
Active Thread Scheduling
Manipulation: CalFuzzer

Prof. Moonzoo Kim
Computer Science, KAIST

CS492B Analysis of Concurrent Programs

CalFuzzer
• Developed by Prof. Koushik Sen’s group at UC Berkeley

http://srl.cs.berkeley.edu/~ksen/calfuzzer/

• Dynamic analysis + Active testing framework for
concurrent Java programs
– Dynamic analysis: detect/predict concurrency bugs
– Active testing: generate thread scheduling for inducing

detected/predicted concurrency bugs

• Provide useful infra-structure to construct various
dynamic analysis and testing techniques

CalFuzzer Tutorial, Prof. Moonzoo Kim 2

http://srl.cs.berkeley.edu/%7Eksen/calfuzzer/

CalFuzzer Framework

CalFuzzer Tutorial, Prof. Moonzoo Kim 3

Target
program’s

Java bytecode
Instrumentor

Instrumented
Java bytecode

Dynamic
analyzer

Test
executions

Instrumented
Java bytecode

Bug prediction
information

Test
generator

Instrumented
Java bytecode

Bug prediction
information

CalFuzzer

Instrume-
ntation
phase

Dynamic
analysis
phase

Testing
phase

Instrumentation
• Calfuzzer modifies a target Javabyte code to insert probes each

of which executes before/after certain operations
– e.g. before every memory read instruction, insert a probe to call

Observer.readBefore(thread, addr), which is defined by a user

• In the dynamic analysis phase, user-written probes are executed
to extract runtime information
– e.g. a user writes Observer.readBefore(thread, addr) to log

which thread reads which memory addresses

• In the testing phase, a user can write probes to pause/continue
threads to control a thread scheduler as s/he wants

CalFuzzer Tutorial, Prof. Moonzoo Kim 4

Instrumentation Example

CalFuzzer Tutorial, Prof. Moonzoo Kim 5

public class Account {
…
public synchronized int balance()
{
return balance ;
}
}

...
public synchronized int balance();
Code:

aload_0
getfield #2 // Field balance
ireturn

...
public synchronized int balance();
Code:
...
invokestatic #39 //invoke Observer.lockAfter(int)
...
invokestatic #40 //invoke Observer.readBefore(thread,addr)
aload_0
getfield #2 // Field balance
ireturn

<Source code> <Bytecode>

<Instrumented code>

after lock(this)
before

read(balance)

CalFuzzer Instrumentation
• CalFuzzer inserts the probes to call the following functions at the following sites

CalFuzzer Tutorial, Prof. Moonzoo Kim 6

Probe method Instrumented site
initialize() Before starting a program

finish() When a target program terminates

methodEnterBefore() Before entering a method call

methodExitAfter() After returning from a method call

lockBefore()/lockAfter() Before/after entering a synchronized block, or
invoking a synchronized method

unlockAfter() After existing a synchronized block/method

startBefore() Before a new thread is starting

joinAfter() After join with a child thread

waitAfter() After awaken from a waiting

notifyBefore()/ notifyAllBefore() Before notify() / notifyAll()

readBefore()/readAfter() Before/after reading a memory address
(i.e., object field reference, array access)

writeBefore()/writeAfter() Before/after writing a memory address

Bytecode Instrumentation
• CalFuzzer uses Soot for bytecode instrumentation

– Soot is a Java bytecode engineering framework
http://www.sable.mcgill.ca/soot/tutorial/index.html

– Soot converts a given bytecode to a Jimple code
• Jimple is a Soot intermediate representation
• Jimple is 3-addressed typed code in a control-flow graph

– Each variable has its name and type

• Jimple code is easier to analyze and instrument than bytecode
– Only 15 kinds of statements (bytecode has more than 200 kinds of instructions)

– Using Soot, the Calfuzzer instrumentation module
1. converts target bytecode to jimple code, and
2. modifies the Jimple code to insert probes, and
3. compiles the modified Jimple code into bytecode

CalFuzzer Tutorial, Prof. Moonzoo Kim 7

http://www.sable.mcgill.ca/soot/tutorial/index.html

Dynamic Analysis Phase
• CalFuzzer binds an instrumented program with an

AnalysisImpl instance (i.e., analyzer) which implements
each probe method

• CalFuzzer instruments a given target program and then
executes the instrumented program with an analyzer

CalFuzzer Tutorial, Prof. Moonzoo Kim 8

read(X)
readBefore()

Target program execution

Thread-3
…

…

Thread-1 Thread-2

Observer

Data race
detector
Deadlock
detector

Atomicity
detector

Data race
tester

Deadlock
tester

Atomicity
tester

Thread
schedule
generator

Dynamic
analyzer

Test
generator

CalFuzzer runtime modules

Analyzer
• An analyzer should implements the probe methods to monitor and

analyze a target program execution (i.e., implement AnalysisImpl)

• For each test execution, CalFuzzer creates one instance of analyzer
for monitoring a target program execution

• In an execution, a thread executes probes before and after certain
operations
– Multiple threads may execute methods of an analyzer concurrently

• A user has to be careful not to raise concurrency errors caused by his/her own probes

• See src/javato/activetesting/BlankAnalysis.java

CalFuzzer Tutorial, Prof. Moonzoo Kim 9

List of Useful CalFuzzer Probes
• Initialization & finalization

– public void initialize(), public void finish()

• Targeting methods
– public void methodEnterBefore(Integer iid, Integer thread, String method)
– public void methodExitAfter(Integer iid, Integer therad, String method)

