
Chapter 11Chapter 11Chapter 11Chapter 11
ComponentComponent--Level Design Level Design

Moonzoo Kim
CS Division of EECS Dept.

KAISTKAIST

1

Overview of Ch 11. Overview of Ch 11.
M d li C tM d li C t l l D il l D iModeling ComponentModeling Component--level Designlevel Design

11.1 What is a component11.1 What is a component
A bj tA bj t i t d ii t d iAn objectAn object--oriented vieworiented view

11.2 Designing class11.2 Designing class--based componentsbased components
Basic design principlesBasic design principlesg p pg p p
ComponentComponent--level design guidelineslevel design guidelines
CohesionCohesion
CouplingCouplingCouplingCoupling

11.3 Conducting component11.3 Conducting component--level designlevel design
11.4 Object constraint language (OCL)11.4 Object constraint language (OCL)
11.5 Designing conventional components11.5 Designing conventional components

Graphical design notationGraphical design notation
Tabular design notationTabular design notationgg
Program design languageProgram design language

2

What is a Component?What is a Component?What is a Component?What is a Component?

OMG Unified Modeling Language SpecificationOMG Unified Modeling Language Specification [OMG01] [OMG01] g g g pg g g p [][]
defines a component as defines a component as

“… a modular, deployable, and replaceable part of a system that “… a modular, deployable, and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces ”encapsulates implementation and exposes a set of interfaces ”encapsulates implementation and exposes a set of interfaces.encapsulates implementation and exposes a set of interfaces.

OO view: a component contains OO view: a component contains a set of collaborating a set of collaborating
classesclasses
Conventional view: logic, the internal data structures Conventional view: logic, the internal data structures
that are required to implement the processing logic, and that are required to implement the processing logic, and
an interface that enables the component to be invokedan interface that enables the component to be invokedan interface that enables the component to be invoked an interface that enables the component to be invoked
and data to be passed to it.and data to be passed to it.

3

OO ComponentOO Component
Analysis class

num berOf Pages
num berOf Sides
paperTy pe

Prin t Job

Analysis class

Design component

Prin t Job

c om put eJobm agni f i c a t ion
produc t ionFeat ures

c om put eJobCost()
passJobt oPrin t e r()

in i t ia t eJob

< <i t f >> Elaborated design class
number Of Pages
number Of Sides
paperType
paperWeight
paperSize
paperColor

magnif icat ion
colorRequirement s

PrintJob

< <in t er f ace>>
co mp u t eJo b

comput ePageCost ()
comput ePaper Cost ()
comput ePr odCost ()
comput eTot alJobCost ()

abo ated des g c ass

q
pr oduct ionFeat ur es
collat ionOpt ions
bindingOpt ions
coverSt ock
bleed
pr ior it y

t ot alJobCost
WOnumber

comput ePageCost ()
comput ePaperCost ()

<< in t er f ace>>
in it iat eJo b

buildWorkOr der ()
checkPr ior it y ()
passJobt o Product ion()

4

comput ePaperCost ()
comput ePr odCost ()
comput eTot alJobCost ()
buildWorkOr der ()
checkPr ior it y ()
passJobt o Product ion()

Basic Design PrinciplesBasic Design PrinciplesBasic Design PrinciplesBasic Design Principles
The OpenThe Open--Closed Principle (OCP). Closed Principle (OCP).

“A module [component] should be open for extension but closed for “A module [component] should be open for extension but closed for
modificationmodificationmodification.modification.

The The LiskovLiskov Substitution Principle (LSP).Substitution Principle (LSP).
“Subclasses should be substitutable for their base classes.“Subclasses should be substitutable for their base classes.

Dependency Inversion Principle (DIP)Dependency Inversion Principle (DIP)Dependency Inversion Principle (DIP).Dependency Inversion Principle (DIP).
“Depend on abstractions. Do not depend on concretions.”“Depend on abstractions. Do not depend on concretions.”

The Interface Segregation Principle (ISP).The Interface Segregation Principle (ISP).
“Many client“Many client--specific interfaces are better than one general purpose interfacespecific interfaces are better than one general purpose interfaceMany clientMany client--specific interfaces are better than one general purpose interface.specific interfaces are better than one general purpose interface.

