
Korea Advanced Institute of
Science and Technology

The Spin Model Checker : Part I/IIThe Spin Model Checker : Part I/II

Moonzoo Kim
CS Dept. KAIST

2CS550 Intro. to SE
Spring 2007

Motivation: Tragic Accidents Caused by SW BugsMotivation: Tragic Accidents Caused by SW Bugs

3CS550 Intro. to SE
Spring 2007

Cost of Software ErrorsCost of Software Errors

June 2002
“Software bugs, or errors, are so prevalent and so
detrimental that they cost the U.S. economy an estimated
$59.5 billion annually, or about 0.6 percent of the gross
domestic product
…
At the national level, over half of the costs are borne by
software users and the remainder by software
developers/vendors.”
…
The study also found that, although all errors cannot be
removed, more than a third of these costs, or an estimated
$22.2 billion, could be eliminated by an improved testing
infrastructure that enables earlier and more effective
identification and removal of software defects.”

NIST Planning Report 02-3
The Economic Impacts of Inadequate
Infrastructure for Software Testing

4CS550 Intro. to SE
Spring 2007

Model CheckingModel Checking

Specify requirement properties and build system
model
Generate possible states from the model and then
check exhaustively whether given requirement
properties are satisfied within the state space

OK

Counter
example

or

System
model

Requirement
properties

Model Checking
(state exploration)

(Φ Ω)

5CS550 Intro. to SE
Spring 2007

Model Checking (cont.)Model Checking (cont.)

Developed independently by Clarke and Emerson
and by Queille and Sifakis in early 1980’s.
Model checking complements testing/simulation.
Advantages

No proofs!!!
Fast (compared to other rigorous methods)
Diagnostic counterexamples
Logics can easily express many concurrency
properties

6CS550 Intro. to SE
Spring 2007

Example. Mutual Exclusion AlgorithmExample. Mutual Exclusion Algorithm

char cnt=0,x=0,y=0,z=0;

void process() {
char me = _pid +1; /* me is 1 or 2*/

again:
x = me;
If (y ==0 || y== me) ;
else goto again;

z =me;
If (x == me) ;
else goto again;

y=me;
If(z==me);
else goto again;

/* enter critical section */
cnt++;
/* assert(cnt ==1); */
cnt --;
goto again;

}

Mutual
Exclusion
Algorithm

Process 0

x = 1
y==0 || y == 1

z = 1
x==1
y = 1
z == 1
cnt++

Process 1

x = 2
y==0 || y ==2
z = 2
x==2

y=2
(z==2)
cnt++

Counter
Example

7CS550 Intro. to SE
Spring 2007

Overview of the Spin ArchitectureOverview of the Spin Architecture

System Spec.
In Promela

Req. Spec.
In LTL

Spin
Model

Checker
pan.c C compiler a.out

OKCounter
Example (s)

MediumHighTool maturity

Global variableExplicit buffered
channel

Main
communication
model

Symbolic
(BDD)

Explicit (hash
table)

State
management

Synchronous
(HW)

Asynchronous
execution (SW)

Main model of
execution

CTL + LTLLinear Temporal
Logic

Req. Logic
NuSMVSPINFeature

8CS550 Intro. to SE
Spring 2007

SpinSpin’’s modeling language s modeling language -- PROMELAPROMELA

Promela (process meta-language)
Syntax is similar to that of C, but simplified
• No float type, no functions, no pointers etc

Underlying paradigm
• Communication and concurrency
• Clear operational semantics
• Interleaved semantics
• Asynchronous process execution
• Two-way communication

Unique features not found in programming languages
• Non-determinism (process level and statement level)
• Executability

9CS550 Intro. to SE
Spring 2007

Overview of the Overview of the PromelaPromela

byte x;
chan ch1= [3] of {byte};

active[2] proctype A() {
byte z;
printf(“x=%d\n”,x);
z=x+1;
ch1!z

}

proctype B(byte y) {
byte z;
ch1?z;

}

Init {
run B(2);

}

Processes are
communicating
with each other
using

Global variables
Message channels

Process can be
dynamically
created
Scheduler
executes one
process at a time
using interleaving
semantics

Global variables
(including channels)

Process (thread)
definition and

creation

Another
process
definition

System
initialization

10CS550 Intro. to SE
Spring 2007

Variables and TypesVariables and Types

Basic types
bit
bool
Byte (8 bit unsigned integer)
short (16 bits signed integer)
Int (32 bits signed integer)

Arrays
bool x[10];

Records
typedef R { bit x; byte y;}

Default initial value of variables is 0
Most arithmetic (e.g.,+,-), relational (e.g. >,==) and
logical operators of C are supported

bitshift operators are supported too.

