
CS550 Intro. to SE
Spring 2007 1

Midterm Exam StatisticsMidterm Exam Statistics

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

StatisticsStatistics
Average: 60.9Average: 60.9
Highest score :81Highest score :81
Lowest score: 26Lowest score: 26

Linear distribution of Linear distribution of
scoresscores

Your efforts of studying Your efforts of studying
pay you back wellpay you back well
Spend time and energy Spend time and energy
to read SEPA !!!to read SEPA !!!

CS550 Intro. to SE
Spring 2007 2

Chapter 11Chapter 11
ComponentComponent--Level Design Level Design

Moonzoo Kim
CS Division of EECS Dept.

KAIST
moonzoo@cs.kaist.ac.kr

http://pswlab.kaist.ac.kr/courses/cs550-07

CS550 Intro. to SE
Spring 2007 3

Overview of Ch 11. Overview of Ch 11.
modeling Componentmodeling Component--level Designlevel Design

11.1 What is a component11.1 What is a component
An objectAn object--oriented vieworiented view

11.2 Designing class11.2 Designing class--based componentsbased components
Basic design principlesBasic design principles
ComponentComponent--level design guidelineslevel design guidelines
CohesionCohesion
CouplingCoupling

11.3 Conducting component11.3 Conducting component--level designlevel design
11.4 Object constraint language (OCL)11.4 Object constraint language (OCL)
11.5 Designing conventional components11.5 Designing conventional components

Graphical design notationGraphical design notation
Tabular design notationTabular design notation
Program design languageProgram design language

CS550 Intro. to SE
Spring 2007 4

What is a Component?What is a Component?

OMG Unified Modeling Language SpecificationOMG Unified Modeling Language Specification [OMG01] [OMG01]
defines a component as defines a component as

“…“… a modular, deployable, and replaceable part of a system that a modular, deployable, and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces.encapsulates implementation and exposes a set of interfaces.””

OO view: a component contains OO view: a component contains a set of collaborating a set of collaborating
classesclasses
Conventional view: logic, the internal data structures Conventional view: logic, the internal data structures
that are required to implement the processing logic, and that are required to implement the processing logic, and
an interface that enables the component to be invoked an interface that enables the component to be invoked
and data to be passed to it.and data to be passed to it.

CS550 Intro. to SE
Spring 2007 5

OO ComponentOO Component

Prin t Job

c om put eJob

in i t ia t eJob

number Of Pages
number Of Sides
paperType
paperWeight
paperSize
paperColor

magnif icat ion
colorRequirement s
pr oduct ionFeat ur es
collat ionOpt ions
bindingOpt ions
coverSt ock
bleed
pr ior it y

t ot alJobCost
WOnumber

PrintJob

comput ePageCost ()
comput ePaperCost ()
comput ePr odCost ()
comput eTot alJobCost ()
buildWorkOr der ()
checkPr ior it y ()
passJobt o Product ion()

< < in t er f ace>>
co mp u t eJo b

comput ePageCost ()
comput ePaper Cost ()
comput ePr odCost ()
comput eTot alJobCost ()

<< in t er f ace>>
in it iat eJo b

buildWorkOr der ()
checkPr ior it y ()
passJobt o Product ion()

num berOf Pages
num berOf Sides
paperTy pe
m agni f i c a t ion
produc t ionFeat ures

Prin t Job

c om put eJobCost()
passJobt oPrin t e r()

Analysis class

Elaborated design class

Design component

CS550 Intro. to SE
Spring 2007 6

Basic Design PrinciplesBasic Design Principles
The OpenThe Open--Closed Principle (OCP).Closed Principle (OCP).

““A module [component] should be open for extension but closed forA module [component] should be open for extension but closed for
modification.modification.

The The LiskovLiskov Substitution Principle (LSP).Substitution Principle (LSP).
““Subclasses should be substitutable for their base classes.Subclasses should be substitutable for their base classes.

Dependency Inversion Principle (DIP).Dependency Inversion Principle (DIP).
““Depend on abstractions. Do not depend on concretions.Depend on abstractions. Do not depend on concretions.””

The Interface Segregation Principle (ISP).The Interface Segregation Principle (ISP).
““Many clientMany client--specific interfaces are better than one general purpose interfacspecific interfaces are better than one general purpose interface.e.

The Release Reuse Equivalency Principle (REP).The Release Reuse Equivalency Principle (REP).
““The granule of reuse is the granule of release.The granule of reuse is the granule of release.””

The Common Closure Principle (CCP).The Common Closure Principle (CCP).
““Classes that change together belong together.Classes that change together belong together.””

