The Spin Model Checker : Part I/l

Moonzoo Kim
CS Dept. KAIST

Korea Advanced Institute of
KAIST Science and Technology

Motivation: Tragic Accidents Caused bx SW Bugs

CS550 Intro. to SE
e Spring 2007

Cost of Software Errors

NIST News Release

A-Z subject index Search NIST webspace Contact NIST Heme J

June 2002

“Software bugs, or errors, are so prevalent and so
detrimental that they cost the U.S. economy an estimated
$59.5 billion annually, or about 0.6 percent of the gross
domestic product

At the national level, over half of the costs are borne by
software users and the remainder by software
developers/vendors.”

The study also found that, although all errors cannot be
removed, more than a third of these costs, or an estimated
$22.2 billion, could be eliminated by an improved testing
Infrastructure that enables earlier and more effective
Identification and removal of software defects.”

NIST Planning Report 02-3
The Economic Impacts of Inadequate
Infrastructure for Software Testing

msr CS550 Intro. to SE 3
_ss=SR Spring 2007

Model Checking

B Specify requirement properties and build system
model

B Generate possible states from the model and then
check exhaustively whether given requirement
properties are satisfied within the state space

System > OK
model
odel Checking 4
state exploratig n\
Requm?ment__> 0@~ Q) Counter
properties
example

msr CS550 Intro. to SE 4
_ss=SR Spring 2007

Model Checking (cont.)

B Developed independently by Clarke and Emerson
and by Quellle and Sifakis in early 1980’s.

B Model checking complements testing/simulation.

B Advantages
4+ No proofs!!!
4+ Fast (compared to other rigorous methods)
4+ Diagnostic counterexamples

4+ Logics can easily express many concurrency
properties

|
m CS550 Intro. to SE 5
Seesnes N .Spring 2007

Example. Mutual Exclusion Algorithm

char cnt=0,x=0,y=0,z=0;

void process() {

char me = _pid +1; /*meis 1 or 2*/

again:
X = me;
If (y ==0 [| y==me) ;
else goto again;

Z =me;
If (x ==me) ;
else goto again;

y=me,
If(z==me);
else goto again;

[* enter critical section */

cnt++;

[* assert(cnt ==1); */

cnt --;

goto again;

}
Mutual

Exclusion
Algorithm

Process 0O

x=1

y::O ” y ==

z=1

x==1

y=1

Z ==

cnt++
Counter
Example

Process 1
X=2

y::O ” y ==
z2=2

X==2
(z==2)
cnt++

CS550 Intro. to SE

e Spring 2007

Overview of the SEin Architecture

System Spec.

In Promela :
Spin
Model pan.c a.out
Req. Spec. Checker /\
In LTL
Counter OK
Feature SPIN NUSMV Example (s)
Req. Logic Linear Temporal | CTL + LTL
Logic
Main model of | Asynchronous Synchronous
execution execution (SW) | (HW)
State Explicit (hash Symbolic
management | table) (BDD)
Main Explicit buffered | Global variable
communication | channel
model
Tool maturity High Medium

msr CS550 Intro. to SE 7
Spring 2007

Spin’s modeling language - PROMELA

B Promela (process meta-language)

+ Syntax Is similar to that of C, but simplified
+ No float type, no functions, no pointers etc

+ Underlying paradigm
- Communication and concurrency
- Clear operational semantics
- Interleaved semantics
- Asynchronous process execution
- Two-way communication

+ Unigque features not found in programming languages
- Non-determinism (process level and statement level)
- Executability

msr CS550 Intro. to SE 8
; Spring 2007

Overview of the Promela

Global variables B Processes are

byte x; - : . :
chan chi= [3] of {byte} (including channels) Cc_)mmunlcatlng
| with each other
aCt'Ve[Z]_ proctype AQ) { Process (thread) using
by.te Z‘: _ . definition and ,
printf(*x=%d\n",x); creation + Global variables
;1(;1, + Message channels
} B Process can be
proctype B(byte y) { Another dyn amlca”y
byte z, process created
ch1?z; definition
} B Scheduler
i System executes one
un B(2): initialization process at a time
) using interleaving
semantics

msr CS550 Intro. to SE 9
Spring 2007

Variables and nges

B Basic types
+ Dbit
+ bool
+ Byte (8 bit unsigned integer)
<+ short (16 bits signed integer)
+ Int (32 bits signed integer)

E Arrays
<+ bool x[10];

B Records
+ typedef R { bit x; byte y;}
B Default initial value of variables is O
B Most arithmetic (e.g.,+,-), relational (e.g. >,==) and
logical operators of C are supported
+ Ditshift operators are supported too.

