
CS550 Intro. to SE
Spring 2007 1

Project AnnouncementProject Announcement
Each team leader should send me an eEach team leader should send me an e--mail saying who your team mail saying who your team
leader is by tonight (April 24)leader is by tonight (April 24)
11stst deadline is deadline is extended to Mayextended to May 11stst (next (next Tuesday)Tuesday)

Team leader should submit a complete document both in hardcopy aTeam leader should submit a complete document both in hardcopy and nd
softcopysoftcopy
Do not forget to hand in Do not forget to hand in ““who did whatwho did what”” listlist

Your requirement document should be solidly organized Your requirement document should be solidly organized
the requirement document needs to be conveniently the requirement document needs to be conveniently referred/traced backreferred/traced back
during your subsequent design/implement process during your subsequent design/implement process

Table of ContentsTable of Contents
OverviewOverview

For the same reason, indicate SEPA pages based on which you descFor the same reason, indicate SEPA pages based on which you describe ribe
useuse--cases cases

Review meeting of your requirement document will be TBD.Review meeting of your requirement document will be TBD.

CS550 Intro. to SE
Spring 2007 2

Chapter 9Chapter 9
Design EngineeringDesign Engineering

Moonzoo Kim
CS Division of EECS Dept.

KAIST
moonzoo@cs.kaist.ac.kr

http://pswlab.kaist.ac.kr/courses/cs550-07

CS550 Intro. to SE
Spring 2007 3

Roadmap of SEPA covered in CS550Roadmap of SEPA covered in CS550
March : Ch 1 March : Ch 1 –– Ch 5Ch 5

1. Intro to SE1. Intro to SE
2. A Generic View 2. A Generic View
of Processof Process
3. Process Models3. Process Models
4. An Agile View 4. An Agile View
of Processof Process
5. SE Practice5. SE Practice
6. System 6. System
EngineeringEngineering

April: Ch 7April: Ch 7-- Ch 9Ch 9
7. Requirement 7. Requirement
EngineeringEngineering

Req. eng tasksReq. eng tasks
Req. elicitationReq. elicitation
Developing useDeveloping use--
casescases
Building the Building the
analysis modelanalysis model

8. Building the 8. Building the
Analysis ModelAnalysis Model
9. Design 9. Design
EngineeringEngineering

SafeHomeSafeHome ProjectProject
-- UseUse--case diagramcase diagram
-- UseUse--casescases
-- Activity diagramActivity diagram

May : Ch 10 May : Ch 10 –– Ch 14Ch 14
10. Creating an 10. Creating an
Architectural Design Architectural Design
11. Modeling 11. Modeling
ComponentComponent--Level Level
DesignDesign
12. Performing UI 12. Performing UI
DesignDesign
13. Testing 13. Testing
Strategies Strategies
14. Testing Tactics14. Testing Tactics

SafeHomeSafeHome ProjectProject
-- Class diagramClass diagram
-- CRC cards CRC cards
-- Sequence diagramSequence diagram
-- State diagram State diagram

CS550 Intro. to SE
Spring 2007 4

Overview of Ch 9. Design EngineeringOverview of Ch 9. Design Engineering

9.1 Design within the Context of SE9.1 Design within the Context of SE
9.2 Design Process and Design 9.2 Design Process and Design
QualityQuality
9.3 Design Concepts 9.3 Design Concepts

AbstractionAbstraction
ArchitectureArchitecture
PatternsPatterns
ModularityModularity
Information HidingInformation Hiding
Functional IndependenceFunctional Independence
RefinementRefinement
RefactoringRefactoring
Design ClassesDesign Classes

9.4 Design Model9.4 Design Model
Data Design ElementsData Design Elements
Architectural Design ElementsArchitectural Design Elements
Interface Design ElementsInterface Design Elements
ComponentComponent--level Design level Design
ElementsElements
DeploymentDeployment--level Design level Design
ElementsElements

9.5 Pattern9.5 Pattern--based SW Designbased SW Design
Describing a Design PatternDescribing a Design Pattern
Using Patterns in DesignUsing Patterns in Design
FrameworksFrameworks