The Common Reuse Principle (CRP).The Common Reuse Principle (CRP).
““Classes that arenClasses that aren’’t reused together should not be grouped together.t reused together should not be grouped together.””

CS550 Intro. to SE
Spring 2007 7

Source: Martin, R., Source: Martin, R., ““Design Principles and Design Patterns,Design Principles and Design Patterns,””
downloaded from http://downloaded from http://www.objectmentor.comwww.objectmentor.com, 2000., 2000.

CS550 Intro. to SE
Spring 2007 8

The OCP in ActionThe OCP in Action (pg332)(pg332)
The scene: The scene:

Vinod'sVinod's cubicle.cubicle.

The players: The players:
VinodVinod, , ShakiraShakira
members of the members of the SafeHomeSafeHome software software
engineering team.engineering team.

The conversation:The conversation:
VinodVinod: : I just got a call from Doug I just got a call from Doug
[the team manager]. He says [the team manager]. He says
marketing wants to add a new marketing wants to add a new
sensor.sensor.
ShakiraShakira (smirking): (smirking): Not again, Not again,
jeez!jeez!
VinodVinod: : Yeah ... and you're not Yeah ... and you're not
going to believe what thesegoing to believe what these

guys have come up with.guys have come up with.
ShakiraShakira: : Amaze me.Amaze me.
VinodVinod (laughing): (laughing): They call it a They call it a
doggie angst sensor. doggie angst sensor.
ShakiraShakira: : Say what?Say what?
VinodVinod: : It's for people who leave It's for people who leave
their pets home in apartments or their pets home in apartments or
condos or houses that are close to condos or houses that are close to
one another. The dog starts to bark. one another. The dog starts to bark.
The neighbor gets angry and The neighbor gets angry and
complains. With this sensor, if the complains. With this sensor, if the
dog barks for more than, say, a dog barks for more than, say, a
minute, the sensor sets a special minute, the sensor sets a special
alarm mode that calls the owner on alarm mode that calls the owner on
his or her cell phone.his or her cell phone.
ShakiraShakira: : You're kidding me, right?You're kidding me, right?

CS550 Intro. to SE
Spring 2007 8

CS550 Intro. to SE
Spring 2007 9

VinodVinod: : Nope. Doug wants to know Nope. Doug wants to know
how much time it's going to take to how much time it's going to take to
add it to the security function.add it to the security function.
ShakiraShakira (thinking a moment): (thinking a moment): Not Not
much ... look. [She shows much ... look. [She shows VinodVinod
Figure 11.4] We've isolated the Figure 11.4] We've isolated the
actual sensor classes behind the actual sensor classes behind the
sensor sensor interface. As long as we interface. As long as we
have specs for the doggie sensor, have specs for the doggie sensor,
adding it should be a piece of cake. adding it should be a piece of cake.
Only thing I'll have to do is create anOnly thing I'll have to do is create an
appropriate component ... uh, class, appropriate component ... uh, class,
for it. No change to the for it. No change to the Detector Detector
component at all.component at all.
VinodVinod: : So I'll tell Doug it's no bigSo I'll tell Doug it's no big

deal.deal.
ShakiraShakira: : Knowing Doug, he'll keep Knowing Doug, he'll keep
us focused and not deliver the us focused and not deliver the
doggie thing until the next release.doggie thing until the next release.
VinodVinod: : That's not a bad thing, but That's not a bad thing, but
can you implement now if he wants can you implement now if he wants
you to?you to?
ShakiraShakira: : Yeah, the way we Yeah, the way we
designed the interface lets me do it designed the interface lets me do it
with no hassle.with no hassle.

CS550 Intro. to SE
Spring 2007 9

CS550 Intro. to SE
Spring 2007 10

Design GuidelinesDesign Guidelines

ComponentsComponents
Naming conventions should be established for components that areNaming conventions should be established for components that are
specified as part of the architectural model and then refined anspecified as part of the architectural model and then refined and d
elaborated as part of the componentelaborated as part of the component--level modellevel model

InterfacesInterfaces
Interfaces provide important information about communication anInterfaces provide important information about communication and d
collaboration (as well as helping us to achieve the OPC)collaboration (as well as helping us to achieve the OPC)

Dependencies and InheritanceDependencies and Inheritance
it is a good idea to model dependencies from left to right and it is a good idea to model dependencies from left to right and
inheritance from bottom (derived classes) to top (base classes).inheritance from bottom (derived classes) to top (base classes).

