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Summary of the LG CAS Project Summary of the LG CAS Project 

• We have re-engineered LG Credit card 
authorization system (CAS) for enhancing 
maintainability and reusability according to 
sound design principles
– Reviewed CAS as well as its revision history and 

market requirement changes
– Designed/extracted a feature model 

• domain analysis to figure out commonality and variability
– Redesigned architecture and components based on 

the feature model with sound design principles
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OutlineOutline

• Part I: Background on LG CAS
– Motivation
– Overview of LG Card Authorization System (CAS)

• Part II: Re-engineering LG CAS
– Re-engineering Principles
– Re-engineering CAS

• Part III: Lessons Learned
– Three Lessons Learned
– Conclusion
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Part I :Background on LG CASPart I :Background on LG CAS

-- What LG CAS isWhat LG CAS is
-- MotivationsMotivations
-- Overview of CASOverview of CAS
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BackgroundBackground

Target 
Systems
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• LG-card co. ltd adopted a component based 
development method in 2004
– They started to re-develop CAS by 

• converting hard-coded business rules into a database
• Standardizing component interfaces
• Applying component based management programs

– Reuse rate measurement
– Component library construction
– Component reengineering

• Nevertheless, LG had difficulties in maintaining CAS
– The developers added/updated components in an ad-hoc 

way at each update request 

Background (cont.)Background (cont.)
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MotivationMotivation

• Frequent updates make maintainability as a 
crucial issue
– Due to government law change, competition 

between card companies, etc
– Complexity of system maintenance is increased

• CAS should be designed to 
– accommodate changing requirement easily 
– isolate effects of updates as much as possible
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Motivation (cont.)Motivation (cont.)

• But, new services have been added to CAS by simply 
adding new components 
– Specially developed for those services without consideration 

of common/reusable characteristics of the services
– Lack of proactive design that anticipates updates of services 

based on market evolution
• Ad-hoc way of evolution resulted in redundant code 

and difficulty of understanding program behavior.
– Newly added services or updates easily affected 

unnecessarily large segments of CAS and caused high 
maintenance cost
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Overview of LG Card Authorization System
• TC classify transaction types and calls appropriate TFM
• TFM manage transaction flows by controlling business 

processes implemented in the BPC (explained later in detail)
• IC works as data holders communicating with the database 

system.
• Component manager handles orderly creation of these 

components preventing redundant instantiation.

• Higher layer calls lower layer 
via call/return methods
– TC calls a TFM, then the TFM 

calls BPCs, etc
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An Example of Execution Flows
• When a user purchases a product 

using his/her check card, a 
purchase authorization request is 
sent from the sotre to CAS
– CHkCDClsf classifies check card 

transaction
• VrfyReqTrs checks if the requested 

transaction is valid or not
– TransVldChk identifies the place where 

the transaction occurs
– ScrUserAuth checks user’s 

identification/passwd if purchase is 
from online store

– …
• RespTrs handles a transaction from the 

credit card issuer (bank) 

ChkCdClsf

VrfyReqTrs

RespTrs

TranVldChk

ScrUserAuth

CdInfoChk

AfflSvcChk

MbLmtChk

TranUpdt

AfflSvcUpdt

TFM  ComponentTC Component  BPC  Component
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ReRe--engineering LG CAS:  Part IIengineering LG CAS:  Part II

-- starting with domain analysis
- principles matter
- result of re-engineering
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An Example of Revision HistoryAn Example of Revision History

• From the revision history, we can find frequently 
updated features
– we can analyze variabilities of the CAS domain
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Three ReThree Re--engineering Principles I/IIIengineering Principles I/III

• Encapsulation of Evolving 
Features

• A complex system like CAS 
suffers from high degree of 
coupling among 
components
• Difficult to understand
• Hard to revise and maintain
• Degrading evolvability interface

EncapsulationEncapsulation
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Three ReThree Re--engineering Principles II/IIIengineering Principles II/III

• Generalization of Common 
Processes

– In a large system, multiple 
components with slightly 
different services easily prevail

• All redundant components should 
be modified altogether

• It is hard to find which components 
is responsible for a specific 
behavior of the system

GeneralizationGeneralization
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Three ReThree Re--engineering Principles III/IIIengineering Principles III/III

• Separation of data 
streams 

– As typical of information 
processing systems, the 
main operations of CAS 
are to retrieve, process, 
and update data

– Data streams/flows should 
be clearly visible to figure 
out system’s behavior

Data

Downstream Data

Clarify data Clarify data 
streamsstreams

Upstream Data
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Feature ModelFeature Model
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Re-engineering Principle3: Separated Data Streams
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Part III: Lessons LearnedPart III: Lessons Learned

-- necessity of proactive re-engineering
- management of commonality and 
variability 
- broad coverage of a feature model for 
system analysis
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Necessity of Proactive ReNecessity of Proactive Re--engineering  engineering  

• Proactive reengineering is not optional, but essential
• Lack of analysis on commonality and variability of 

services required when a system is designed
• Thus, developers tend to revise the system in an ad-

hoc manner without considering how the system 
should be designed for better maintainability

– High degree of redundancy and component coupling
– Poor maintainability => high maintenance cost
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Management of Commonality and VariabilityManagement of Commonality and Variability

• Dependency relationships between features 
of the feature model is useful to recognize 
the effects of service changes/additions

• Generalization/specialization relationships 
also helped use to encapsulate similar 
components into generalized ones and to 
adopt new services more conveniently
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Broad Coverage of a Feature Model for System AnalysisBroad Coverage of a Feature Model for System Analysis

• The feature model successfully provided guidelines 
for analyzing the CAS system in abroad way

– From architectural issues to component refactoring
• Features of higher level are related to system assets of a large

scale
• Features at leaf nodes are mostly related to small objects

• A carefully built feature model can be used for 
analyzing a system in various levels of abstraction
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ConclusionConclusion

• Design principles are truly useful in practical 
situations

– Spend time to understand and memorize
– Stick to the principles 

• Proactive design must be prepared before 
developing any meaningfully large system

– Otherwise, you will pay back later with larger cost
– Consider domain analysis as an essential part of 

your system design


