thread2 > . > Covered SPs
|20 reanat) L [estimator [(20,10),..} -]
' 4 targetSPs : | Uncovered SPs \ Threads :
: N) Q k
: Estimation phase i i Testing phase

--

Code Coverage-based Testing of Concurrent Programs 25

Thread Scheduling Controller

Coordinates thread executions to satisfy new SP requirements

Invokes an operation
(1) before every lock operation, and
(2) after every unlock operation

Controls thread scheduling by
(1) suspend a thread before a lock operation
(2) select one of suspended threads to resume using three rules

-
Decide whether

[invoke thread scheduler :

suspend, or

11:
12:

10: synchronized(m) {

resume a
current thread

if (t > 0) {
_

~

r

7

_

{(10,20), -}
Covered SPs
{(20,10), ...}

Uncovered SPs

le[Elag!

Other threads’
status

~N

J

Code Coverage-based Testing of Concurrent Programs

26

Thread Schedule Decision Algorithm (1/3)

* Rule 1: Choose a thread to cover uncovered SP directly

Threadl Thread 2
@ ‘) - Covered SPs:
L g:) | (20,22),(20,10)
P . - Uncovered SPs:
21: (10,22),(10,22)
unlock(m) 7 ? 7 7
l . J @550

Code Coverage-based Testing of Concurrent Programs 27

Thread Schedule Decision Algorithm (2/3)

e Rule 2: Choose a thread to cover uncovered SP in next decision

Threadl

Code Coverage-based Testing of Concurrent Programs

Thread 2

2

21:
unlock(m)

R —

22:
‘ lock(m) i\

- Covered SPs:
(20,10),(20,22),
(10,22)

- Uncovered SPs:

(22,10)

28

Thread Schedule Decision Algorithm (2/3)

e Rule 2: Choose a thread to cover uncovered SP in next decision

Th readl Th read 2
|
[20: | - Covered SPs:
. flock(m)) (20,10),(20,22),
- . (10,22),(22,10)
21: .
unlock(m) - Uncovered SPs:
22:
Io m))
10:
 fo) m)
! !

Code Coverage-based Testing of Concurrent Programs 29

Thread Schedule Decision Algorithm (3/3)

* Rule 3: Choose a thread that is unlikely to cover uncovered SPs

Threadl Thread 2
- 2‘10’_ \ - Covered SPs:
lock(m) (20,10),(10,20),
—7 (20,22),(10,22),
[21:) (22,10)
unlock(m)
\ / - Uncovered SPs:
B . 2 (10,60), (70,22),
[T] s (80.22) . (10.50) .
lock(m) : lock(m) i (22,60)
schedule Thread 1: schedule Thread 2:
Since Thread 2 with line 22 remains Since Thread1 with line 10 remains
under control, more chance to under control, more chance to
cover (70, 22), (80, 22), (22, 60) (10, 60), (10, 50)

Code Coverage-based Testing of Concurrent Programs 30

Empirical Evaluation

* Implementation [Thread Scheduling Algorithm, TSA]
— Used Soot for estimation phase

— Extended CalFuzzer 1.0 for testing phase
— Built in Java (about 2KLOC)

e Subjects
— 7 Java library benchmarks (e.g. Vector, HashTable, etc.) (< 11 KLOC)
— 3 Java server programs (cache4j, pool, VFS) (< 23 KLOC)

Code Coverage-based Testing of Concurrent Programs

31

Empirical Evaluation

Compared techniques
— We compared TSA to random testing
— We inserted probes at every read, write, and lock operations

— Each probe makes a time-delay d with probability p
* d: sleep(1ms), sleep(1~10ms), sleep (1~100ms)
* p:0.1,0.2,0.3,0.4,0.5
— We use 15 (= 3 x 5) different versions of random testing

Experiment setup
— Executed the program 500 times for each technique
— Measured accumulated coverage and time cost
— Repeated the experiment 30 times for statistical significance in results