11CS550 Intro. to SE
Spring 2007

Finite State ModelFinite State Model

Promela spec generates only a finite state
model because

Max # of active process <= 255
Each process has only finite length of codes
Each variable is of finite datatype
All message channels have bounded
capability <= 255

12CS550 Intro. to SE
Spring 2007

Basic StatementsBasic Statements

Each Promela statement is either
executable:
blocked

There are six types of statement
Assignment: always executable

• Ex. x=3+x, x=run A()
Print: always executable

• Ex. printf(“Process %d is created.\n”,_pid);
Assertion: always executable

• Ex. assert(x + y == z)
Expression: depends on its value

• Ex. x+3>0, 0, 1, 2
• Ex. skip, true

Send: depends on buffer status
• Ex. ch1!m is executable only if ch1 is not full

Receive: depends on buffer status
• Ex. ch1?m is executable only if ch1 is not empty

13CS550 Intro. to SE
Spring 2007

Expression StatementsExpression Statements

An expression is also a statement
It is executable if it evaluates to non-zero
1 : always executable
1<2:always executable
x<0: executable only when x < 0
x-1:executable only when x !=0

If an expression statement in blocked, it
remains blocked until other process
changes the condition

an expression e is equivalent to while(!e); in C

14CS550 Intro. to SE
Spring 2007

assert Statementassert Statement

assert(expr)
assert is always executable
If expr is 0, SPIN detects this violation
assert is most frequently used checking
method, especially as a form of
invariance
• ex. active proctype inv() { assert(x== 0);}

– Note that inv() is equivalent to [] (x==0) in LTL
with thanks to interleaving semantics

15CS550 Intro. to SE
Spring 2007

Program Execution ControlProgram Execution Control

Promela provides low-level control mechanism, i.e., goto
and label as well as if and do
Note that non-deterministic selection is supported
else is predefined variable which becomes true if all
guards are false; false otherwise

proctype A() {
byte x;
starting:
x= x+1;
goto starting;

}

proctype A() {
byte x;
if
:: x <= 0 -> x=x+1
:: x == 0 -> x=1
fi

}

proctype A() {
byte x;
do
:: x <= 0 -> x=x+1;
:: x == 0 -> x=1;
:: else -> break
od

}

16CS550 Intro. to SE
Spring 2007

Critical Section ExampleCritical Section Example

bool lock;
byte cnt;

active[2] proctype P() {
!lock -> lock=true;
cnt=cnt+1;
printf("%d is in the crt sec!\n",_pid);
cnt=cnt-1;
lock=false;

}

active proctype Invariant() {
assert(cnt <= 1);

}

[root@moonzoo spin_test]# ls
crit.pml
[root@moonzoo spin_test]# spin -a crit.pml
[root@moonzoo spin_test]# ls
crit.pml pan.b pan.c pan.h pan.m pan.t
[root@moonzoo spin_test]# gcc pan.c
[root@moonzoo spin_test]# a.out
pan: assertion violated (cnt<=1) (at depth 8)
pan: wrote crit.pml.trail
Full statespace search for:

never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 36 byte, depth reached 16, errors: 1
119 states, stored
47 states, matched

166 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)
4.879 memory usage (Mbyte)
[root@moonzoo spin_test]# ls
a.out crit.pml crit.pml.trail pan.b pan.c pan.h
pan.m pan.t

17CS550 Intro. to SE
Spring 2007

[root@moonzoo spin_test]# spin -t -p crit.pml
Starting P with pid 0
Starting P with pid 1
Starting Invariant with pid 2

