
ReRe--engineering a Credit Card Authorization engineering a Credit Card Authorization 
System for Maintainability and Reusability of System for Maintainability and Reusability of 

ComponentsComponents-- A Case StudyA Case Study

Moonzoo Kim, et al
Appeared at International Conference on Software Reuse (ICSR) ’06

Torino, Italy



2/26
CS550 Intro. to SE 
Spring 2007  

Summary of the LG CAS Project Summary of the LG CAS Project 

• We have re-engineered LG Credit card 
authorization system (CAS) for enhancing 
maintainability and reusability according to 
sound design principles
– Reviewed CAS as well as its revision history and 

market requirement changes
– Designed/extracted a feature model 

• domain analysis to figure out commonality and variability
– Redesigned architecture and components based on 

the feature model with sound design principles



3/26
CS550 Intro. to SE 
Spring 2007  

OutlineOutline

• Part I: Background on LG CAS
– Motivation
– Overview of LG Card Authorization System (CAS)

• Part II: Re-engineering LG CAS
– Re-engineering Principles
– Re-engineering CAS

• Part III: Lessons Learned
– Three Lessons Learned
– Conclusion



4/26
CS550 Intro. to SE 
Spring 2007  

Part I :Background on LG CASPart I :Background on LG CAS

-- What LG CAS isWhat LG CAS is
-- MotivationsMotivations
-- Overview of CASOverview of CAS



5/26
CS550 Intro. to SE 
Spring 2007  

BackgroundBackground

Target 
Systems



6/26
CS550 Intro. to SE 
Spring 2007  

• LG-card co. ltd adopted a component based 
development method in 2004
– They started to re-develop CAS by 

• converting hard-coded business rules into a database
• Standardizing component interfaces
• Applying component based management programs

– Reuse rate measurement
– Component library construction
– Component reengineering

• Nevertheless, LG had difficulties in maintaining CAS
– The developers added/updated components in an ad-hoc 

way at each update request 

Background (cont.)Background (cont.)



7/26
CS550 Intro. to SE 
Spring 2007  

MotivationMotivation

• Frequent updates make maintainability as a 
crucial issue
– Due to government law change, competition 

between card companies, etc
– Complexity of system maintenance is increased

• CAS should be designed to 
– accommodate changing requirement easily 
– isolate effects of updates as much as possible



8/26
CS550 Intro. to SE 
Spring 2007  

Motivation (cont.)Motivation (cont.)

• But, new services have been added to CAS by simply 
adding new components 
– Specially developed for those services without consideration 

of common/reusable characteristics of the services
– Lack of proactive design that anticipates updates of services 

based on market evolution
• Ad-hoc way of evolution resulted in redundant code 

and difficulty of understanding program behavior.
– Newly added services or updates easily affected 

unnecessarily large segments of CAS and caused high 
maintenance cost



9/26
CS550 Intro. to SE 
Spring 2007  

DBMS

NET24

POS Customer
Services

CAS

Net24Main

Credit Card
Transaction 

Classifier

Transaction
Flow Manager

TFM1
TFM2

Component Manager

Business
Process

Components

BPC1

BPC2

Interface
Components

IC1

IC2
Check Card
Transaction

Classifier

Transaction
Flow Manager

TFM1’
TFM2’

BPC3 IC3

Bank

DBMS

NET24

Overview of LG Card Authorization System

5 TFMs

4 TFMs

39  BPCs
71 ICs



10/26
CS550 Intro. to SE 
Spring 2007  

Overview of LG Card Authorization System
• TC classify transaction types and calls appropriate TFM
• TFM manage transaction flows by controlling business 

processes implemented in the BPC (explained later in detail)
• IC works as data holders communicating with the database 

system.
• Component manager handles orderly creation of these 

components preventing redundant instantiation.

• Higher layer calls lower layer 
via call/return methods
– TC calls a TFM, then the TFM 

calls BPCs, etc



11/26
CS550 Intro. to SE 
Spring 2007  

An Example of Execution Flows
• When a user purchases a product 

using his/her check card, a 
purchase authorization request is 
sent from the sotre to CAS
– CHkCDClsf classifies check card 

transaction
• VrfyReqTrs checks if the requested 

transaction is valid or not
– TransVldChk identifies the place where 

the transaction occurs
– ScrUserAuth checks user’s 

identification/passwd if purchase is 
from online store

– …
• RespTrs handles a transaction from the 

credit card issuer (bank) 

