
Korea Advanced Institute of

Science and Technology

The Spin Model Checker

- Advanced Features

Moonzoo Kim

CS Dept. KAIST

Review: 6 Types of Basic Statements

Assignment: always executable
Ex. x=3+x, x=run A()

Print: always executable
Ex. printf(“Process %d is created.\n”,_pid);

Assertion: always executable
Ex. assert(x + y == z)

Expression: depends on its value
Ex. x+3>0, 0, 1, 2

Ex. skip, true

Send: depends on buffer status
Ex. ch1!m is executable only if ch1 is not full

Receive: depends on buffer status
Ex. ch1?m is executable only if ch1 is not empty

2

Usages of If-statement

3

/* find the max of x and y */

If

:: x >= y -> m =x

:: x <= y -> m = y

fi

/* Random assignment */

If

:: n=0

:: n=1

:: n=2

fi

/* dubious use of else with receive statement */

If

:: ch?msg1 -> …

:: ch?msg2 ->

:: else -> … /* use empty(ch) instead*/

fi

/* necessity of else */

/* in C, if(x==0) y=10; */

If

:: x == 0 -> y = 10

:: else /* i.e., x != 0 */

fi

else

x == 0

y = 10

Usages of Do-statement

4

do

:: (x == y) -> break

:: else -> skip

od

(x == y)

else

x==y

Loop: if

:: (x == y) -> skip

:: else -> goto Loop

fi

skip x==y

else

x==y

Note that break or goto is not a statement, but control-flow modifiers

More Usages of Various Operators

More operators

The standard C preprocessors can be used

• #define, #if, #ifdef, #include

To overcome limitation of lack of functions

• #define add(a,b,c) c = a + b

• inline add(a,b,c) { c = a + b }

• Note that these two facilities still do not return a value

Build multi-dimension array

• typedef array {byte y[3];}

array x[2];

x[2].y[1] = 10;

(cond -> v1: v2) is used as (cond? v1: v2) in C

5

More Usages of Various Operators

Predefined variable
else: true iff no statement in the current process is
executable

timeout : 1 iff no statement in the model is executable

_: a scratch variable

_pid: an ID of current process

_nr_pr: a total # of active processes

_last: an ID of the process executed at previous step

STDIN: a predefined channel used for simulation
• active proctype A() { chan STDIN;STDIN?x;printf(“x=%c\n”,x);}

Remote reference
• name[pid]@label_name

– name: proctype name

• name[pid]:var_name

6

Atomic

atomic { g1; s1;s2;s3;s4}

A sequence of statements g1;s1;s2;s3;s4 is
executed without interleaving with other
processes

Executable if the guard statement (g1)is
executable

• g1 can be other statement than expression

If any statement other than the guard
blocks, atomicity is lost.

Atomicity can be regained when the
statement becomes executable

7

d_step

d_step { g1; s1; s2;s3}
g1,s1, s2, and s3 must be deterministic (non-
determinism is not allowed)

g1,s1,s2, and s3 must not be blocked

Used to perform intermediate computations as a
single indivisible step

If non-determinisim is present inside of d_step, it is
resolved in a fixed and deterministic way

• For instance, by always selecting the first true guard in every
selection and repetition structure

Ex. Sorting, or mathematical computation

Goto-jumps into and out of d_step sequences
are forbidden

8

atomic v.s. d_step

Atomic and d_step are often used in order to reduce the
size of a target model

Both sequences are executable only when the guard
statement is executable

atomic: if any other statement blocks, atomicity is lost at that
point; it can be regained once the statement becomes
executable later

d_step: it is an error if any statement other than the guard
statement blocks

Other differences:
d_step: the entire sequence is executed as one single transition.

atomic: the sequence is executed step-by-step, but without
interleaving, it can make non-deterministic choices

Caution:
infinite loops inside atomic or d_step sequences are not detected

the execution of this type of sequence models an indivisible step,
which means that it cannot be infinite

