Chapter 15
Product Metrics

Moonzoo Kim

CS Division of EECS Dept.
KAIST

msr CS550 Intro. to SE

Spring 2007

Overview of Chl15. Product Metrics

15.1 Software Quality

15.2 A Framework for Product Metrics

15.3 Metrics for the Analysis Model
Function point metrics

15.4 Metrics for the Design Model
Architectural design metrics
Metrics for OO design
Class-oriented metrics
Component-level design metrics
Operation oriented metrics

15.6 Metrics for Testing
15.7 Metrics for Maintenance
msr CS550 Intro. to SE

Spring 2007

McCall's Triangle of Quality (1970s)

PRODUCT REVISION T TRANSITION

PRODUCT OPERATION

SW built to conform to these factors will exhibit high quality,
even If there are dramatic changes in technology.

msr CS550 Intro. to SE

- Spring 2007

Measures, Metrics and Indicators

A SW engineer collects and develops
so that will be obtained
A provides a quantitative indication of the extent,

amount, dimension, capacity, or size of some attribute of a
product or process

The IEEE glossary defines a as “a quantitative measure
of the degree to which a system, component, or process
possesses a given attribute.”

IEEE Standard Glossary of Software Engineering Terminology
(IEEE Std 610.12-1990)

An IS @ metric or combination of metrics that provide
iInsight into the software process, a software project, or the
product itself

CS550 Intro. to SE
Spring 2007

Measurement Principles

The objectives of measurement should be
established before data collection begins

Each technical metric should be defined in an
unambiguous manner

Metrics should be derived based on a theory that is
valid for the domain of application
= Metrics for design should draw upon basic design concepts

and principles and attempt to provide an indication of the
presence of a desirable attribute

= Metrics should be tailored to best accommodate specific
products and processes

mS'I‘ CS550 Intro. to SE

Spring 2007

Measurement Process

The derivation of software measures and metrics appropriate for the
representation of the software that is being considered.

The mechanism used to accumulate data required to derive the formulated
metrics.

The computation of metrics and the application of mathematical tools.

The evaluation of metrics results in an effort to gain insight into the quality of
the representation.

Recommendations derived from the interpretation of product metrics
transmitted to the software team.

CS550 Intro. to SE
Spring 2007

Goal-Oriented Software Measurement

The Goal/Question/Metric Paradigm
= establish an explicit measurement goal
= define a set of questions that must be answered to achieve the goal
= identify well-formulated metrics that help to answer these questions.

Goal definition template

[
{the name of activity or attribute to be measured}
{the overall objective of the analysis}
{the aspect of the activity or attribute that is considered}

{the people who have an interest in the measurement}

{the environment in which the measurement takes place}.
_ mS‘I‘ CS550 Intro. to SE v

Spring 2007

Ex> Goal definition for SafeHome

Analyze the Safehome SW architecture for the purpose of
evaluating architectural components with respect to the ability to
make Safehome more extensible from the viewpoint of the SW
engineers performing the work in the context of produce
enhancement over the next 3 years

Questions

Q1: Are architectural components characterized in a manner that
compartmentalizes function and related data?

Answer: 0 ... 10
Q2: Is the complexity of each component within bounds that will
facilitate modification and extension?

Answer: 0 ... 1

CS550 Intro. to SE
Spring 2007

Metrics Attributes

It should be relatively easy to learn how to derive the metric, and
Its computation should not demand inordinate effort or time

The metric should satisfy the engineer’s intuitive notions about
the product attribute under consideration

The metric should always yield results that are unambiguous.

The mathematical computation of the metric should use
measures that do not lead to bizarre combinations of unit.

That is, the metric should provide a software engineer with
information that can lead to a higher quality end product

msr CS550 Intro. to SE
. Spring 2007

Collection and Analysis Principles

Whenever possible, data collection and analysis should
be automated

Valid statistical technigues should be applied to establish
relationship between internal product attributes and
external quality characteristics

Interpretative guidelines and recommendations should
be established for each metric

msr CS550 Intro. to SE

Spring 2007 10

Function-Based Metrics

The first proposed by Albrecht [ALB79],
can be used effectively as a means for measuring the functionality
delivered by a system.

Function points are derived using an empirical relationship based on
countable (direct) measures of software's information domain and
assessments of software complexity
Information domain values are defined in the following manner:
= number of external inputs (EIS)
number of external outputs (EOS)
number of external inquiries (EQS)
number of internal logical files (ILFs)
Number of external interface files (EIFs)

CS550 Intro. to SE
Spring 2007

11

Function Points

Information Weighting factor
Domain Value Count simple average complex

External Inputs (EIs)

w

I

(o))
[

3
External Outputs (EOS)

External Inquiries (EQ9

Internal Logical Files (ILFs)

JUULL

External Interface Files (EIFS)

Count total > ot

FP = count total x (0.65 + 0.01 x > (F)))
where Fi’'s are value adjustment factors based on
responses to the 14 questions (473 pg of SEPA)

CS550 Intro. to SE
KAIST 12

Spring 2007

1 pooc

KAIST

Password, sensors . . .

