
Data Race Detection Technique

Prof. Moonzoo Kim

Computer Science, KAIST

CS492B Analysis of Concurrent Programs

Race Condition in Multithreaded Program

• A multithreaded program has a race condition if
(1) execution order of certain operations are not fixed,
and (2) their execution results are decided by their
non-deterministic execution orders.

• Race conditions sometime cause serious errors in SW
– e.g. Radiation therapy machine: Therac-25

Q: Is a race condition
always problematic?

Data Race Detection Techniques, Prof. Moonzoo Kim 2

Harmful Race Condition
Ex. Parallel adder
// adding all numbers in arr[]
long cnt=0 ;
long arr[100] ;
long sum1=0, sum2=0;

main() {
read(arr, 100) ;
start(work, &sum1);
start(work, &sum2);
print(sum1 + sum2) ;

}

work(long * sum) {
while (cnt < 100) {
*sum += arr[cnt] ;
cnt++ ;

}
}

Has a race condition?

Is this race condition harmful?

Data Race Detection Techniques, Prof. Moonzoo Kim 3

Not Harmful Race Condition
Ex. Seminar room reservation system
1 service() {
2 input(&room, ×lot) ;
3 if(isAvailable(room, timeslot){
4 print(“available. continue?”) ;
5 input(&continue) ;
6 if(continue)
7 if(reserve(room, timeslot))
8 print(“reserved.”) ;
9 else
10 print(“not available.”) ;
11 } }

User#1: “Rm01”, “7PM Today”
System: available. continue?

User#1: “Yes”
System: not available.

User#2: “Rm01”, “7PM Today”
System: available. continue?
User#2 “yes”
System: reserved.

Data Race Detection Techniques, Prof. Moonzoo Kim

Is this race condition harmful?

4

Race Bug
• A race bug is a multithreaded program fault

that causes race conditions leading to
unintended program behaviors (i.e. invalid states)

• Race bug detectors detect (predict)
race conditions that may violate common
concurrency requirements

Data Race Detection Techniques, Prof. Moonzoo Kim 5

Data Race
• A data race is a pair of concurrent operations that

read and write (or both write) data on a same
memory location without synchronization (i.e.,
concurrently without any coordination)

• A data race may violate sequential consistency* of
a target program execution

Data Race Detection Techniques, Prof. Moonzoo Kim

* L. Lamport: How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs,
IEEE Transactions on Computers, 1978

6

Sequential Consistency
• Lamport’s definition

“A multiprocessor is sequentially consistent if
(1) the result of any execution is the same as if the operations
of all the processors were executed in some sequential order,
and
(2) the operations of each individual processor occur in this
sequence in the order specified by its program”

• Most intuitive consistency model for programmers
– Processors see their own loads and stores in program order
– Processors see others’ loads and stores in program order
– All processors see same global load and store ordering

A SC preserved program is easy to understand but architects and
compiler writers want to violate it for performance

Excerpts from the Prof. Huh’s lecture note on “Consistency”

Data Race Detection Techniques, Prof. Moonzoo Kim
7

Data Race Example
class Account {

1 long balance;
//must be non-negative

2 void withdraw(long x){

3 if(balance >= x){
4 synchronized(this){
5 balance=balance–x ;

6 }

7 }

8 }

}

Data Race Detection Techniques, Prof. Moonzoo Kim

Initially, balance:10
-t1: withdraw(10) –

3 if(balance>=10)
4 lock(this)
5 t = balance
5 balance=t–10

6 unlock(this)

-t2: withdraw(5) –

3 if(balance>=5)
4 lock(this)[blocked]

4 lock(this)
5 t = balance
5 balance=t–5
6 unlock(this)

balance:
0? 10?

balance: -5

10

0

8

Data Race can Break Sequential Consistency

Does the assertion hold with a SC memory model?
Does the assertion hold with a weak memory model?

Data Race Detection Techniques, Prof. Moonzoo Kim

* J. Burnim, K. Sen, C. Stergiou: Testing concurrent programs on relaxed memory models. ISSTA 2011

Out-of-order
execution

Delayed
update Out-of-order

execution

9

Memory Model

Data Race Detection Techniques, Prof. Moonzoo Kim 10

• A memory model describes the interactions of threads through memory and
their shared use of the data (necessary for compiler optimization)
– A memory model allows a compiler to perform many important optimizations.