9

Examples: atomic v.s. d_step

10

s1

s2

A

t1

t2

B

s1

s2 s1

s2

s2

s1

t1

t2

t2

t2

t1

t1

atomic{s1;s2}

s1

s2 s1

s2

s2

s1

t1

t2

t2

t1

s1;s2

t1

t2

t2

t1

d_step{s1;s2}

s1;s2

s1;s2

Rendezvous Comm. within atomic Sequences

A sender performs a sending operation and a
receiver performs a receiving operation at the
same time for rendezvous communication

If a sender has ch!msg in the atomic clause,
after the rendezvous handshake, the sender
loses its atomicity

If a receiver has ch?msg in the atomic clause,
after the rendezvous handshake, the receiver
continues its atomicity

Therefore, if both operations are in atomic
clauses, atomicity moves from a sender to a
receiver in a rendezvous handshake

11

unless

{guard1; <stmts1>} unless {guard2; <stmts2>}
To provide exception handling, or preemption capability

The unless statement is executable if either
the guard statement of the main sequence is executable, or

the guard statement of the escape sequence is executable

<stmts1> can be executed until guard2 becomes true. If
then, <stmts2> becomes executable and <stmts1> is not
executable anymore

Unless clause (<stmts2>) preempts a main clause (<stmts1>) if
guard2 is executable, i.e., main clause is stopped.

Once unless clause becomes executable, no return to the main
clause

Resembles exception handling in languages like Java
and ML

12

Strong fairness

An !-run ¾ satisfies the strong fairness requirement if it contains

infinitely many transitions from every component automaton that is
enabled infinitely often in ¾

• FAIRNESS running in NuSMV

Weak fairness

An !-run ¾ satisfies the weak fairness requirement if it contains

infinitely many transitions from every component automaton that is
enabled infinitely long in ¾

Weak Fairness v.s. Strong Fairness

13

Automata A

Automata B

Automata C

!-run ¾

Automata A

Automata B

Automata C

!-run ¾ ’

Examples

14

byte x;

active proctype A() {

do

:: x=2;

:: x=3;

od;}

/* [] <> x==2

F: no fairness

F: weak fairness */

byte x;

active proctype A() {

do

:: x=2;

od;}

active proctype B() {

do

:: atomic{x==2 -> x=1;}

od;}

/* [] <> (x==1)

F: no fairness

T: strong fairness, thus T

with weak fairness */

byte x;

active proctype A() {

do

:: x=2;

:: x=3;

od;}

active proctype B() {

do

:: atomic{x==2 -> x=1;}

od;}

/* [] <> (x==1)

F: if weak fairness is

applied

*/

Embedded C Code

Spin versions 4.0 and later support the inclusion

of embedded C code into Promela model

c_expr : a user defined boolean guard

c_code : a user defined C statement

c_decl : declares data types

c_state: declares data objects

c_track: to guide the verifier whether it should

track the value of data object or not

Embedded C codes are trusted blindly and

copied through from the text of the model into
the code of pan.c

15

Example 1

c_decl {typedef struct Coord {int x, y;} Coord;}

c_state “Coord pt” “Global” /* goes inside state vector */

int z = 3; /* standard global declaration */

active proctype example() {

c_code { now.pt.x = now.pt.y = 0;};

do

:: c_expr {now.pt.x == now.pt.y } ->

c_code {now.pt.y++}

:: else -> break

od;

c_code {

printf(“values %d:%d,%d,%d\n”,

Pexample-> _pid, now.z, now.pt.x, now.pt.y); };

assert(false);

}

16

Communication between Embedded C and Promela

c_state primitive introduces a new global data

object pt of type Coord into the state vector

The object is initialized to zero according to the

convention of Promela

A global data object in a Promela model can be
accessed through now.<var> in embedded C

codes

A local data object in a Promela model can be
accessed through P<procname>-><var>

17

Example 2

c_decl {typedef struct Coord {int x, y;} Coord;}

c_code {Coord pt;} /* Embedded declaration goes inside

state vector */

int z = 3; /* standard global declaration */

active proctype example() {

c_code { pt.x = pt.y = 0;};

do

:: c_expr {pt.x == pt.y } ->

c_code {pt.y++}

:: else -> break

od;

c_code {

printf(“values %d:%d,%d,%d\n”,

Pexample-> _pid, now.z, pt.x, pt.y); };

assert(false);

}

18

