Announcement

B Anonymous evaluation requested

+ TAsS: 1 (worst) — 10 (best)
« MY A (Young-seok Seo)
o UHQI (Hyungin Im)
= =0 O

4+ CS550 (by June 11t)
* http://portal.kaist.ac.kr — Webcais— &tAl > & & — 2F =2
ot 2 - =& X3 — =l
» Note that you cannot see your final grade if you do not finish course
evaluation, which is a policy of KAIST

B Safehome project 3 part

+ Due is June 7t
4+ Demonstration is scheduled on June 8t afternoon in the class room

e You should bring your own notebook to demonstrate your safehome

system due to various execution environments
* You must submit all your project material both hardcopy and softcopy

by the 8:00 AM June 8. 10% penalty will be applied to late submission.
B Final exam on 5:00 — 6:10 PM, June 12 (next Tuesday)

msr CS550 Intro. to SE
; Spring 2007

The Spin Model Checker : Part I/l

Moonzoo Kim
CS Dept. KAIST

Korea Advanced Institute of
CS550 Intro. to SE .
KAIST Spring 2007 KAIST Science and Technology

Model Checking

B Specify requirement properties and build system
model

B Generate possible states from the model and then
check exhaustively whether given requirement
properties are satisfied within the state space

System > OK
model
odel Checking 4
state exploratia n\
Requm?ment__> 0@~ Q) Counter
properties
example

msr CS550 Intro. to SE 3
e Spring 2007

SEecification of Reguirement ProEerties

B assert() is simple, but powerful enough to verify
many practical properties

4+ EX. assert() can express properties on invariance,
critical section, mutual exclusion, etc

B However, assert() cannot express some
popular properties such as eventuality

+ EX. Whenever a server receives a read request from a
client, the server should send back an acknowledge
message to the client eventually

B We need more powerful mechanism to describe
requirement properties

+ Linear temporal logic (LTL) can be a good solution

msr CS550 Intro. to SE 4
- Spring 2007

Linear TemEoraI Logic

Slides
from

taught by
Dr.G.Holzmann
at Caltech
Spring 2005

CS550 Intro. to SE

e Spring 2007

-.--.

given a state sequence (from a run o):
S0rS1rS,sS; .
and a set of propositional symbols: p,q,.. such that
Vi, (i =2 0) and Vp, s; |- p is defined
we can define the semantics of the temporal logic formulae:

[] f' <>f’ Xf' and e U f i'e_' the property
holds for the remainder
. L of run ¢, starting at
£ iff So l_ £ position s,

iff Vi, (3 >= 1i): s; |- £

iff 33,(3 >= i): s; £

iff s, F £

Linear Temoral Loic

strong
until

{Spin)

CS550 Intro. to SE
MSprmg 2007

I W'l 1IN WA S
A4

s; = e £
d3,(3 >= i): s;- £ and
Vk,(i <=k < j): s, |- e

equivalences:
fe U £} == (e U £) A {<> £}
. {e U f}) == (e U £) v {[])

Linear TemEoraI Logic

[Ip is satified at all locations in G

<>p is satisfied at all locations in ¢

[l1<>p is satisfied at all locations in ©

<>q is satisfied at all locations except s_, and s,
Xqg 1is satisfied at s;,, and at s,

PUg (strong until) is satisfied at all locations except s_ , and
<>(pUq) (strong until) is satisfied at all locations except s_ _, and s,

<>({pUqg) {(weak until) is satisfied at all locations

[1<>(pUg) {weak until) is satisfied at all locations

in model checking we are typically only
interested in whether a temporal logic formmla

is satisfied for all runs of the system, starting
in the initial system state (that is: at s;)

CS550 Intro. to SE 7
KAIST S 2007

Linear Temporal Logic

 EIAVAS]

« [1p & (p' false)
<>p & (true p) until
I[1p & <>lp
— if p is not invariantly true, then eventually p becomes false
I<>p < [1lp
— if p does not eventually become true, it is invariantly false

[1p&& [19 < [1(p&&Qq) ‘@p,ﬁq
— note though: ([1pflL19 — [1(®I|a
_ but (aipll11Q < 1@lg —

<>pll<>q & <>(p|l9) (=, TR
— note though: (<>p && <>q) < <> (p && Q)

- but (<>p8&&<>q) »<>(p&&Qq) —

CS550 Intro. to SE
msmng 2007

Linear Temoral Loic

some standard LTL formulae

[1p always p invariance
<>Dp eventually p guarantee
p->(<>q) p implies eventually q response
p->(qUr) p implies g until r precedence
[1<>p always, eventually p recurrence (progress)
<>[1p eventually, always p stability (non-progress)