• Ex. The Java memory model (a weak memory model) stipulates that changes
to the values of shared variables only need to be made visible to other
threads when a synchronization barrier (e.g. lock/monitor) is reached.

– the compiler needs to make sure only that the values of (potentially shared) variables at
synchronization barriers are guaranteed to be the same in both the optimized and
unoptimized code. In particular, reordering statements in a block of code that contains no
synchronization barrier is assumed to be safe by the compiler.

• Most research in the area of memory models revolves around:
– Designing a memory model that allows a maximal degree of freedom for compiler

optimizations while still giving sufficient guarantees about race-free and (perhaps more
importantly) race-containing programs.

– Proving program optimizations that are correct with respect to such a memory model.

• https://en.wikipedia.org/wiki/Memory_model_(programming)

Excerpt from Wikipedia

Why is Data Race Harmful? (1/2)

* H. J. Boehm: Nondeterminism is unavoidable, but data races are pure evil, RACES Workshop, 2012
Data Race Detection Techniques, Prof. Moonzoo Kim

• Sometimes developers intentionally induce data races for
efficient read on shared variables (benign race or dirty read)
– e.g. test-test-and-set pattern (a.k.a., double-checked locking)
if(balance>=x){
synchronized(this){
if(balance>=x){
balance=balance–x ;

}
}

11

Why is Data Race Harmful? (2/2)

However, data races are harmful in most cases
• Execution results are (almost) unpredictable with

weak memory models
• Compilers may reorder statements around data races*

• Performance benefit of benign race is really marginal*

• It is bad for maintenance

* H. J. Boehm: Nondeterminism is unavoidable, but data races are pure evil, RACES Workshop, 2012
Data Race Detection Techniques, Prof. Moonzoo Kim 12

Data Race Detection/Prediction

• Data races are notoriously difficult to detect
– Unlike deadlock, the program behavior change by

a data race may not be noticeable to users
– Data races induce errors only under specific thread

schedules
– There are too many shared variables

• There have been two approaches:
1. Happens-before based detection technique
2. Lockset algorithm based detection technique

Data Race Detection Techniques, Prof. Moonzoo Kim 13

Happens-Before Example
class Account {

long balance;
//must be non-negative

void withdraw(long x){
1 if(balance >= x){
2 synchronized(this){
3 balance=balance–x;
4 }
5 }

}

void deposit(long x){
11 synchronized(this){
12 balance=balance+x;
13 }

}
}

Data Race Detection Techniques, Prof. Moonzoo Kim

11:lock(this)

12:t=balance

12:balance=t+10

t1: deposit(10)
Initially, balance: 10

13:unlock(this)

1:if(balance>=15)

2:lock(this)

3:t=balance

t2: withdraw(15)

4:unlock(this)

3:balance=t-15

12:balance=t+10

1:if(balance>=15)

Which execution
order is controlled
by program/sync?

Which is by chance?
12:balance=t+10

3:t=balance

20

14

Happens-before Relation (1/2)

• The happens-before relation ≺ is a smallest relation over
operations in an execution that satisfies the following
conditions:
(1) 𝑎𝑎 ≺ 𝑏𝑏 when 𝑎𝑎 and 𝑏𝑏 are executed by the same thread,

and 𝑎𝑎 comes before 𝑏𝑏
(2) 𝑎𝑎 ≺ 𝑏𝑏 when 𝑎𝑎 and 𝑏𝑏 are ordered by the same synchronization

entity, and 𝑎𝑎 comes before 𝑏𝑏 (e.g. lock, wait/notify, join)
(3) If 𝑎𝑎 ≺ 𝑏𝑏 and 𝑏𝑏 ≺ 𝑐𝑐 then 𝑎𝑎 ≺ 𝑐𝑐

 𝒂𝒂 and 𝒃𝒃 are concurrent if 𝒂𝒂 ⊀ 𝒃𝒃 and 𝒃𝒃 ⊀ 𝒂𝒂

Data Race Detection Techniques, Prof. Moonzoo Kim 15

Happens-before Relation (2/2)