ChkCdClsf

VrfyReqTrs

RespTrs

TranVldChk

ScrUserAuth

CdInfoChk

AfflSvcChk

MbLmtChk

TranUpdt

AfflSvcUpdt

TFM  ComponentTC Component  BPC  Component



12/26
CS550 Intro. to SE 
Spring 2007  

ReRe--engineering LG CAS:  Part IIengineering LG CAS:  Part II

-- starting with domain analysis
- principles matter
- result of re-engineering



13/26
CS550 Intro. to SE 
Spring 2007  

An Example of Revision HistoryAn Example of Revision History

• From the revision history, we can find frequently 
updated features
– we can analyze variabilities of the CAS domain



14/26
CS550 Intro. to SE 
Spring 2007  

…

…

Freight Car
Oil Supp.

Limit Check

Capability Layer

Operating Environment Layer
Domain Technology Layer

Implementation Technique Layer

…

Credit Card
Limit Check

Customer Limit
Check

Handicapped
Welfare

Limit Check

Discount
Limit Check

Affiliated Service
Check

One Day
Limit Check

…

Free Service
Check

Optional Data Validation Data Update

…

Check Card Authentication

Credit Card Authorization System

Limp-sum
Limit Check

Affiliated Service

Free Service Discount Service

Handicapped
Welfare
Service

Freight Car
Oil Supp.
Service

Limit Check Method

Grade-based
Check

Price-based
Check

Mandatory Data Validation

…

Handicapped
Welfare 
Check

Discount Service
Check

Optional feature

Legend  

Alternative feature

Composed-of

Generalization/
specialization

Implemented-by

Freight Car
Oil Supp.

Check
Merchant Svc. 

Code Check

Credit Card Authentication

Set of 
changeable features Configuration dependency

Handicapped
Welfare
Update

Freight Car
Oil Supp.
Update

Discount Service
Update

…
Check Card
Limit Check

Affiliated Period Check

Card Affiliated 
Code Check

…

A Feature Model of CAS 



15/26
CS550 Intro. to SE 
Spring 2007  

Three ReThree Re--engineering Principles I/IIIengineering Principles I/III

• Encapsulation of Evolving 
Features

• A complex system like CAS 
suffers from high degree of 
coupling among 
components
• Difficult to understand
• Hard to revise and maintain
• Degrading evolvability interface

EncapsulationEncapsulation



16/26
CS550 Intro. to SE 
Spring 2007  

Three ReThree Re--engineering Principles II/IIIengineering Principles II/III

• Generalization of Common 
Processes

– In a large system, multiple 
components with slightly 
different services easily prevail

• All redundant components should 
be modified altogether

• It is hard to find which components 
is responsible for a specific 
behavior of the system

GeneralizationGeneralization



17/26
CS550 Intro. to SE 
Spring 2007  

Three ReThree Re--engineering Principles III/IIIengineering Principles III/III

• Separation of data 
streams 

– As typical of information 
processing systems, the 
main operations of CAS 
are to retrieve, process, 
and update data

– Data streams/flows should 
be clearly visible to figure 
out system’s behavior

Data

Downstream Data

Clarify data Clarify data 
streamsstreams

Upstream Data



18/26
CS550 Intro. to SE 
Spring 2007  

…
26.Member’s Limit Update
25.Limits on Daily Card Usage Update
24.Affiliated Service Update
23.Domestic CAVV Transaction Update
22.Card Information Update
21.Check-card Transaction Update
20.Credit-card Transaction Update
11.SMS Transmission Check
10.Fraud Transaction Check
9.Member’s Limited Amount Check
8.Affiliated Service Check
7.Card Validity Check
6.Member’s State Check
5.Franchise Associate’s Validity Check
4.Member’s Information Check
3.Card Information Check
2.Screen User’s Authentication
1.Transaction Validity Check

1 2 3 4

5 6 7 8 9 10 11

20 21 22 23 24 25 26

Valid
-ation

Update

Mandatory 
Data

Validation

Optional 
Data

Validation

Business Process TableBusiness Process Table Business Process WorkflowBusiness Process Workflow

MdDataVld

OpDataVld

DataUpdate

Encapsulation of Business Processes into Modules



19/26
CS550 Intro. to SE 
Spring 2007  

ChkCdClsf

VrfyReqTrs

RespTrs

TranVldChk

ScrUserAuth

CdInfoChk

AfflSvcChk

MbLmtChk

TranUpdt

AfflSvcUpdt

impact

impact

ChkCdClsf

VrfyReqTrs’