CS550 Intro. to SE
Spring 2007 11

CohesionCohesion
OO view: OO view:

cohesioncohesion implies that a component or class implies that a component or class
encapsulates only attributes and operations that are encapsulates only attributes and operations that are
closely related to one another and to the class or closely related to one another and to the class or
component itselfcomponent itself

Levels of cohesionLevels of cohesion
FunctionalFunctional
LayerLayer
CommunicationalCommunicational
SequentialSequential
ProceduralProcedural
TemporalTemporal
utilityutility

CS550 Intro. to SE
Spring 2007 12

Cohesion in ActionCohesion in Action (pg336(pg336--337)337)
The scene: The scene:

Jamie's cubicle.Jamie's cubicle.

The players: The players:
JamieJamie, , EdEd
members of the members of the SafeHomeSafeHome software software
engineering team who are working on engineering team who are working on
the surveillance function.the surveillance function.

The conversation:The conversation:
EdEd: : I have a firstI have a first--cut design of the cut design of the
camera component.camera component.
JamieJamie: : WannaWanna do a quick review?do a quick review?
EdEd: : I guess ... but really, I'd like I guess ... but really, I'd like
your input on something.your input on something.
(Jamie gestures for him to (Jamie gestures for him to
continue.)continue.)

EdEd: : We originally defined five We originally defined five
operations for operations for camera. camera. Look ... Look ...
[shows Jamie the list][shows Jamie the list]

determineTypedetermineType() () tells me the type of tells me the type of
camera.camera.
translateLocationtranslateLocation() () allows me to move allows me to move
the camera around the floor plan.the camera around the floor plan.
displayIDdisplayID() () gets the camera ID and gets the camera ID and
displays it near the camera icon.displays it near the camera icon.
displayViewdisplayView() () shows me the field of shows me the field of
view of the camera graphically.view of the camera graphically.
displayZoomdisplayZoom() () shows me the shows me the
magnification of the camera graphically.magnification of the camera graphically.

EdEd: : I've designed each separately, I've designed each separately,
and they're pretty simple and they're pretty simple
operations. So I thoughtoperations. So I thought

CS550 Intro. to SE
Spring 2007 12

CS550 Intro. to SE
Spring 2007 13

it might be a good idea to combine it might be a good idea to combine
all of the display operations into all of the display operations into
just one that's called just one that's called
displayCameradisplayCamera()()----it'll show the ID, it'll show the ID,
the view, and the zoom. the view, and the zoom.
WhaddayaWhaddaya think?think?
JamieJamie (grimacing): (grimacing): Not sure Not sure
that's such a good idea.that's such a good idea.
EdEd (frowning): (frowning): Why? All of these Why? All of these
little ops can cause headaches.little ops can cause headaches.
JamieJamie: : The problem with The problem with
combining them is we lose combining them is we lose
cohesion. You know, the cohesion. You know, the
displayCameradisplayCamera() () op won't be op won't be
singlesingle--minded.minded.

EdEd (mildly exasperated): (mildly exasperated): So So
what? The whole thing will be less what? The whole thing will be less
than 100 source lines, max. It'll be than 100 source lines, max. It'll be
easier to implement, I think.easier to implement, I think.
JamieJamie: : And what if marketing And what if marketing
decides to change the way that we decides to change the way that we
represent the view field?represent the view field?
EdEd: : I'll just jump into the I'll just jump into the
displayCameradisplayCamera() () op and make the op and make the
mod.mod.
JamieJamie: : What about side effects? What about side effects?
Ed: Ed: WhaddayaWhaddaya mean?mean?
JamieJamie: : Well, say you make the Well, say you make the
change but inadvertently create a change but inadvertently create a
problem with the ID display.problem with the ID display.

CS550 Intro. to SE
Spring 2007 13

CS550 Intro. to SE
Spring 2007 14

EdEd: : I wouldn't be that sloppyI wouldn't be that sloppy..
JamieJamie: : Maybe not, but what if Maybe not, but what if
some support person two years some support person two years
from now has to make the mod. from now has to make the mod.
He might not understand the op as He might not understand the op as
well as you do and, who knows, well as you do and, who knows,
he might be sloppy.he might be sloppy.
EdEd: : So you're against it?So you're against it?
JamieJamie: : You're the designer . . . it's You're the designer . . . it's
your decision . . . just be sure you your decision . . . just be sure you
understand the consequences of understand the consequences of
low cohesion.low cohesion.
EdEd (thinking a moment): (thinking a moment): Maybe Maybe
we'll go with separate display ops.we'll go with separate display ops.

JamieJamie: : Good decision.Good decision.