CS550 Intro. to SE
Spring 2007 5

Analysis Model Analysis Model --> Design Model> Design Model

Analysis Model

use-cases - text
use-case diagrams
activity diagrams
swim lane diagrams

data flow diagrams
control-flow diagrams
processing narratives

f l ow- or i e nt e d
e l e me nt s

be ha v i or a l
e l e me nt s

c l a ss- ba se d
e l e me nt s

sc e na r i o- ba se d
e l e me nt s

class diagrams
analysis packages
CRC models
collaboration diagrams

state diagrams
sequence diagrams

Da t a / Cla ss De sign

Arc hit e c t ura l De sign

Int e rf a c e De sign

Com pone nt -
Le v e l De sign

Design Model

CS550 Intro. to SE
Spring 2007 6

Design and QualityDesign and Quality

the design must implement all of the explicit the design must implement all of the explicit
requirementsrequirements contained in the analysis model, and it contained in the analysis model, and it
must accommodate all of the implicit requirements must accommodate all of the implicit requirements
desired by the customer.desired by the customer.
the design must be a readable, understandable guidethe design must be a readable, understandable guide for for
those who generate code and for those who test and those who generate code and for those who test and
subsequently support the software.subsequently support the software.
the design should provide a complete picture of the the design should provide a complete picture of the
softwaresoftware, addressing the data, functional, and behavioral , addressing the data, functional, and behavioral
domains from an implementation perspective.domains from an implementation perspective.

CS550 Intro. to SE
Spring 2007 7

Quality GuidelinesQuality Guidelines
1.1. A design should exhibit an architectureA design should exhibit an architecture whichwhich

1.1. has been created using recognizable architectural styles or patthas been created using recognizable architectural styles or patterns, erns,
2.2. is composed of components that exhibit good design characteristiis composed of components that exhibit good design characteristics cs
3.3. can be implemented in an evolutionary fashioncan be implemented in an evolutionary fashion

2.2. A design should be modularA design should be modular
3.3. A design should contain distinct representations A design should contain distinct representations of data, architecture, of data, architecture,

interfaces, and components.interfaces, and components.
4.4. A design should lead to data structures that are A design should lead to data structures that are

1.1. appropriate for the classes to be implemented appropriate for the classes to be implemented
2.2. drawn from recognizable data patterns.drawn from recognizable data patterns.

5.5. A design should lead to components that exhibit independent funcA design should lead to components that exhibit independent functional tional
characteristics.characteristics.

6.6. A design should lead to interfaces that reduce the complexityA design should lead to interfaces that reduce the complexity of connections of connections
between components and with the external environment.between components and with the external environment.

7.7. A design should be derived using a repeatable methodA design should be derived using a repeatable method that is driven by that is driven by
information obtained during software requirements analysis.information obtained during software requirements analysis.

8.8. A design should be represented effectively for communicating itA design should be represented effectively for communicating its meaning.s meaning.

CS550 Intro. to SE
Spring 2007 8

Quality Attributes Quality Attributes –– FURPS [GRA87]FURPS [GRA87]

FunctionalityFunctionality
Assessed by evaluating feature set and capabilities of the Assessed by evaluating feature set and capabilities of the
program and generality of the functions that are deliveredprogram and generality of the functions that are delivered

UsabilityUsability
AAssessed by considering human factors, overall aestheticsssessed by considering human factors, overall aesthetics

ReliabilityReliability
PerformancePerformance
SupportabilitySupportability

MMaintainabilityaintainability
CCompatibility, ease of configuration, ease of installation, etcompatibility, ease of configuration, ease of installation, etc

CS550 Intro. to SE
Spring 2007 9

Fundamental SW Design ConceptsFundamental SW Design Concepts
AbstractionAbstraction

data, proceduredata, procedure
PatternsPatterns

““conveys the essenceconveys the essence”” of a proven design solutionof a proven design solution
ModularityModularity

compartmentalization of data and functioncompartmentalization of data and function
HidingHiding

controlled interfacescontrolled interfaces
Functional independenceFunctional independence

singlesingle--minded function and low couplingminded function and low coupling
RefinementRefinement

elaboration of detail for all abstractionselaboration of detail for all abstractions
RefactoringRefactoring

a reorganization technique that simplifies the designa reorganization technique that simplifies the design