(<>p) -=> (<> q) eventually p implies eventually g correlation

non-progress Baalst - in every run where p
ype eventually becomes true

PIOPELtCR q also eventually becomes
true (though not necessarily
in that order)

acceptance

CS550 Intro. to SE
msmng 2007

Linear Temoral Loic

he earlier informally statec
sample properties

p is invariantly true
[1p
p eventually becomes invariantly true
<>[] p
p always eventually becomes false at least once more
[1<>lp
p always implies 7q
[1(p->!q)
p always implies eventually q
[1(p-><>0q)

CS550 Intro. to SE
msmng 2007

Linear Temoral Loic

visualizing LTL formulae

CS550 Intro. to SE
msmng 2007

Review

B Promela

+ The system specification language of the Spin model
checker

4+ Syntax Is similar to that of C, but simplified
+ No float type, no functions, no pointers etc

4+ Characteristics
- Communication and concurrency
- Formal operational semantics
- Interleaved semantics
« Asynchronous process execution
- Two-way communication

+ Unique features not found in programming languages
- Non-determinism (process level and statement level)
- Executabllity

BT —_—_—_—_—
msr CS550 Intro. to SE 12
; Spring 2007

6 TzEes of Basic Statements

B Assignment: always executable
+ EX. Xx=3+X%, Xx=run A(Q)

E Print: always executable

+ EX. printf(““Process %d 1s created.\n”, pid);
B Assertion: always executable

+ Ex.assert(X +y == 2)
B Expression: depends on its value

+ EX. Xx+3>0,0, 1, 2

4+ EX. skip, true

B Send. depends on buffer status
%+ EX. ch1l!m is executable only if chl is not full

B Receive: depends on buffer status
+ EX. chl?m is executable only if chl is not empty

BT —_—_—_—_—
m CS550 Intro. to SE 13
= __Spring 2007

Communication Using Message Channels

B Spin provides communications through
various types of message channels

4+ Buffered or non-buffered (rendezvous comm.)
+\Various message types
4 Various message handling operators

B Syntax

«chan chl = [2] of { bit, byte};

e ch1!0,10:ch1!1,20
e chl?b,bt:ch1?1,bt

Sender—

(1,20)

(0,10)

—>Receilver

«chan ch2= [0] of {bit, byte}

msr CS550 Intro. to SE
Spring 2007

14

OEerations on Channels

B Basic channel inquiry
+ len(ch)
+ empty(ch)
+ Full(ch)
+ nempty(ch)
+« nfull(ch)
B Additional message passing operators
+ ch?[x,y]: polling only
+ ch?<x,y>: copy a message without removing it
+ ch?x(y) == ch?x,y (for user’s understandability)

B Be careful to use these operators inside of
expressions

+ They have side-effects, which spin may not allow

- TTTTTT———
msr CS550 Intro. to SE 15
Spring 2007

Faulty Data Transfer Protocol

P9 , data SWItCn maoael proposea a a ell 1absS
mtype={ini,ack, dreq,data, shutup,quiet, dead}

chan M = [1] of {mtype};

chan W = [1] of {mtype}; active proctype Wproc() {

i wvoe M e W?2ini; /* wait for ini*/
?C ive proctype Mproc() Mt e Mlack: /* acknowledge */

WI!ini; /* connection */ I -

L : do * 3 options: */
M?ack; /* handshake */ .- W?dreqg-> [* data requested */
. Cos wait + Mldata /* send data */
iflmeou) i tv\\//vc?loptionS' y :: W?data-> /*receive data */

' Ki [* */

:» Wishutup; /* start shutdown */ . W°shustul|c5)-> 0 TESPENEE
- V\gdreq; * or request data */ M!shutup; /* start shutdown?*/

O break

. M?data -> W!data od-
.. M?data-> W!shutup;

break W2quiet;
; od M!dead;
l;
M?shutup; Channel W
W!quiet;
M?dead,;

}
CS550 Intro. to SE 16

e Spring 2007

HW due June 19

B Multiple reader/writer problems

+ Goal: model a system containing 3 readers and 2 writers
sharing common data area

« Common data area has a mediator which receives a read or write
request message from a reader or a writer through a request channel

« The mediator sends back an acknowledge message if a request can
be allowed; it a request is not allowable now, the mediator waits to
send the ack until the request becomes allowable

— Hint: a mediator may have a queue to hold requests

* Once allowed, a reader starts its operation and sends a finish
message to the mediator when it finishes

A reader A mediator A writer
ead request :
Common ack
Data Area [\ &2¢ \

3
< /
& y write finish

reading

: read finish

msr CS550 Intro. to SE 17
; Spring 2007

-

writing

HW due June 19 gcont.z

+ System requirements

e Concurrency (CON)
— Multiple readers can read data concurrently

» EXxclusive writing (EW)
— Only one writer can write into the data area at an instant with no readers
* High priority of a writer (HPW)
— A writer’s request should have a higher priority than that of a reader
+ Prove that your system design satisfies all the system requirements
» Submit your Promela code and your verification result screenshots

A reader A mediator A writer

ead request :
*k’

w

CS550 Intro. to SE 18
. Spring 2007

writing

reading