CS550 Intro. to SE
Spring 2007 14

CS550 Intro. to SE
Spring 2007 15

CouplingCoupling
Conventional view: Conventional view:

The degree to which a component is connected to The degree to which a component is connected to
other components and to the external worldother components and to the external world

OO view:OO view:
a qualitative measure of the degree to which a qualitative measure of the degree to which
classes are connected to one anotherclasses are connected to one another

Level of couplingLevel of coupling
ContentContent
CommonCommon
ControlControl
StampStamp
DataData
Routine callRoutine call
Type useType use
Inclusion or importInclusion or import
ExternalExternal

CS550 Intro. to SE
Spring 2007 16

Component Level DesignComponent Level Design--II
Step 1. Identify all design classes that correspond to Step 1. Identify all design classes that correspond to
the problem domain. the problem domain.
Step 2. Identify all design classes that correspond to Step 2. Identify all design classes that correspond to
the infrastructure domain.the infrastructure domain.
Step 3. Elaborate all design classes that are not Step 3. Elaborate all design classes that are not
acquired as reusable components.acquired as reusable components.

Step 3a. Specify Step 3a. Specify message detailsmessage details when classes or when classes or
component collaborate. component collaborate.
Step 3b. Identify appropriate Step 3b. Identify appropriate interfacesinterfaces for each component. for each component.
Step 3c. Elaborate Step 3c. Elaborate attributesattributes and define data types and data and define data types and data
structures required to implement them. structures required to implement them.
Step 3d.Step 3d. Describe Describe processing flow (activity diagram)processing flow (activity diagram) within within
each operation in detail.each operation in detail.

CS550 Intro. to SE
Spring 2007 17

ComponentComponent--Level DesignLevel Design--IIII
Step 4. Describe persistent data sources Step 4. Describe persistent data sources
(databases and files) and identify the classes (databases and files) and identify the classes
required to manage them. required to manage them.
Step 5. Develop and elaborate Step 5. Develop and elaborate behavioral behavioral
representations (representations (statechartstatechart)) for a class or for a class or
component. component.
Step 6. Elaborate Step 6. Elaborate deployment diagramsdeployment diagrams to provide to provide
additional implementation detail. additional implementation detail.
Step 7. Factor every componentStep 7. Factor every component--level design level design
representation and always consider representation and always consider alternativesalternatives..

CS550 Intro. to SE
Spring 2007 18

Collaboration DiagramCollaboration Diagram

:ProductionJob

:WorkOrder

:JobQueue

1: buildJob (WOnumber)
2: submitJob (WOnumber)

[x>1] y:= f(WOnumber)

CS550 Intro. to SE
Spring 2007 19

Processing Flow in Processing Flow in
Activity DiagramActivity Diagram validate at t ributes

input

accessPaperDB(weight)

returns baseCostperPage

size = B paperCostperPage =
paperCostperPage * 1 .2

size = C paperCostperPage =
paperCostperPage * 1 .4

size = D paperCostperPage =
paperCostperPage * 1 .6

color is custom
paperCostperPage =
 paperCostperPage * 1 .1 4

color is s tandard

paperCostperPage =
 baseCostperPage

returns
(paperCostperPage)

CS550 Intro. to SE
Spring 2007 20

Behavioral Behavioral
Representation Representation

in in StatechartStatechart

buildingJobDat a

ent ry/ readJobDat a ()
exit / displayJobDat a ()
do/ checkConsist ency()
include/ dat aInput

ent ry/ comput eJob
exit / save t ot alJobCost

f ormingJob

ent ry/ buildJob
exit / save WOnumber
do/

comput ingJobCost

submit t ingJob

ent ry/ submit Job
exit / init iat eJob
do/ place on JobQueue

behavior wit h in t he
st at e bu ild ingJobDat a

dat aInput Complet ed [all dat a
it ems consist ent] / d isp layUserOpt ions

dat aInput Incomplet e

jobCost Accept ed [cust omer is aut horized] /
get Elect ronicSignat ure

jobSubmit t ed [all aut horizat ions acquired] /
prin t WorkOrder

CS550 Intro. to SE
Spring 2007 21

Object Constraint Language (OCL)Object Constraint Language (OCL)
complements UML by allowing a software engineer to use complements UML by allowing a software engineer to use
a formal grammar and syntax to construct unambiguous a formal grammar and syntax to construct unambiguous
statements about various design model elementsstatements about various design model elements
simplest OCL language statements are constructed in four simplest OCL language statements are constructed in four
parts:parts:

(1) a (1) a contextcontext that defines the limited situation in which the statement that defines the limited situation in which the statement
is valid; is valid;
(2) a (2) a propertyproperty that represents some characteristics of the context that represents some characteristics of the context
(e.g., if the context is a class, a property might be an attribu(e.g., if the context is a class, a property might be an attribute)te)
(3) an (3) an operationoperation (e.g., arithmetic, set(e.g., arithmetic, set--oriented) that manipulates or oriented) that manipulates or
qualifies a property, and qualifies a property, and
(4)(4) keywordskeywords (e.g., if, then, else, and, or, not, implies) that are used (e.g., if, then, else, and, or, not, implies) that are used
to specify conditional expressions.to specify conditional expressions.