Code Coverage-based Testing of Concurrent Programs

Study 1: Effectiveness

* TSA covers more SPs than random testings
— for accumulated SP coverage after 500 executions

200 Our technique
o mmmmm====ZTZTIITTIIIIIIN uDesiee(<100ms) ave
150 ’r - ’:.:d:" -------------- \ RND-sleep(<10ms) avg.
g)o ,:n' .. \
o R RND-sleep(1ms) avg.
v Yo e
3 ¢ e
g 100 V
73
50 |+
ArraylList 1
O | | | | J
0 100 200 300 400 500

test executions

Code Coverage-based Testing of Concurrent Programs 33

Study 2: Efficiency

TSA reaches the saturation point faster and higher
— A saturation point is computed by r?
(coefficient: 0.1, window size: 120 sec.) [Sherman et al., FSE 2009]

200
180
160
140
120
100
80
60
40
20
0

SP coverage

Saturation point

"<, Our technique
// ____________ < RND-sleep(<10ms) avg.
/ ___________________ ~— RND-sleep(<100ms) avg.
I /'/ =" SRRt AN RND-sleep(1ms) avg.
rd - et
[e
:"‘.’.
,I -}’:{}
| | Arraylist 1

0 50 100 150

time (sec)

Code Coverage-based Testing of Concurrent Programs 34

Study 3: Impact of Estimation-based Heuristics (Rule3)

TSA with Rule3 reaches higher coverage at faster saturation point

— Executes the program for 30 minutes, and computed the saturation points

> 90% of thread scheduling decisions are made by the Rule 3

TSA
‘ TSA w/o rule3

TSA w/o Rule 3 TSA with Rule 3
Program . .
Coverage time (sec) Coverage time (sec)

ArrayListl 177.6 J(274.4 181.2 184.2)
ArrayList2 130.8 246.3 141.4 159.7
HashSetl 151.3 271.5 151.7 172.4
HashSet?2 98.0 198.9 120.8 139.3
HashTablel 23.7 120.0 24.0 120.0
HashTable2 539.6 388.8 538.0 165.4
LinkedList1 179.9 278.2 181.2 155.0
LinkedList2 129.9 237.7 141.2 161.2
TreeSetl 151.6 258.4 151.4 191.2
TreeSet2 98.8 237.5 120.5 139.8
cache4j 201.9 205.8 202.2 146.1
pool T/O T/O 2950.5 431.1
VES 246.7 478.2 260.1 493.9

Code Coverage-based Testing of Concurrent Programs

35

Code Coverage-based Testing of Concurrent Programs

36

CUVE: Effective and Efficient Testing of Concurrent

Programs using Combinatorial Concurrency Coverage

Shin Hong, Yongbase Park, Moonzoo Kim
Software Testing & Verification Group
KAIST

Limitation of Coverage-based Testing Technique

Coverage ECoverage < (Coverage
metric . info. | measure

Interleaved execution-1

scheduler .

Thread-3 :
Q : Cov. e f

Limitation
* No coverage metric is perfect as testing predictor/target
[Hong et al. ICST 13, Hong et al. STVR]

* Not effective to generate diverse behaviors once a test reaches
likely coverage saturation

Code Coverage-based Testing of Concurrent Programs 38

Coverage-
based

Time

Overview

e We present CUVE, a coverage-based multithreaded
program testing technique that uses a new coverage
combinatorial concurrent coverage

* The experiment results show that CUVE can detect
more concurrency faults while consuming less
testing time than conventional techniques

4 ™ 4 N
N % N J
Conventional coverage Combinatorial coverage

Code Coverage-based Testing of Concurrent Programs 39

Combinatorial Concurrent Coverage

* |dea: the combination of two test requirements of a
metric M can capture more diverse interleavings
than the test requirements by M