CS550 Intro. to SE
Spring 2007 10

Data AbstractionData Abstraction
doordoor

implemented as a data structure

manufacturermanufacturer
model numbermodel number
typetype
swing directionswing direction
insertsinserts
lightslights

typetype
numbernumber

weightweight
opening mechanismopening mechanism

CS550 Intro. to SE
Spring 2007 11

Procedural AbstractionProcedural Abstraction

openopen

implemented with a "knowledge" of the
object that is associated with enter

details of enter details of enter
algorithmalgorithm

CS550 Intro. to SE
Spring 2007 12

Design PatternsDesign Patterns
The best designers in any field have an uncanny ability to see The best designers in any field have an uncanny ability to see

patterns that characterize a problem patterns that characterize a problem
patterns that can be combined to create a solutionpatterns that can be combined to create a solution

A design pattern may also consider a set of design forces. A design pattern may also consider a set of design forces.
Design forcesDesign forces describe nondescribe non--functional requirements (e.g., ease of functional requirements (e.g., ease of
maintainability, portability) associated the software for which maintainability, portability) associated the software for which the pattern is to the pattern is to
be applied. be applied.

The The pattern characteristicspattern characteristics (classes, responsibilities, and collaborations) (classes, responsibilities, and collaborations)
indicate the attributes of the design that may be indicate the attributes of the design that may be adjustedadjusted to enable the to enable the
pattern to accommodate a variety of problems.pattern to accommodate a variety of problems.
Levels of abstractionLevels of abstraction

Architectural patternsArchitectural patterns
Design patternsDesign patterns
Idioms (coding patterns)Idioms (coding patterns)

CS550 Intro. to SE
Spring 2007 13

Design Patterns TemplateDesign Patterns Template
Pattern name Pattern name

describes the essence of the pattern in a short but expressive ndescribes the essence of the pattern in a short but expressive name ame
IntentIntent

describes the pattern and what it doesdescribes the pattern and what it does
MotivationMotivation

provides an example of the problem provides an example of the problem
ApplicabilityApplicability

notes specific design situations in which the pattern is applicanotes specific design situations in which the pattern is applicableble
StructureStructure

describes the classes that are required to implement the patterndescribes the classes that are required to implement the pattern
ParticipantsParticipants

describes the responsibilities of the classes that are required describes the responsibilities of the classes that are required to implement to implement
the patternthe pattern

CollaborationsCollaborations
describes how the participants collaborate to carry out their redescribes how the participants collaborate to carry out their responsibilitiessponsibilities

Related patternsRelated patterns——crosscross--references related design patternsreferences related design patterns

CS550 Intro. to SE
Spring 2007 14

Modular DesignModular Design
easier to build, easier to change, easier to fix ...

CS550 Intro. to SE
Spring 2007 15

Modularity: TradeModularity: Trade--offsoffs
What is the "right" number of modules What is the "right" number of modules
for a specific software design?for a specific software design?

optimal numberoptimal number
of modulesof modules

cost ofcost of
softwaresoftware

number of modulesnumber of modules

modulemodule
integrationintegration

costcost

module development cost module development cost

CS550 Intro. to SE
Spring 2007 16

Information HidingInformation Hiding

modulemodule
controlledcontrolled
interfaceinterface

"secret""secret"

•• algorithmalgorithm

•• data structuredata structure

•• details of external interfacedetails of external interface

•• resource allocation policyresource allocation policy

clientsclients

a specific design decisiona specific design decision

CS550 Intro. to SE
Spring 2007 17

Why Information Hiding?Why Information Hiding?
reduces the likelihood of reduces the likelihood of ““side effectsside effects””
limits the global impact of local design decisionslimits the global impact of local design decisions
emphasizes communication through controlled emphasizes communication through controlled
interfacesinterfaces
discourages the use of global datadiscourages the use of global data
leads to encapsulationleads to encapsulation——an attribute of high quality an attribute of high quality
designdesign
results in higher quality softwareresults in higher quality software

CS550 Intro. to SE
Spring 2007 18

Stepwise RefinementStepwise Refinement
open

walk to door;
reach for knob;

open door;

walk through;
close door.

repeat until door opens
turn knob clockwise;
if knob doesn't turn, then

take key out;
find correct key;
insert in lock;

endif
pull/push door
move out of way;
end repeat

CS550 Intro. to SE
Spring 2007 19

RefactoringRefactoring
Fowler [FOW99] defines refactoring in the following
manner:

"Refactoring is the process of changing a software system in
such a way that it does not alter the external behavior of the
code [design] yet improves its internal structure.”