Data Race Detection Techniques, Prof. Moonzoo Kim

• Leslie Lamport (Microsoft
research)
– Winner of the 2013

Turing award for advances in
reliability of distributed/
concurrent systems

– Happens-before relation,
sequential consistency,
Bakery algorithm,
TLA (temporal logic of actions),
and LaTeXhttp://amturing.acm.org/

http://research.microsoft.com/apps/video/default.aspx?id=210551

16

http://research.microsoft.com/apps/video/default.aspx?id=210551

Happens-Before Example
class Account {

long balance;
//must be non-negative

void withdraw(long x){
1 if(balance >= x){
2 synchronized(this){
3 balance=balance–x;
4 }
5 }

}

void deposit(long x){
11 synchronized(this){
12 balance=balance+x;
13 }

}
}

Data Race Detection Techniques, Prof. Moonzoo Kim

11:lock(this)

12:t=balance

12:balance=t+10

t1: deposit(10)
Initially, balance: 10

13:unlock(this)

1:if(balance>=15)

2:lock(this)

3:t=balance

t2: withdraw(15)

4:unlock(this)

3:balance=t-15

12:balance=t+10

1:if(balance>=15)

p1

p2

p3

p4

q1

q2

q3

q4

q5

(1) 𝑎𝑎 ≺ 𝑏𝑏 when 𝑎𝑎 and 𝑏𝑏 are executed by the same thread,
and 𝑎𝑎 comes before 𝑏𝑏
E.g. p1 ≺ p2, p1 ≺ p3, p1 ≺ p4

(2) 𝑎𝑎 ≺ 𝑏𝑏 when 𝑎𝑎 and 𝑏𝑏 are ordered by the same lock,
and 𝑎𝑎 comes before 𝑏𝑏
E.g. p1 ≺ q2

(3) If 𝑎𝑎 ≺ 𝑏𝑏 and 𝑏𝑏 ≺ 𝑐𝑐 then 𝑎𝑎 ≺ 𝑐𝑐
E.g. p1 ≺ q2 ∧ q2 ≺ q3 → p1 ≺ q3 17

Happens-before Based Detection (1/2)

• The pair of operations 𝑎𝑎 and 𝑏𝑏 is data race if all of
the following conditions hold:
(1) 𝑎𝑎 and 𝑏𝑏 access the same variable, and
(2) at least one operation is writing, and
(3) 𝑎𝑎 ⊀ 𝑏𝑏 and 𝑏𝑏 ⊀ 𝑎𝑎

• Several tools such as MultiRace1 and FastTrack2 use
this definition for data race detection

Data Race Detection Techniques, Prof. Moonzoo Kim

1 E. Pozniansky et al.: MultiRace: Efficient on-the-fly data race detection in multithreaded
C++ programs, PPoPP, 2003

2 C. Flanagan et al.: FastTrack: Efficient and Precise Dynamic Race Detection, PLDI, 2009

18

• Happens-before relation provides precise reasoning
of concurrency of operations (i.e., no false positives)

• However, these techniques may or may not detect
data races depending on observed execution scenario
(i.e., false negatives)

• In addition, tracking happens-before relation induces
heavy runtime overhead

Data Race Detection Techniques, Prof. Moonzoo Kim

Happens-before Based Detection (2/2)

19

• Happens-before relation provides precise reasoning
of concurrency of operations (i.e., no false positives)

• However, these techniques may or may not detect
data races depending on observed execution scenario
(i.e., false negatives)

• In addition, tracking happens-before relation induces
heavy runtime overhead

Data Race Detection Techniques, Prof. Moonzoo Kim

Happens-before Based Detection (2/2)

20

Another Execution Scenario
class Account {

long balance;
//must be non-negative

void withdraw(long x){
1 if(balance >= x){
2 synchronized(this){
3 balance=balance–x;
4 }
5 }

}

void deposit(long x){
11 synchronized(this){
12 balance=balance+x;
13 }

}
}

Data Race Detection Techniques, Prof. Moonzoo Kim

11:lock(this)

12:t=balance

12:balance=t+10

t1: deposit(10)
Initially, balance: 10

13:unlock(this)

2:lock(this)

3:t=balance

t2: withdraw(5)

4:unlock(this)

3:balance=t-5

1:if(balance>=5)

12:balance=t+10

1:if(balance>=5)

21

Data race is not detected!