A combined test requirement is a combination of

two test requirements
* CovMetric(ProgCode) = TestReq ={r,, r,, ..., I',}
* CombConcCov(TestReq) = {{ry, ry}, {ry, r3} e s {0, Fo 1}
 An execution covers a combinatorial test requirement

{r,, r,} when the execution covers both r, and r,
nx(n-1)
2

— For n singular requirements, we obtain C(n, 2) =

as combined requirements

Code Coverage-based Testing of Concurrent Programs 40

Why Combinatoria

* For detecting atomicity vio

ation errors

Thread 1 Thread 2
|
[0: write(x)] |
- '., |
1: ré'af\d(x) " "y
3 wrlte(x)

2: wr‘f’é'(;(-)- I- N

Atomicity V|olat|on inducing

interleaving

Def-Use TRs: (0, 1), (0, 3), (3, 2)

Comb. TRs: {(0,1), (3, 2)}

Coverage? (1/3)

Def-Use TRs:
(0, 1), (O, 2),
(2, 3)

Def-Use TRs:
(0,3), (3, 1),
(3,2)

Thread 1 Thread 2
[O: V_Jr_ite(x)]i
1: r(;:d(x)
2: wrzg(_x) |
""m?te(x)
Non-problematic inteleaving-1
Thread 1 Thread 2
[O: wrltg(g().]._
| 'é"\'f\}'ri'f‘ &(x)
1 read&-)."
2: write(x)

Non-problematic interleaving-2

Code Coverage-based Testing of Concurrent Programs

41

Why Combinatorial Coverage? (2/3)

» Detecting general race error

arr[0..1] // array of size 2

len = 2 ;

p=0;

Threadl(): Thread2(): Thread3():
01 [lock(m) ; 11 lock(m); 21 lock(m);
02 1f (p < len) 12 1 (p < len) 22 z = arr[p];
03 arr[p] = x; 13 arr[pt++] =y; | 23 1f (p > 0)
04 1f (p+1 < len) | 14 unlock(m); 24 p--;
05 p++ ; 25 unlock(m);

06 unlock(m);

- No data race detected and no atomicity violation detected
- A test can achieve maximum Sync-Pair coverage without any
fault detection

Code Coverage-based Testing of Concurrent Programs 42

Why Combinatorial Coverage? (3/3)

arr[0..1] // array of size 2
len = 2 ;
p=0;

Ilhfggdlﬁ%;;:] Thread2(): Thread3():
2 T en)

unfock(m);)
ﬁ%i flock(m);

12 1f (p < Ten)

13 arr[p++] = y;

14 unlock(m);

Array out of

index bound
(21 Tock(my: |~
22 z = arr[p];

=2 A combined requirement {(1, 11), (11, 21)} determines

this fault detecting execution

Code Coverage-based Testing of Concurrent Programs

43

CUVE Framework

——

T

-
o o . Test generator
1 \ . .
~ N\ : : Singular Combinat.- Singular requirement
I| Estimated coveraae | ! coverage coverage (<l 1>, <by, 1>,
Target Thread model : requirement g | scheduler scheduler <lyy, [55>,
program read mode % : Scheduling controller .))
+ analyzer 1<l >, <by, Ly>, |1 Combinatorial requirement
1 11> “127 » 21> %22 1
Test case | A A, ! (<l Ly, <hy), 1y>),
" I - (<l 11>, <Ly, 135),
\. 7/] (<, b=, <l [p>), ..o}
"""""""""""""""" r““““““" Threads in program exec.
e e e e e e e e e e o e e o o e o o o B e o o o o o o o o ot o o o B o e /

* Three testing phases
(1) Coverage estimation phase ;

(2) Singular coverage-based testing phase ;

(3) Combinatorial coverage-based testing phase

Code Coverage-based Testing of Concurrent Programs 44

P

Base Concurrent Coverage Metric

Use Sync-Pair + Def-Use as a base singular metric

— Integrate two metrics defining test requirements for different code
constructs
* Sync-Pair: check a consecutive lock contention for two locking
* Def-Use: check a shared variable writing and its immediate reading
— Each metric is known to have a high correlation with fault detection