Password .
Zone inquir

£ » /5c1fe-Hc-me
sensor ingvir

User iy ~user
Panic bution Inferaction
- function

Activate/deactivaie

Sensors
Test sensor

Zone sefting

Messages

_ User

Sensor status

Activaie /deactivaie

Menitoring
& response

System configuration data I

Measurement parameter Count

Number of user inputs
Number of user outputs
Number of user inquiries
Number of files

Number of external interfaces

BEEEE

CS550 Intrc

subsystem

Weighting Factor

Simple Average Complex

4 é =

10 15 =

Spring 200 Count total

|

QOEEE
Jooooo

50

13

Usage of Function Points

Assume that
= past data indicates that one FP translates into 60 lines of code
m 12 FPs are produced for each person-month of effort

= Past projects have found an average of 3 errors per FP during
analysis and design reviews

= 4 errors per FP during unit and integration testing
Suppose that Safehome has 56 FPs

= >(F)=46
These data can help SW engineers assess the
completeness of their review and testing activities

CS550 Intro. to SE
- KAIST 14

Spring 2007

Architectural Design Metrics (black box)

Structural complexity of a module m= (# of fan-out of module m)?
Data complexity = (# of input & output variables)/ (fan-out+1)
System complexity = structural complexity + data complexity)

a function of the number of modules
and the number of interfaces between modules
Size, depth, width, arc-to-node rati% Nede

7%/—&4\;'

Y - I—I u ‘J J ‘J
msr CS550 Intro. to SE 15

Spring 2007

Metrics for OO Design-|

Whitmire [WHI197] describes nine distinct and measurable
characteristics of an OO design:

Size is defined in terms of four views: population, volume, length, and
functionality

How classes of an OO design are interrelated to one another
The physical connections between elements of the OO design

“the degree to which an abstraction possesses the features required of it, or the
degree to which a design component possesses features in its abstraction,
from the point of view of the current application.”

An indirect implication about the degree to which the abstraction or design
component can be reused

msr CS550 Intro. to SE
Spring 2007 16

Metrics for OO Design-lII

The degree to which all operations working together to achieve a
single, well-defined purpose

Applied to both operations and classes, the degree to which an
operation is atomic

The degree to which two or more classes are similar in terms of
their structure, function, behavior, or purpose

Measures the likelihood that a change will occur

msr CS550 Intro. to SE

Spring 2007

17

Distinguishing Characteristics

Berard [BER95] argues that the following characteristics require
that special OO metrics be developed.:

the way in which information is concentrated in a program
the packaging of data and processing

the way in which information about operational details is hidden by a
secure interface

the manner in which the responsibilities of one class are propagated to
another

the mechanism that allows a design to focus on essential details
msr CS550 Intro. to SE 18

Spring 2007

CS550 Intro. to SE
Spring 2007

Class-Oriented Metrics

weighted methods per class
> (m;) where m;is a normalized complexity for method i
depth of the inheritance tree

number of children

coupling between object classes
response for a class

lack of cohesion in methods

19

Applying CK Metrics (pg483-484)

The scene: Shakira: Wasn't too complicated. |
= Vinod's cubicle. went back to my UML class and
The players: sequence diagrams, like you
= Vinod, Jamie, Shakira, Ed suggested, and got rough counts
members of the SafeHome software for DIT, RFC, and LCOM. | couldn't
engineering team, who are continuing find the CRC model, so | didn't
work on qomponent-level design and test count CBO.
case design. _ . .
The conversation: Jamie (smiling): You couldn't find

Vinod: Did you guys get a chance the CRC model because | had it.

to read the description of the CK Shakira: That's what | love about

metrics suite | sent you on this team, superb communication.

Wednesday and make those Vinod: |1 did my counts . . . did you

measurements? guys develop numbers for the CK
metrics?

St ring 2007

— —

(Jamie and Ed nod in the affirmative.)

Jamie: Since | had the CRC cards, |
took a look at CBO, and it looked
pretty uniform across most of the
classes. There was one exception,
which | noted.

Ed: There are a few classes where
RFC is pretty high, compared with the
averages . . . maybe we should take a
look at simplifying them.

Jamie: Maybe yes, maybe no. I'm still
concerned about time, and | don't
want to fix stuff that isn't really broken.

Vinod: | agree with that. Maybe we

iro.tn S
ring 2007

should look for classes that have bad
numbers in at least two or more of the
CK metrics. Kind of two strikes and
you're modified.

Shakira (looking over Ed's list of
classes with high RFC): Look, see
this class? It's got a high LCOM m
well as a high RFC. Two strikes?

Vinod: Yeah I think so . . . it'll be
difficult to implement because of
complexity and difficult to test for the
same reason. Probably worth
designing two separate classes to
achieve the same behavior.

Jamie: You think modifying it'll save
us time?

Vinod: Over the long haul, yes.

Class-Oriented Metrics

Method inheritance factor
MIF =3 M(C)/ ZM,(C))
Coupling factor

CF =3 Y is_client(C,,C))/ (T >-T,)

msr CS550 Intro. to SE
Spring 2007

22

Class-Oriented Metrics

class size
number of operations overridden by a subclass
number of operations added by a subclass

msr CS550 Intro. to SE

Spring 2007

23

Component-Level Design Metrics

a function of data objects and the locus of their definition

a function of input and output parameters, global
variables, and modules called

hundreds have been proposed (e.g., cyclomatic
complexity)

CS550 Intro. to SE
KAIST 24

Spring 2007

Operation-Oriented Metrics

average operation size

of messages sent by the operation
operation complexity

average number of parameters per operation

msr CS550 Intro. to SE

Spring 2007

25

Metrics for Testing

Testing effort can also be estimated using metrics derived
from Halstead measures

Binder [BIN94] suggests a broad array of design metrics
that have a direct influence on the “testability” of an OO
system.

CS550 Intro. to SE 2
Spring 2007 6

Metrics for Maintenance

IEEE Std 982.1-1998 Software Maturity index (SMl)
SMI = [My - (F, + F¢ + Fy)l/M;
M, = # of modules in the current release
F. = # of modules in the current release that have been changed

F, = # of modules in the current release that have been added

F4 = # of modules from the preceding release that were deleted in
the current release

CS550 Intro. to SE
KAIST .

Spring 2007