Lockset Based Data Race Detection
• Lock discipline

– Every access to a shared variable MUST be guarded
by at least one lock consistently

• Dynamic data race detector Eraser [Savage, SOSP 97]

– Checks that every shared memory location follows
the lock discipline

• Consider memory locations for global variables, and heap
memory locations as shared memory locations

Data Race Detection Techniques, Prof. Moonzoo Kim 22

Lockset Algorithm
• Eraser monitors every read/write operation and every

lock/unlock operation in an execution

• For each variable v, Eraser maintains the lockset C(v),
candidate locks for the lock discipline
– Let L(t) be the set of locks held by thread t
– For each v, initialize C(v) to the set of all locks

• For each read/write on variable v by thread t
– C(v) := C(v) ∩ L(t)
– If C(v) = ∅, report that there is a data race for v

Data Race Detection Techniques, Prof. Moonzoo Kim 23

Lockset Algorithm Example
class Account {

long balance;
//must be non-negative

void withdraw(long x){
1 if(balance >= x){
2 synchronized(this){
3 balance=balance – x;
4 }
5 }

}

void deposit(long x){
11 synchronized(this){
12 balance=balance + x;
13 }

}
}

Data Race Detection Techniques, Prof. Moonzoo Kim 24

11:lock(this)

12:t=balance

12:balance=t+10

t1: deposit(10)

Initially, balance: 10

13:unlock(this)

2:lock(this)

3:t=balance

t2: withdraw(5)

4:unlock(this)

3:balance=t-5

1:if(balance>=5)

L(t1)={this}
C(balance)=

{*} ∩ L(t1) = {this}C(balance)=
{this}∩L(t1)={this}

L(t1)=∅

L(t1)=∅,
L(t2)=∅

C(balance) =
{this} ∩ L(t2) = ∅

Revisiting False Negative Example
class Account {

long balance;
//must be non-negative

void withdraw(long x){
1 if(balance >= x){
2 synchronized(this){
3 balance=balance – x;
4 }
5 }

}

void deposit(long x){
11 synchronized(this){
12 balance=balance + x;
13 }

}
}

Data Race Detection Techniques, Prof. Moonzoo Kim

11:lock(this)

12:t=balance

t1: deposit(10)
Initially, balance: 10

13:unlock(this)

2:lock(this)

3:t=balance

t2: withdraw(5)

4:unlock(this)

3:balance=t-5

1:if(balance>=5)

12:balance=t+10

1:if(balance>=5)
C(balance) =

{*} ∩ L(t2) = ∅

25

Improving Lockset Algorithm
• The naïve lockset algorithm may generate many false positives and

false negatives

• 2 cases that cause false positives
– Initialization

• A thread writes data on the variable without locking before it
makes the variable accessible by other threads

– Read-shared variable
• After initialization, the variable is only read, and never

updated.
• 1 case that causes false negatives

– Readers-writer lock (aka. shared-exclusive lock, or multi-reader
lock)

Data Race Detection Techniques, Prof. Moonzoo Kim 26

Memory Location State
• Eraser maintains the state for each memory location

to check if it is in initialization, and if read-shared.

Data Race Detection Techniques, Prof. Moonzoo Kim

C(v) = {*}

C(v) is not
updated

C(v) = C(v)∩L(t)
(no bug report)

C(v) = C(v)∩L(t),
report if C(v)=∅

Initialization

Read-shared
27

Example

Data Race Detection Techniques, Prof. Moonzoo Kim

int max, iter ;
Lock m ;

main(){
iter= 10;
max = 0 ;
start(f);
start(f);
}

f() {
int i, t;
for(i=0;i<iter;i++){
t = input();
lock(m);
if (t>max)
max = t ;
unlock(m);
}
}

t2:f()

if(0 < iter)
t = 10
lock(m)
if(t > max)
max = t
unlock(m)

…

t3:f()

if(0 < iter)
t = 5

lock(m)
if(t>max)
unlock(m)
…

t1:main()

iter= 10
max = 0
start(t2)
start(t3)

28

Example

Data Race Detection Techniques, Prof. Moonzoo Kim

t0 t1 t2 L(t0) L(t1) L(t2) C(iter) S(iter) C(max) S(max)
(initial state)

iter=10

max = 0

start(f)

start(f)

if(0<iter)

if(0<iter)

lock(m)

if(t>max)

max = t

unlock(m)

lock(m)

if(t>max)

unlock(m)

... ...