Thread 1

11: synchronized(m)

12:

X=V;}

Thread 2

R1: SX/}mhronized(m)

i 22:]

23: z=X

Sync-Pair:
(11, 21)
Def-Use:
(12, 23)

Generate a combined test requirement for every two singular

test requirements (for example, {(11, 21), (12, 23)})

Code Coverage-based Testing of Concurrent Programs

45

T

CUVE Framework

Test generator
4 ™ [Singular Combinat.- Singular requirement
, coverage coverage <l L= <l 1>,
Target Estimated coverage
proggram Thread model requirement scheduler scheduler <l5, 35>,
Scheduling controller . . .
+ analyzer (<l 15>, <[2] 1,y>, Combinatorial requirement
Test case <y, >, .} (<, 1> <y hy2),
| (<l 11>, <Ly, 135),
_ J (<by, >, <l), [p>), ..}
Threads in program exec.

AN N NN NN N NN NN NN NS NS NN NN NS NN NS SN NN NS NS NN NS SN SN NS SN RSN NS SN NN NS SN SN NS SN NN NS SN SN NS SN SN NS SN SN NS SN NN NS SN NN NS SN NN NS SN NN NS SN SN NS SN NN NS S NN NS SN NN NS SN SN NS SN RN SN NS SN SN SN SN S BN SN S S S

* Three testing phases

(1) Coverage estimation phase ;
[Hong et al., ISSTA 12]

(2) Singular coverage-based testing phase ;

[(3) Combinatorial coverage-based testing phase

Code Coverage-based Testing of Concurrent Programs 46

——————————— -

Thread Scheduling Algorithm:
Greedy Card Player Heuristic

Thread-1 ?

Coverage
-based
scheduler

Program state

Achieved coverage

Rule 1: Choose a thread that directly covers a largest number of
uncovered combined test requirements

Rule 2: Choose a thread that covers a largest number of uncovere
d combined requirements in next decision

Rule 3: Choose a thread expected to cover a smallest number of
uncovered combined requirements in later step of this execution

Code Coverage-based Testing of Concurrent Programs 47

Experiment

To know
— Does CUVE detect more diverse faults than the
conventional techniques?
— Does CUVE consume less time to detect faults than the
conventional techniques?
— Does CUVE detect higher coverage than the conventional
techniques?

By comparing CUVE with

— RN: 12 noise injection-based random testing

— RS: randomized scheduler

— JPF: Java Pathfinder (systematic testing)

— CUVE-c: Singular coverage-based testing technique
— RaceFuzzer (bug-directed testing technique)

Code Coverage-based Testing of Concurrent Programs

48

Study Object and Mutant Generation

Generate multiple faulty versions (mutants) by making

single syntactic change (mutator) systematically

Use @ sdmavad tytienisanaidbiyskand synchronization

oq synch(a){ H H synch(a){ ‘ synch(a){
cvnch(hY{ evnehhY S csvunchfh\f synch(b){
Tl Category | Mutation operator description 1
Access flag change ~
Expres E T .
bt Progarm Size I\umh‘m of | Number of (X <y) >
| (LOC) threads mutants |, =
opera ‘ — =Y)
ArrayList 3090 27 18 (201)
nizatii IreeSet 4049 22 35 (251)
mutation | onrimk Syncnronizeda bDIOCK
operator oplit synchromzed block
Code Coverage-based Testing of Concurrent Programs 49

Test Generation

Average coverage

--

Generate
Correct executions : Testc, Testc 5 Testc 3
program for 1000 sec / (exec.set) | (exec.set) | (exec.set)
(\ :?.':::
Faulty Testing . Testpy 4 Testrs 5 Testpaq 5
version 1 technique (exec.set) (exec.set) ™ (exec. set)
\ _/
Faulty 1\ Testpy Testey 5 Testen 30
version N . (exec.set) (exec.set) (exec.set)