The Release Reuse Equivalency Principle (REP).The Release Reuse Equivalency Principle (REP).
“The granule of reuse is the granule of release.”“The granule of reuse is the granule of release.”

The Common Closure Principle (CCP)The Common Closure Principle (CCP)The Common Closure Principle (CCP).The Common Closure Principle (CCP).
“Classes that change together belong together.” “Classes that change together belong together.”

The Common Reuse Principle (CRP).The Common Reuse Principle (CRP).
“Classes that aren’t reused together should not be grouped together ”“Classes that aren’t reused together should not be grouped together ”Classes that aren t reused together should not be grouped together.Classes that aren t reused together should not be grouped together.

5

Source: Martin, R., “Design Principles and Design Patterns,” downloaded from Source: Martin, R., “Design Principles and Design Patterns,” downloaded from
http://http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

6

The OCP in ActionThe OCP in Action (pg332)(pg332)
The scene: The scene:

Vinod's cubicle.Vinod's cubicle.

The players: The players:

guys have come up with.guys have come up with.
ShakiraShakira: : Amaze me.Amaze me.
VinodVinod (laughing): (laughing): They call it a They call it a

Vinod, Vinod, ShakiraShakira
members of the members of the SafeHome SafeHome software software
engineering team.engineering team.

The conversation:The conversation:

(g g)(g g) yy
doggie angst sensor. doggie angst sensor.
ShakiraShakira: : Say what?Say what?
VinodVinod:: It's for people who leaveIt's for people who leaveThe conversation:The conversation:

VinodVinod: : I just got a call from Doug I just got a call from Doug
[the team manager]. He says [the team manager]. He says
marketing wants to add a newmarketing wants to add a new

VinodVinod: : It s for people who leave It s for people who leave
their pets home in apartments or their pets home in apartments or
condos or houses that are close to condos or houses that are close to
one another. The dog starts to bark. one another. The dog starts to bark. marketing wants to add a new marketing wants to add a new

sensor.sensor.
ShakiraShakira (smirking): (smirking): Not again, Not again,
jeez!jeez!

gg
The neighbor gets angry and The neighbor gets angry and
complains. With this sensor, if the complains. With this sensor, if the
dog barks for more than, say, a dog barks for more than, say, a

jeez!jeez!
VinodVinod: : Yeah ... and you're not Yeah ... and you're not
going to believe what thesegoing to believe what these

minute, the sensor sets a special minute, the sensor sets a special
alarm mode that calls the owner on alarm mode that calls the owner on
his or her cell phone.his or her cell phone.

7

ShakiraShakira: : You're kidding me, right?You're kidding me, right?

7

VinodVinod: : Nope. Doug wants to know Nope. Doug wants to know
how much time it's going to take to how much time it's going to take to
add it to the security function.add it to the security function.

deal.deal.
ShakiraShakira: : Knowing Doug, he'll keep Knowing Doug, he'll keep
us focused and not deliver the us focused and not deliver the

ShakiraShakira (thinking a moment): (thinking a moment): Not Not
much ... look. [She shows much ... look. [She shows VinodVinod
Figure 11.4] We've isolated the Figure 11.4] We've isolated the

t l l b hi d tht l l b hi d th

doggie thing until the next release.doggie thing until the next release.
VinodVinod: : That's not a bad thing, but That's not a bad thing, but
can you implement now if he wants can you implement now if he wants

actual sensor classes behind the actual sensor classes behind the
sensor sensor interface. As long as we interface. As long as we
have specs for the doggie sensor, have specs for the doggie sensor,
adding it should be a piece of cakeadding it should be a piece of cake

you to?you to?
ShakiraShakira: : Yeah, the way we Yeah, the way we
designed the interface lets me do it designed the interface lets me do it

adding it should be a piece of cake. adding it should be a piece of cake.
Only thing I'll have to do is create anOnly thing I'll have to do is create an
appropriate component ... uh, class, appropriate component ... uh, class,
for itfor it No changeNo change to theto the DetectorDetector

with no hassle.with no hassle.
<<interface>>

Sensor
read() Detectorfor it. for it. No change No change to the to the Detector Detector

component at all.component at all.
VinodVinod: : So I'll tell Doug it's no bigSo I'll tell Doug it's no big

()
enable()
disable()
test()

