Chapter 13
Software Testing Strategies

Moonzoo Kim

CS Division of EECS Dept.
KAIST

msr CS550 Intro. to SE

Spring 2007

Overview of Ch13. Testing Strategies

13.1 A strategic approach to SW testing
13.2 Strategic Issues

13.3 Test strategies for conventional SW
= Unit testing
= Integration testing

13.4 Test strategies for OO SW
= Unit testing
= Integration testing

13.5 Validation testing
13.6 System testing

13.7 The art of debugging

mS'I‘ CS550 Intro. to SE

Spring 2007

Software Testing

Testing Is the process of exercising a
program with the specific intent of finding

prior to delivery to the end user.

Verification: Are we building the product right?

Validation: Are we building the right product?

‘m CS550 Intro. to SE
Spring 2007

What Testing Shows

performance
A\
.\\
A\ an indication
\ of quality
. \
But cannot show that your N\ ™
software is correct/bug-free !l ™
\C N

msr CS550 Intro. to SE

Spring 2007

Who Tests the Software?

developer Independent tester
Understands the system Must learn about the system,
but, will test "gently" but, will attempt to break it
and, is driven by "delivery" and, is driven by quality

msr CS550 Intro. to SE

Spring 2007

Testing Strategy

unit test Integration
test

validation
test

system
test

u CS550 Intro. to SE
Spring 2007

Testing Strategy

A SW team should conduct effective formal technical reviews. BY
doing this, many errors will be eliminated before testing commences
We begin by ‘testing-in-the-small’ and move toward ‘testing-in-the-
large’

Different testing techniques are appropriate at different points in time

Testing is conducted be the developer of the SW and an
Independent test group (ITG)

Note that testing occur at a time near project deadline. Testing
progress must be measurable and problems must surface as early
as possible.

CS550 Intro. to SE
Spring 2007

Strategic Issues

State testing objectives explicitly.

Understand the users of the software and develop a profile for each
user category.

Develop a testing plan that emphasizes “rapid cycle testing.”
Build “robust” software that is designed to test itself
Use effective formal technical reviews as a filter prior to testing

Conduct formal technical reviews to assess the test strategy and
test cases themselves.

Develop a continuous improvement approach for the testing process.

CS550 Intro. to SE

- Spring 2007

Unit Testing

module
to be
tested

=

|
software
engineer

results

test cases

m CS550 Intro. to SE

e SPring 2007

Unit Testing

Interface
local data structures
boundary conditions

Independent paths
error handling paths

m CS550 Intro. to SE

e SPring 2007

Unit Test Environment

ariver
interface

local data structures

boundary conditions
independent paths

error handling paths

RESULTS

M CS550 Intro. to SE
Spring 2007

Integration Testing Strategies

Options:
 the “big bang” approach
e an incremental construction strategy

m CS550 Intro. to SE

e SPring 2007

12

Top Down Integration

top module is tested with
stubs

stubs are replaced one at
a time, "depth first"

as new modules are integrated,
some subset of tests is re-run

m CS550 Intro. to SE

e SPring 2007

13

Bottom-Up Integration

drivers are replaced one at a
time, "depth first"

worker modules are grouped into
builds and integrated

cluster

H CS550 Intro. to SE
Spring 2007

14

Sandwich Testing

- Top modules are

tested with stubs

Worker modules are grouped into
builds and integrated

cluster

M CS550 Intro. to SE
Spring 2007

Unit Testing Iin the OO Context

The concept of the ‘unit’ broadens due to encapsulation

= A single operation in isolation in the conventional view of unit
testing does NOT work

m Context of a class should be considered

Comparison

= Unit testing of conventional SW focus on the algorithmic detalil
and the data that flow across the module interface

= Unit testing of OO SW is driven by the operations encapsulated
by the class and the state behavior of the class

CS550 Intro. to SE
Spring 2007

16

Example> Effects of Context in OO SW

class t{
int x=10;
public void f()

}

{System.out.printin(x));}

class t1l extends t {
public static void

}

main(String[] args) {

(new t1()).f();

}

10

CS550 Intro. to SE
Spring 2007

classt{
int x=10;
public void f()

{System.out.printin(x);}

class tl extends t {
int x=20;

}

}

public static void
main(String[] args) {
(new t1()).f();

10

classt {
int x=10;
public void ()
{System.out.printin(g());}
public int g() {return x;}

}

class t1 extends t {
int x=20;
public int g() {return x;}
public static void
main(String[] args) {
(new t1()).f();
}
}

20

17

Integration Testing in the OO Context

Begins by evaluating the correctness and consistency of
the OOA and OOD models

Testing strategy changes

Integration focuses on classes and their execution across a
‘thread’ or in the context of a usage scenario

Validation uses conventional black box methods
Test case design draws on conventional methods, but
also encompasses special features