1: proc 1 (P) line 5 "crit.pml" (state 1) [(!(lock))]
2: proc 0 (P) line 5 "crit.pml" (state 1) [(!(lock))]
3: proc 1 (P) line 5 "crit.pml" (state 2) [lock = 1]
4: proc 1 (P) line 6 "crit.pml" (state 3) [cnt = (cnt+1)]

1 is in the crt sec!
5: proc 1 (P) line 7 "crit.pml" (state 4) [printf('%d is in the crt sec!\\n',_pid)]
6: proc 0 (P) line 5 "crit.pml" (state 2) [lock = 1]
7: proc 0 (P) line 6 "crit.pml" (state 3) [cnt = (cnt+1)]

0 is in the crt sec!
8: proc 0 (P) line 7 "crit.pml" (state 4) [printf('%d is in the crt sec!\\n',_pid)]

spin: line 13 "crit.pml", Error: assertion violated
spin: text of failed assertion: assert((cnt<=1))

9: proc 2 (Invariant) line 13 "crit.pml" (state 1) [assert((cnt<=1))]
spin: trail ends after 9 steps
#processes: 3

lock = 1
cnt = 2

9: proc 2 (Invariant) line 14 "crit.pml" (state 2) <valid end state>
9: proc 1 (P) line 8 "crit.pml" (state 5)
9: proc 0 (P) line 8 "crit.pml" (state 5)

3 processes created

Critical Section Example (cont.)Critical Section Example (cont.)

18CS550 Intro. to SE
Spring 2007

Revised Critical Section ExampleRevised Critical Section Example

bool lock;
byte cnt;

active[2] proctype P() {
atomic{ !lock -> lock=true;}
cnt=cnt+1;
printf("%d is in the crt sec!\n",_pid);
cnt=cnt-1;
lock=false;

}

active proctype Invariant() {
assert(cnt <= 1);

}

[root@moonzoo revised]# a.out
Full statespace search for:

never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 36 byte, depth reached 14, errors: 0
62 states, stored
17 states, matched
79 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

4.879 memory usage (Mbyte)

19CS550 Intro. to SE
Spring 2007

Deadlocked Critical Section ExampleDeadlocked Critical Section Example

bool lock;
byte cnt;

active[2] proctype P() {
atomic{ !lock -> lock==true;}
cnt=cnt+1;
printf("%d is in the crt sec!\n",_pid);
cnt=cnt-1;
lock=false;

}

active proctype Invariant() {
assert(cnt <= 1);

}

[[root@moonzoo deadlocked]# a.out
pan: invalid end state (at depth 3)

(Spin Version 4.2.7 -- 23 June 2006)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 36 byte, depth reached 4, errors: 1
5 states, stored
0 states, matched
5 transitions (= stored+matched)
2 atomic steps

hash conflicts: 0 (resolved)

4.879 memory usage (Mbyte)

20CS550 Intro. to SE
Spring 2007

Deadlocked Critical Section Example (cont.)Deadlocked Critical Section Example (cont.)

[root@moonzoo deadlocked]# spin -t -p deadlocked_crit.pml
Starting P with pid 0
Starting P with pid 1
Starting Invariant with pid 2
1: proc 2 (Invariant) line 13 "deadlocked_crit.pml" (state 1)

[assert((cnt<=1))]
2: proc 2 terminates
3: proc 1 (P) line 5 "deadlocked_crit.pml" (state 1) [(!(lock))]
4: proc 0 (P) line 5 "deadlocked_crit.pml" (state 1) [(!(lock))]

spin: trail ends after 4 steps
#processes: 2

lock = 0
cnt = 0

4: proc 1 (P) line 5 "deadlocked_crit.pml" (state 2)
4: proc 0 (P) line 5 "deadlocked_crit.pml" (state 2)

3 processes created

21CS550 Intro. to SE
Spring 2007

Options in XSPINOptions in XSPIN

Now you have learned all necessary techniques to
verify common problems in the SW development

22CS550 Intro. to SE
Spring 2007

ReferencesReferences

Spin home page
http://www.spinroot.com

• Tool downloads and documents (tutorials, online
reference, etc)

The Spin Model Checker by G.Holzmann
– 2nd ed, Addison Wesley