msr CS550 Intro. to SE 10
_ss=SR Spring 2007

Finite State Model

B Promela spec generates only a finite state
model because

+Max # of active process <= 255
+Each process has only finite length of codes
4+ Each variable is of finite datatype

+All message channels have bounded
capability <= 255

|
msr CS550 Intro. to SE 11
; Spring 2007

Basic Statements

B Each Promela statement is either
+ executable:
+ blocked

E There are six types of statement
+« Assignment: always executable
o EXx. X=3+X, Xx=run AQ
+ Print: always executable
o Ex. printf(“Process %d 1s created.\n”, pid);
<+ Assertion: always executable
e Ex.assert(X + y == 2)
+« EXxpression: depends on its value
« Ex. x+3>0,0,1, 2
 Ex. skip, true

+ Send: depends on buffer status
 Ex. chl!mis executable only if chl is not full

+ Receive: depends on buffer status
* EX. chl?mis executable only if chl is not empty

ms‘- CS550 Intro. to SE 12
_ss=SR Spring 2007

ExEression Statements

B An expression Is also a statement
+|t IS executable If it evaluates to non-zero
+1 : always executable
+1<2:always executable
+X<0: executable only when x <0
+X-1:executable only when x =0

B If an expression statement in blocked, it
remains blocked until other process
changes the condition

4« an expression e Is equivalent to while(le); in C

msr CS550 Intro. to SE 13
- Spring 2007

assert Statement

B assert(expr)
+assert Is always executable
4If expr is 0, SPIN detects this violation

+assert iIs most frequently used checking
method, especially as a form of
Invariance
e eX. active proctype Inv() { assert(x==0);}

— Note that inv() Is equivalent to [] (x==0) in LTL
with thanks to interleaving semantics

msr CS550 Intro. to SE 14
- Spring 2007

Program Execution Control

E Promela provides low-level control mechanism, i.e., goto
and label as well as if and do

B Note that non-deterministic selection is supported

E else is predefined variable which becomes true if all
guards are false; false otherwise

proctype A() { proctype A() { proctype A() {

byte Xx; byte X; byte Xx;
starting: if do
X= X+1; X <=0 ->x=x+1 X <=0 ->x=x+1;
goto starting; i x==0->x=1 nx==0->x=1;

) fi ;. else -> break

} od
}

|
msr CS550 Intro. to SE 15
_ss=SR Spring 2007

Critical Section ExamEIe

[root@moonzoo spin_test]# Is

crit.pml

[root@moonzoo spin_test]# spin -a crit.pml
[root@moonzoo spin_test]# Is

crit.tpml pan.b pan.c pan.h pan.m pan.t
[root@moonzoo spin_test]# gcc pan.c

bool lock; .
byte cnt: [root@moon_zoo s_pln_test]# a.out
’ pan: assertion violated (cnt<=1) (at depth 8)
_ pan: wrote crit.pml.trail
active[2] proctype P() { Full statespace search for:
llock -> lock=true; never claim - (none specified)
cnt=cnt+1; assertion violations +
printf("%d is in the crt sec\n",_pid); =~ acceptance cycles - (not selected)
cnt=cnt-1, invalid end states ~ +
lock=false: State-vector 36 byte, depth reached 16, errors: 1
’ 119 states, stored
} 47 states, matched
_ _ 166 transitions (= stored+matched)
active proctype Invariant() { 0 atomic steps
assert(cnt <= 1); hash conflicts: O (resolved)
} 4.879 memory usage (Mbyte)

[root@moonzoo spin_test]# Is
a.out crit.pml crit.pml.trail pan.b pan.c pan.h

$

CS550 Intro. to SE 16
Spring 2007

Critical Section ExamEIe gcont.z

[root@moonzoo spin_test]# spin -t -p crit.pml

Starting P with pid O
Starting P with pid 1
Starting Invariant with pid 2

1: proc 1 (P)line 5 "crit.pml" (state 1) [('(lock))]

2. proc O (P)line 5 "crit.pml" (state 1) [('(lock))]

3: proc 1(P)Iline 5"crit.pml" (state 2) [lock = 1]

4: proc 1 (P)line 6 "crit.pml" (state 3) [cnt = (cnt+1)]

1 is in the crt sec!

5. proc 1(P)line 7 "crit.pml" (state 4) [printf("%d is in the crt sec\\n', pid)]
6: proc O (P)line 5 "crit.pml" (state 2) [lock = 1]

7. proc O (P)line 6 "crit.pml" (state 3) [cnt = (cnt+1)]

0 is in the crt sec!