RespTrs’

TranVldChk

ScrUserAuth

CdInfoChk

AfflSvcChk

MbLmtChk

TranUpdt

AfflSvcUpdt

MdDataVld

OpDataVld

DataUpdate

ReRe--engiengi
--neeringneering

Original Components Original Components ReRe--engineered Components engineered Components 

Re-engineering Principle1: Modularization Based on Data Usage 

change

change

ChkCdClsf

VrfyReqTrs

RespTrs

TranVldChk

ScrUserAuth

CdInfoChk

AfflSvcChk

MbLmtChk

TranUpdt

AfflSvcUpdt

TFM  ComponentTC Component  BPC  Component

impact



20/26
CS550 Intro. to SE 
Spring 2007  

Feature ModelFeature Model

…

Check Card Authentication

Optional Data Validation

…
Affiliated Service Check

…

Credit Card Authorization System

…

Welfare 
Card Affiliated
Code Check

Oil Supp.
Card Affiliated 

Code Check

Affiliated
Period Check

Welfare
Merchant Affl. 

Code Check

Oil Supp.
Merchant Affl.
Code Check

Affiliated
Period Check

Card Affiliated
Code Check

Affiliated
Period Check

Merchant Affl.
Code Check

Handicapped 
Welfare
Check

impact

… Freight Car Oil 
Supp.
Check

Affiliated
Customer 

Grade Check

HandiWelfareChkHandiWelfareChk

GenDiscntSrvcChkGenDiscntSrvcChk
Discount 

Service Check

Card Affiliated
Code Check

Merchant Svc.
Code Check

Affiliated
Period Check

Discount Service Check
ReRe--engineeringengineering

change

Original ComponentsOriginal Components

FCarOilSuppChkFCarOilSuppChk

impact

impact impact

impact

impactimpact

ReRe--engineered Componentsengineered Components

Welfare 
Check

Coordinator

Car Oil Discnt
Check

Coordinator

impact

impact

HandiWelfareChkHandiWelfareChk FCarOilSuppChkFCarOilSuppChk

Re-engineering Principle 2: Commonality 



21/26
CS550 Intro. to SE 
Spring 2007  

Re-engineering Principle3: Separated Data Streams

BPCBPC ICICTFMTFMTC ReRe--engiengi
--neeringneering

Put

Data Flow
(write)

Data Flow
(read)

Control 
Flow

ICICTFMTFMTC BPCBPC

impact impact impact

impact

G
et

Upstream
VO

Upstream
VO

VOVO

change
G

et

Put

Downstream
VO

Downstream
VO

impact change

Legend
Comp. Comp.

impact

impact



22/26
CS550 Intro. to SE 
Spring 2007  

Part III: Lessons LearnedPart III: Lessons Learned

-- necessity of proactive re-engineering
- management of commonality and 
variability 
- broad coverage of a feature model for 
system analysis



23/26
CS550 Intro. to SE 
Spring 2007  

Necessity of Proactive ReNecessity of Proactive Re--engineering  engineering  

• Proactive reengineering is not optional, but essential
• Lack of analysis on commonality and variability of 

services required when a system is designed
• Thus, developers tend to revise the system in an ad-

hoc manner without considering how the system 
should be designed for better maintainability

– High degree of redundancy and component coupling
– Poor maintainability => high maintenance cost



24/26
CS550 Intro. to SE 
Spring 2007  

Management of Commonality and VariabilityManagement of Commonality and Variability

• Dependency relationships between features 
of the feature model is useful to recognize 
the effects of service changes/additions

• Generalization/specialization relationships 
also helped use to encapsulate similar 
components into generalized ones and to 
adopt new services more conveniently



25/26
CS550 Intro. to SE 
Spring 2007  

Broad Coverage of a Feature Model for System AnalysisBroad Coverage of a Feature Model for System Analysis

• The feature model successfully provided guidelines 
for analyzing the CAS system in abroad way

– From architectural issues to component refactoring
• Features of higher level are related to system assets of a large

scale
• Features at leaf nodes are mostly related to small objects

• A carefully built feature model can be used for 
analyzing a system in various levels of abstraction



26/26
CS550 Intro. to SE 
Spring 2007  

ConclusionConclusion

• Design principles are truly useful in practical 
situations

– Spend time to understand and memorize
– Stick to the principles 

• Proactive design must be prepared before 
developing any meaningfully large system

– Otherwise, you will pay back later with larger cost
– Consider domain analysis as an essential part of 

your system design