CS550 Intro. to SE
Spring 2007 22

OCL ExampleOCL Example

contextcontext PrintJob::validate(upperCostBoundPrintJob::validate(upperCostBound : :
Integer, Integer, custDeliveryReqcustDeliveryReq ::

Integer)Integer)
pre:pre: upperCostBoundupperCostBound > 0> 0

and and custDeliveryReqcustDeliveryReq > 0> 0
and and self.jobAuthorizationself.jobAuthorization = 'no'= 'no'

post: ifpost: if self.totalJobCostself.totalJobCost <= <= upperCostBoundupperCostBound
and and self.deliveryDateself.deliveryDate <= <= custDeliveryReqcustDeliveryReq

thenthen
self.jobAuthorizationself.jobAuthorization = 'yes'= 'yes'

endifendif

CS550 Intro. to SE
Spring 2007 23

Algorithm DesignAlgorithm Design
the closest design the closest design
activity to codingactivity to coding
the approach:the approach:

review the design review the design
description for the description for the
componentcomponent
use stepwise use stepwise
refinement to refinement to
develop algorithmdevelop algorithm
use use structured structured
programmingprogramming to to
implement implement
procedural logicprocedural logic
use use ‘‘formal methodsformal methods’’
to prove logicto prove logic

openopen

walk to door;walk to door;
reach for knob;reach for knob;

open door;open door;

walk through;walk through;
close door.close door.

repeat until door opensrepeat until door opens
turn knob clockwise;turn knob clockwise;
if knob doesn't turn, thenif knob doesn't turn, then

take key out;take key out;
find correct key;find correct key;
insert in lock;insert in lock;

endifendif
pull/push doorpull/push door
move out of way;move out of way;
end repeatend repeat

CS550 Intro. to SE
Spring 2007 24

Algorithm Design ModelAlgorithm Design Model

represents the algorithm at a level of represents the algorithm at a level of
detail that can be reviewed for qualitydetail that can be reviewed for quality
options:options:

graphical (e.g. flowchart, box diagram)graphical (e.g. flowchart, box diagram)
pseudocode (e.g., PDL)pseudocode (e.g., PDL) ... choice of many... choice of many

programming languageprogramming language
decision tabledecision table
conduct walkthrough to assess qualityconduct walkthrough to assess quality

CS550 Intro. to SE
Spring 2007 25

Structured ProgrammingStructured Programming
for Procedural Designfor Procedural Design

uses a limited set of logical constructs:uses a limited set of logical constructs:
sequencesequence
conditionalconditional—— ifif--thenthen--else, selectelse, select--casecase
loopsloops—— dodo--while, repeat untilwhile, repeat until

leads to more readable, testable codeleads to more readable, testable code

important for achieving high quality, important for achieving high quality,
but not enoughbut not enough

can be used in conjunction with can be used in conjunction with ‘‘proof of proof of
correctnesscorrectness’’

CS550 Intro. to SE
Spring 2007 26

A Structured Procedural DesignA Structured Procedural Design
a

x1

x2b

3x

4

5

c

d

ef

g

x

x

add a condition Z,
if true, exit the program

CS550 Intro. to SE
Spring 2007 27

Decision TableDecision Table
Condit ions

regular customer

silver customer

gold customer

special discount

Rule s

no discount

apply 8 percent discount

apply 15 percent discount

apply addit ional x percent discount

T

F

T

T

T

T

T

F

1 3 5 64

F

T T

T

2

Rule s

CS550 Intro. to SE
Spring 2007 28

Program Design Language (PDL)Program Design Language (PDL)

if-then-else

if condition x
 then process a;
 else process b;
endif

PDL
Easy to combine with source codeEasy to combine with source code
Can be represented in great detailCan be represented in great detail
Machine readable, no need for graphics inputMachine readable, no need for graphics input
Graphics can be generated from PDLGraphics can be generated from PDL
Enables declaration of data as well as Enables declaration of data as well as
procedureprocedure
Easier to review and maintainEasier to review and maintain

CS550 Intro. to SE
Spring 2007 29