• Targeting lock operations
– public void lockBefore(Integer iid, Integer thread, Integer lock, Object actualLock)
– public void lockAfter(Integer iid, Integer thread, Integer lock, Object actualLock)
– public void unlockAfter(Integer iid, Integer thread, Integer lock, Object actualLock)

• Targeting read/write operations
– public void readBefore(Integer iid, Integer thread, Long memory, boolean isVolatile)
– public void readAfter(Integer iid, Integer thread, Long memory, boolean isVolatile)
– public void writeBefore(Integer iid, Integer thread, Long memory, boolean isVolatile)
– public void writeAfter(Integer iid, Integer thread, Long memory, boolean isVolatile)

• Targeting wait-notify operations
• Targeting thread operations 10

Initialize and Finish
• public void initialize()

– Executed before a target program starts
– To initialize the data structure and read user inputs

• public void finish()
– Executed when a target program terminates
– Analyze the monitored data and print out the result

CalFuzzer Tutorial, Prof. Moonzoo Kim 11

Method Related Probes
• public void methodEnterBefore(Integer iid, Integer thread,

String method)
– Executed before a target method is called
– iid: the unique identifier of an inserted probe (i.e., code location)
– thread: the unique identifier of a current thread
– method: the signature of the called method

• public void methodExitAfter(Integer iid, Integer therad, String
method)
– Executed after a method call is returned

CalFuzzer Tutorial, Prof. Moonzoo Kim 12

Locking Related Probe
• public void lockBefore(Integer iid, Integer thread, Integer lock, Object

actualLock)
– Executed before a synchronized block or a synchronized method call
– lock: the unique identifier of a target lock (i.e. object)
– actualLock: the memory address to a target lock

• public void lockAfter(Integer iid, Integer thread, Integer lock, Object
actualLock)
– Executed after entering a synchronized block or a synchronized method

• public void unlockAfter(Integer iid, Integer thread, Integer lock,
Object actualLock)
– Executed after existing a synchronized block or a synchronized method

CalFuzzer Tutorial, Prof. Moonzoo Kim 13

Data Access Related Probes (1/2)
• public void readBefore(Integer iid, Integer thread, Long memory, boolean isVolatile)

– Executed before every read operation
– memory: the unique identifier of a target memory address
– isVolatile: whether or not a target memory address is volatile (free from data race)

• http://en.wikipedia.org/wiki/Volatile_variable

• public void readAfter(Integer iid, Integer thread, Long memory, boolean isVolatile)
– Executed after every read operation

• public void writeBefore(Integer iid, Integer thread, Long memory, boolean
isVolatile)
– Executed before every write operation

• public void writeAfter(Integer iid, Integer thread, Long memory, boolean isVolatile)
– Executed after every write operation

CalFuzzer Tutorial, Prof. Moonzoo Kim 14

http://en.wikipedia.org/wiki/Volatile_variable

Data Access Related Probes (2/2)
• Race conditions may occur when there is no

synchronization in data access probes

CalFuzzer Tutorial, Prof. Moonzoo Kim 15

Thread-1

writeBefore(x):
assume that Thread-1
will access x next

write(x)

Thread-2

writeBefore(x):

write(x)

Wait and Notify Related Probes
• public void waitAfter(Integer iid, Integer thread, Integer lock)

– Executed after awaken from a waiting operation
– In Java, a thread can wait on an object, similar to lock/unlock

• public void notifyBefore(Integer iid, Integer thread, Integer lock)
– Executed before a notify operation

• public void notifyAllBefore(Integer iid, Integer thread, Integer lock)
– Executed after a notify operation

CalFuzzer Tutorial, Prof. Moonzoo Kim 16

Thread Related Probes
• public void startBefore(Integer iid, Integer parent, Integer child)

– Executed before starting a new thread
– parent: the unique identifier of the thread that creates a new thread
– child: the unique identifier of a new thread

• public void joinAfter(Integer iid, Integer parent, Integer child)
– Executed after the join operation
– parent: the unique identifier of the thread that joins on a child thread
– child: the unique identifier of the child thread

CalFuzzer Tutorial, Prof. Moonzoo Kim 17

Useful APIs
• javato.activetesting.common.Parameters

– contains the environment configurations on CalFuzzers

• javato.activetesting.analysis.Observer.getIidToLine(iid)
– returns a code location as String for a given iid

CalFuzzer Tutorial, Prof. Moonzoo Kim 18

Ant Script
• CalFuzzer uses Apache Ant to build (i.e. compile Java source

code) and execute analysis techniques
• The build script is defined in build.xml
• The execution scripts are defined in run.xml

– clean
– instr

• Run the generic instrumentor for a target program
• javato.work.dir: the work directory of a target program
• javato.app.main.class: the class name of a target program

– analysis-once
• Generate a test case execution with a dynamic analyzer
• javato.activetesting.analysis.class: the class name of

the dynamic analysis technique in CalFuzzer

CalFuzzer Tutorial, Prof. Moonzoo Kim 19

CalFuzzer Tutorial, Prof. Moonzoo Kim 20

	Active Thread Scheduling Manipulation: CalFuzzer
	CalFuzzer
	CalFuzzer Framework
	Instrumentation
	Instrumentation Example
	CalFuzzer Instrumentation
	Bytecode Instrumentation
	Dynamic Analysis Phase
	Analyzer
	List of Useful CalFuzzer Probes
	Initialize and Finish
	Method Related Probes
	Locking Related Probe
	Data Access Related Probes (1/2)
	Data Access Related Probes (2/2)
	Wait and Notify Related Probes
	Thread Related Probes
	Useful APIs
	Ant Script
	슬라이드 번호 20
	Bytecode Instrumentation (2/2)