8: proc 0 (P)line 7 "crit.pml" (state 4) [printf("%d is in the crt sec\\n', pid)]
spin: line 13 "crit.pml", Error: assertion violated
spin: text of failed assertion: assert((cnt<=1))

9: proc 2 (Invariant) line 13 “crit.pml" (state 1)
spin: trail ends after 9 steps
#processes: 3

lock =1
cnt=2

9: proc 2 (Invariant) line 14 "crit.pml" (state 2) <valid end state>

9: proc 1(P)line 8 "crit.pml" (state 5)

9: proc O (P)line 8"crit.pml" (state 5)

e Spring 2007

[assert((cnt<=1))]

Revised Critical Section ExamEIe

bool lock;
byte cnt;

active[2] proctype P() {
atomic{ lock -> lock=true;}
cnt=cnt+1;
printf("%d is in the crt sec'\n",
cnt=cnt-1;
lock=false;

}

active proctype Invariant() {
assert(cnt <= 1);

}

[root@moonzoo revised]# a.out
Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +
_pid);
State-vector 36 byte, depth reached 14, errors: O
62 states, stored
17 states, matched
79 transitions (= stored+matched)
0 atomic steps
hash conflicts: O (resolved)

4.879 memory usage (Mbyte)

msr CS550 Intro. to SE
; Spring 2007

18

Deadlocked Critical Section ExamEIe

bool lock;
byte cnt;

active[2] proctype P() {

}

atomic{ !lock -> lock==true;}
cnt=cnt+1;

printf("%d is in the crt sec\n",

cht=cnt-1;
lock=false:

active proctype Invariant() {

}

assert(cnt <= 1);

[[root@moonzoo deadlocked]# a.out
pan: invalid end state (at depth 3)

(Spin Version 4.2.7 -- 23 June 2006)
Warning: Search not completed
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)

_Pid); assertion violations +

acceptance cycles - (not selected)
invalid end states +

State-vector 36 byte, depth reached 4, errors: 1
5 states, stored
0 states, matched
5 transitions (= stored+matched)
2 atomic steps
hash conflicts: O (resolved)

4.879 memory usage (Mbyte)

msr CS550 Intro. to SE
; Spring 2007

19

Deadlocked Critical Section ExamEIe gcont.z

[root@moonzoo deadlocked]# spin -t -p deadlocked_crit.pml
Starting P with pid 0
Starting P with pid 1
Starting Invariant with pid 2
1: proc 2 (Invariant) line 13 "deadlocked crit.pml" (state 1)
[assert((cnt<=1))]
2. proc 2 terminates
3: proc 1 (P)line 5 "deadlocked crit.pml" (state 1) [(!(lock))]
4: proc O (P)line 5 "deadlocked crit.pml" (state 1) [(!(lock))]
spin: trail ends after 4 steps
#processes: 2
lock =0
cnt=20
4: proc 1 (P)line 5 "deadlocked crit.pml" (state 2)
4: proc O (P)line 5 "deadlocked crit.pml" (state 2)
3 processes created

|
msr CS550 Intro. to SE 20
a Spring 2007

OEtions In XSPIN

B Now you have learned all necessary techniques to
verify common problems in the SW development

- Advanced Verification Options —Ox BEasic Verification Options

Physical Memory Available {in Mbytes): 4000 explain search kode
Correctness Properties

. -] Exhaustive
Estimated 3tate Space Size (states x 10°3): (500 explain @ Safety (state properties) ¢ Suportraco/Bitstate
Maximum Search Depth (steps): 10000 explain W Assertions Hash-Compact
Nr of hash-functions in Bitstate mode: 2 explain M Invalid Endstates

Liveness (cycles/sequences) A Full Gueue
Extra Compile-Time Directives {Optional): Choose Mon-Progress Cycles @ Blocks New Msgs
Extra Run-Time Options (Optional): Choose Acceptance Cycles Loses Hew Msgs

Extra Verifier Generation Options: Choose Sl szl (Rl [Add Mever Claim from File]

Apply Hever Claim (If Present) [Verify an LTL Property]

Errar Trapping Type of Run B Report Unreachable Code
¢ Stop at Error Nr: |1 M Use Partial Order Reduction Check srixs fssertions [Set Advanced Options]
Don't Stop at Errors Use Compression Help Cancel Run
Save All Error-trails Add Complexity Profiling
Find Shortest Trail (iterative) Compute Variable Ranges

Use Breadth-First Search

Help

| B |
ms CS550 Intro. to SE 21
. Spring 2007

References

B Spin home page
*

e Tool downloads and documents (tutorials, online
reference, etc)

B The Spin Model Checker by G.Holzmann
— 2"d ed, Addison Wesley

msr CS550 Intro. to SE 22
_ss=SR Spring 2007