29

Reducing More False Positives
• Use happens-before relation induced by wait/notify and

thread start/join to reduce false positives

• Check if one memory location is once used for a variable,
and then re-used for another variable
– For cases where malloc() reuses allocated memory

• Track all references to a memory location to precisely check
if multiple threads can access the memory location
– For cases where global variables become local (e.g., an element of a global list

which is removed from the list)

Data Race Detection Techniques, Prof. Moonzoo Kim 30

Reducing False Negative

• Check for a set of memory locations assigned for a
single variable rather than a single memory location
– E.g. long, double, array, compound data (struct)

Data Race Detection Techniques, Prof. Moonzoo Kim 31

Considering Readers-Writer Locks
• A thread acquires a readers-writer lock either in read-

mode or write-mode
• For each variable, Eraser additionally checks if there is

a lock consistently held in write-mode for write accesses
– In Shared-Modified state

• For each read on variable v by thread t
– C(v) := C(v) ∩ L(t)
– If C(v) = ∅, report that there is a data race for v

• For each write on variable v by thread t
– C(v) := C(v) ∩ LW(t)

» LW(t) is a set of locks held in a write mode by t
– If C(v) = ∅, report that there is a data race for v

Data Race Detection Techniques, Prof. Moonzoo Kim 32

Performance Improvement (1/2)
• Dynamic data race detection tools are still too slow to be

practical
– Intel ThreadChecker incurs 100—200x slow down, Google

ThreadSanitizer 30--40x, and FastTrack 8.5x in average*

• Approach
– Pre-processing: use static analyses to filter out non-shared

variables and read-only variables before runtime monitoring

– Hardware assisted monitoring: use a customized hardware to
monitor memory accesses and synchronization with low cost

Data Race Detection Techniques, Prof. Moonzoo Kim

* T. Sheng et al.: RACEZ: A Lightweight and Non-invasive Race Detection Tool for Production
Applications, ICSE 2011

33

Performance Improvement (2/2)
• Approach (cond.)

– Sampling: monitor only a subset of operations, or a subset of
memory locations

• LiteRace [Marino, PLDI 09] assumes the cold region hypothesis
“data races are likely to occur when a thread is executing
cold (infrequently accessed) region in the program”

• Pacer [Bond, PLDI 10] allows users to configure sampling ratio,
and guarantees higher detection ratio for higher sampling ratio.

• RACEZ [Sheng, ICSE 11] exploits performance monitoring unit to
obtain partial information on memory accesses with low cost

Data Race Detection Techniques, Prof. Moonzoo Kim 34

Next Class: Race Bug Which Is Not a Data Race
class Account {
long balance;

//must be non-negative

void getBalance(){
1 synchronized(this){
2 return balance;
3 }

}
void withdraw(long x){

4 if(getBalance()>x){
5 synchronized(this){
6 balance=balance–x;
7 }

}
}
}

Data Race Detection Techniques, Prof. Moonzoo Kim

t1: withdraw(10)
Initially, balance: 10

t2: withdraw(10)

1: lock(this)
2: tmp = balance
3: unlock(this)

1: lock(this)
2: tmp = balance
3: unlock(this)

4: if(tmp>10)
5: lock(this)
6: tmp = balance
6: balance = tmp-10
7: unlock(this)

4: if(tmp>10)
5: lock(this)
6: tmp = balance
6: balance = tmp-10
7: unlock(this)

Data race free,
but race bug

35

	Data Race Detection Technique
	Race Condition in Multithreaded Program
	Harmful Race Condition
	Not Harmful Race Condition
	Race Bug
	Data Race
	Sequential Consistency
	Data Race Example
	Data Race can Break Sequential Consistency
	Memory Model
	Why is Data Race Harmful? (1/2)
	Why is Data Race Harmful? (2/2)
	Data Race Detection/Prediction
	Happens-Before Example
	Happens-before Relation (1/2)
	Happens-before Relation (2/2)
	Happens-Before Example
	Happens-before Based Detection (1/2)
	Happens-before Based Detection (2/2)
	Happens-before Based Detection (2/2)
	Another Execution Scenario
	Lockset Based Data Race Detection
	Lockset Algorithm
	Lockset Algorithm Example
	Revisiting False Negative Example
	Improving Lockset Algorithm
	Memory Location State
	Example
	Example
	Reducing More False Positives
	Reducing False Negative
	Considering Readers-Writer Locks
	Performance Improvement (1/2)
	Performance Improvement (2/2)
	Next Class: Race Bug Which Is Not a Data Race