Test of the CRC Model

CS550 Intro. to SE
Spring 2007 18

OOT Strategy

Class testing is the equivalent of unit testing
operations within the class are tested
the state behavior of the class is examined

Integration applied three different strategies

Thread-based testing

integrates the set of classes required to respond to one
input or event

Use-based testing

integrates the set of classes required to respond to one use
case

Cluster testing

integrates the set of classes required to demonstrate one
collaboration

msr CS550 Intro. to SE

Spring 2007

19

Smoke Testing

A common approach for creating “daily builds” for product
software

Smoke testing steps:

Software components that have been translated into code are
integrated into a “build.”
A build includes all data files, libraries, reusable modules, and
engineered components that are required to implement one or
more product functions.
A series of tests is designed to expose errors that will keep
the build from properly performing its function.
The intent should be to uncover “show stopper” errors that have
the highest likelihood of throwing the software project behind
schedule.
The build is integrated with other builds and the entire
product (in its current form) is smoke tested daily.

The integration approach may be top down or bottom up.

CS550 Intro. to SE
Spring 2007

20

B —

Preparing for Validation (pg407-408)

The scene:

= Doug Miller's office, as component-
level design continues and construction
of certain components begins.

The players:
m Miller
software engineering manager,
m Vinod, Jamie, Ed, Shakira

members of the SafeHome software
engineering team.

The conversation:
: The first increment will be

ready for validation in what ...
about three weeks?

iro.tn S
ring 2007

Vinod: That's about right.
Integration is going well. We're
smoke testing daily, finding some
bugs but nothing we can't handle.
So far, so good.

: Talk to me about validation.

Shakira: Well, we'll use all of the
use-cases as the basis for our test
design. | haven't started yet, but I'll
be developing tests for all of the
use-cases that I've been
responsible for.

Ed: Same here.

Jamie: Me too, but we've got to
get our act together for

acceptance testing and also for
alpha and beta testing, no?

. Yes, In fact I've been
thinking that we could bring in an
outside contractor to help us with
validation. | have the money in the
budget ... and it would give us a
new point of view.

Vinod: | think we've got it under
control.

: I'm sure you do, but an ITG
gives us an independent look at the
software.

Jamie: We're tight on time here,
Doug. |, for one, don't have the time
to baby-sit anybody you bring in to
do the job.

——— ringy 2007

: | know, | know. But if an
ITG works from requirements and
use-cases, not too much baby
sitting will be required.

Vinod: | still think we've got it
under control.

: | hear you, Vinod, but I'm
going to overrule on this one. Let's
plan to meet with the ITG rep later
this week. Get 'em started and see
what they come up with.

Vinod: Okay, maybe it'll lighten
the load a bit.

High Order Testing

= Focus is on software requirements
m Focus is on system integration
= Focus is on customer usage

= forces the software to fail in a variety of ways and verifies that recovery is
properly performed

= verifies that protection mechanisms built into a system will, in fact, protect
it from improper penetration

m executes a system in a manner that demands resources in abnormal
guantity, frequency, or volume

= test the run-time performance of software within the context of an

integrated system
CS550 Intro. to SE

- Spring 2007

23

SSSSSSSSSSSSSSS
ring 2007

Debugging:
A Diagnostic Process

24

The Debugging Process

test cases

CS550 Intro. to SE
e SPring 2007

25

Debugqging Effort

|me required

time requ' Symptom and
P determine the

M CS550 Intro. to SE
Spring 2007

Symptoms & Causes

symptom

cause

m CS550 Intro. to SE

e SPring 2007

symptom and cause may be
geographically separated

symptom may disappear when
another problem is fixed

cause may be dueto a
combination of non-errors

cause may be due to a system
or compiler error

cause may be due to

assumptions that everyone

believes

symptom may be intermittent

Failures v.s. faults IEEE standard 610.12

27

Symptoms & Causes (cont.)

Propaga_ Legend bl b2 Emn
tion of bug {—» Causal effect
effects
0

S
- J RO

Step 1 Step 2

msr CS550 Intro. to SE

Spring 2007

Consequences of Bugs

catastrophic

/ extreme

serious

/dlsturblng
mlld — " annoying

Bug Type

Bug Cateqories: function-related bugs,
system-related bugs, data bugs, coding bugs,
design bugs, documentation bugs, standards
violations, etc.

CS550 Intro. to SE
KAIST <°° 29

e SPring 2007

Debugging: Final Thoughts

1. Don't run off in haste, think about the
symptom you're seeing.

2. Use tools (e.g., dynamic debugger) to gain
more insight.

3. If at an impasse, get help from someone else.

4. Be absolutely sure to conduct regression tests

when you do "fix" the bug.

msr CS550 Intro. to SE

Spring 2007

30