When software is refactored, the existing design is
examined for

redundancy
unused design elements
inefficient or unnecessary algorithms
poorly constructed or inappropriate data structures
or any other design failure that can be corrected to yield a
better design.

CS550 Intro. to SE
Spring 2007 20

Functional IndependenceFunctional Independence

COHESION - the degree to which a
module performs one and only one
function.

COUPLING - the degree to which a
module is "connected" to other
modules in the system.

CS550 Intro. to SE
Spring 2007 21

The Design ModelThe Design Model

process dimension

archit ect ure
element s

int erface
element s

component -level
element s

deployment -level
element s

low

high

class diagrams
analysis packages
CRC models
collaborat ion diagrams

use-cases - t ext
use-case diagrams
act ivit y diagrams
sw im lane diagrams
collaborat ion diagrams dat a f low diagrams

cont rol- f low diagrams
processing narrat ives

dat a f low diagrams
cont rol- f low diagrams
processing narrat ives

st at e diagrams
sequence diagrams

st at e diagrams
sequence diagrams

design class realizat ions
subsyst ems
collaborat ion diagrams

design class realizat ions
subsyst ems
collaborat ion diagrams

ref inement s t o:

deployment diagrams

class diagrams
analysis packages
CRC models
collaborat ion diagrams

component diagrams
design classes
act ivit y diagrams
sequence diagrams

ref inement s t o:
component diagrams
design classes
act ivit y diagrams
sequence diagrams

design class realizat ions
subsyst ems
collaborat ion diagrams
component diagrams
design classes
act ivit y diagrams
sequence diagrams

a na ly sis mode l

de sign mode l

Requirement s:
 const raint s
 int eroperabilit y
 t arget s and
 conf igurat ion

t echnical int erf ace
 design
Navigat ion design
GUI design

CS550 Intro. to SE
Spring 2007 22

Design Model ElementsDesign Model Elements
Data elementsData elements

a model of data and/or information that is represented at a higha model of data and/or information that is represented at a high
level of abstraction (the customer/userlevel of abstraction (the customer/user’’s view of data)s view of data)
Refined into more implementationRefined into more implementation--specific representationsspecific representations

Architectural elementsArchitectural elements
Application domainApplication domain
Analysis classes, their relationships, collaborations and behaviAnalysis classes, their relationships, collaborations and behaviors ors
are transformed into design realizationsare transformed into design realizations
Patterns and Patterns and ““stylesstyles”” (Chapter 10)(Chapter 10)

Interface elementsInterface elements
the user interface (UI) the user interface (UI)
external interfaces to other systems, devices, networks or otherexternal interfaces to other systems, devices, networks or other
producers or consumers of informationproducers or consumers of information
internal interfaces between various design componentsinternal interfaces between various design components

Component elementsComponent elements
Deployment elementsDeployment elements

CS550 Intro. to SE
Spring 2007 23

Interface ElementsInterface Elements

Cont rolPanel

LCDdisplay
LEDindicat ors
keyPadCharact erist ics
speaker
wirelessInt erf ace

readKeySt roke()
decodeKey ()
displaySt at us()
light LEDs()
sendCont rolMsg()

KeyPad

readKeyst roke()
decodeKey()

< < int erface> >

WirelessPDA

KeyPad

MobilePhone

realization

CS550 Intro. to SE
Spring 2007 24

Component ElementsComponent Elements

SensorManagement
Sensor

- Local data
structures

- Procedural
algorithms

CS550 Intro. to SE
Spring 2007 25

Deployment ElementsDeployment Elements

Personal comput er

Security

homeManagement

Surveillance

communication

Cont rol Panel CPI serv er

Security homeownerAccess

externalAccess