--

FauIt detection ability
= average fault detection

Code Coverage-based Testing of Concurrent Programs 50

Fault Detection Ability Result

1 o O O o——
2:‘ [:"—G'"—_‘_;_—__;g' ------- == K.'.‘.': ''''''' 6_
= 08 K
= 0.6 — S —
S P s, AT It oy Skt
— /. ..
2 04 4 S N N—
O oot
E 0.2 ‘ _1_'_A
‘E‘ JEp——— &.J
< r
H- O i]]] | |
200 400 600 800 _ 1000
ArrayList Trmesi(see)
+ Worst 3¢ Best X Random A JPF © cUVE«c O CUVE
random random scheduler

noise noise

Code Coverage-based Testing of Concurrent Programs 51

Fault Detection Per Mutant

Average fault detection

1 - i ~ - i i~ I o o P o ol - - oy e - o~ o o TN -
assasssssssssassasassasasasaaan.. ..

—Difﬁculty of

35 mutants

TreeSet fault detection
4+ Worst »¢ Best X Random A JPF O cuvEc O CUVE
random random scheduler
noise noise

Code Coverage-based Testing of Concurrent Programs 52

Fault Detection Efficiency

* Time to reach certain level of fault detection ability

0
Prc 1.0 ‘7‘ 2.9% S © \{;10/(_’ __________ E
. > 0.9 Jane R - o é. —
T — 0.8 — AYE ;
as g
Tr. 2 0.7 r; 13
V.o —
o P —— e ——— Y- - - - -
Prc o)T 0% X X 100% '
S — 114
Arr = ‘ ; _‘_A
Has: = 02 — A ~ 302
T = d 822
a 0 : _—

]]]] |
200 400 600 3800 1000
ArrayList LR i)

Code Coverage-based Testing of Concurrent Programs 53

Coverage Achievement Result

Singular coverage Combinatorial coverage
240000
L - — 0 o
o0 I A A S
gk kKT 1600 pe—em—mimmm e
400 L” * PRI A X
- ¥ 120000 {7
200 80000 ',;,,,,*,.—~~*———*—
/
100 40000
O | |] |] :]] l I
200 400 600 SOOT' 1000 0 500 400 500 800 1000
ime (sec) Time (sec)
TreeSet
+ Worst % Best K Random O CUVE-c O CUVE
random random scheduler

noise noise

Code Coverage-based Testing of Concurrent Programs 54

Fault detection ability
o o 9o o
[he] BN [e)] co =

o

Mutant Generation Result

e Expression mutation operators generate useful faulty
versions that contain concurrency faults

e Generated mutants have diverse difficulties of

detecting faults

0.8
o o & ©
0.6
o
F 0.4
+
0.2 = = v,
¥ + X
AAKKKKKKER - 0 AAKKKAR XXX
18 mutants 12 mutants
ArrayList HashMap

4+ RNy, X RNy X RS A JPF O CUVE-c

0.8

0.6

04

0.2
35 mutants
TreeSet

O CUVE

Code Coverage-based Testing of Concurrent Programs 55

Summary

* We propose combinatorial concurrent coverage as
a useful multithreaded program testing metric

* CUVE generate thread schedules achieving high
combinatorial concurrent coverage

* Through the mutation testing, we show that CUVE
provides effective and fast conc. fault detections

Code Coverage-based Testing of Concurrent Programs 56

Future Work

* Use only a core subset of test requirements for
generating test generation targets
— How to create a core test requirement subset?
— Can we guarantee that such technique can provide safe
testing results?
 Use multiple test input values, instead of one
— What is a ‘good’ set of test input values?
— In which order a testing should use test input values?

— How can we utilize coverage metrics in this case?

Code Coverage-based Testing of Concurrent Programs

57