88

Window/
door
sensor

Smoke
sensor

Motion
detector

Heat
sensor

CO2
sensor

Design GuidelinesDesign GuidelinesDesign GuidelinesDesign Guidelines

ComponentsComponentspp
Naming conventions should be established for components that are Naming conventions should be established for components that are
specified as part of the architectural model and then refined and specified as part of the architectural model and then refined and
elaborated as part of the componentelaborated as part of the component level modellevel modelelaborated as part of the componentelaborated as part of the component--level modellevel model

InterfacesInterfaces
Interfaces provide important information about communication andInterfaces provide important information about communication andInterfaces provide important information about communication and Interfaces provide important information about communication and
collaboration (as well as helping us to achieve the OCP)collaboration (as well as helping us to achieve the OCP)

Dependencies and InheritanceDependencies and Inheritance
it is a good idea to model dependencies from left to right and it is a good idea to model dependencies from left to right and
inheritance from bottom (derived classes) to top (base classes).inheritance from bottom (derived classes) to top (base classes).

9

CohesionCohesion
OO view: OO view:

cohesioncohesion implies that a component or class encapsulates only implies that a component or class encapsulates only
tt ib t d ti th t l l l t d t thtt ib t d ti th t l l l t d t thattributes and operations that are closely related to one another attributes and operations that are closely related to one another

and to the class or component itselfand to the class or component itself
Levels of cohesionLevels of cohesion

FunctionalFunctional
LayerLayer
Communicational: all operations that access the same dataCommunicational: all operations that access the same dataCommunicational: all operations that access the same dataCommunicational: all operations that access the same data

Sequential: passing data from the first op to the following opsSequential: passing data from the first op to the following ops
Procedural: similar to Sequential, not without data passingProcedural: similar to Sequential, not without data passing
Temporal: ex. Error handling class, initialization classTemporal: ex. Error handling class, initialization class
Utility: ex Statistics classUtility: ex Statistics classUtility: ex. Statistics classUtility: ex. Statistics class

10

Cohesion in ActionCohesion in Action (pg336(pg336--337)337)
The scene: The scene:

Jamie's cubicle.Jamie's cubicle.

The players: The players:

EdEd: : We originally defined five We originally defined five
operations for operations for camera. camera. Look ... Look ...
[shows Jamie the list][shows Jamie the list]

JamieJamie, , EdEd
members of the members of the SafeHome SafeHome software software
engineering team who are working on engineering team who are working on
the surveillance function.the surveillance function.

determineType() determineType() tells me the type of tells me the type of
camera.camera.
translateLocation() translateLocation() allows me to move allows me to move
the camera around the floor plan.the camera around the floor plan.

The conversation:The conversation:
EdEd: : I have a firstI have a first--cut design of the cut design of the
camera componentcamera component

displayID() displayID() gets the camera ID and gets the camera ID and
displays it near the camera icon.displays it near the camera icon.
displayView() displayView() shows me the field of shows me the field of
view of the camera graphicallyview of the camera graphicallycamera component.camera component.

JamieJamie: : Wanna do a quick review?Wanna do a quick review?
EdEd: : I guess ... but really, I'd like I guess ... but really, I'd like
your input on somethingyour input on something

view of the camera graphically.view of the camera graphically.
displayZoom() displayZoom() shows me the shows me the
magnification of the camera graphically.magnification of the camera graphically.

EdEd: : I've designed each separately, I've designed each separately,
your input on something.your input on something.
(Jamie gestures for him to (Jamie gestures for him to
continue.)continue.)

and they're pretty simple and they're pretty simple
operations. So I thoughtoperations. So I thought

1111

it might be a good idea to combine it might be a good idea to combine
all of the display operations into all of the display operations into
just one that's called just one that's called
di l Cdi l C ()() it'll h th IDit'll h th ID

EdEd (mildly exasperated): (mildly exasperated): So So
what? The whole thing will be less what? The whole thing will be less
than 100 source lines, max. It'll be than 100 source lines, max. It'll be

i t i l t I thi ki t i l t I thi kdisplayCameradisplayCamera()()----it'll show the ID, it'll show the ID,
the view, and the zoom. the view, and the zoom.
WhaddayaWhaddaya think?think?
J iJ i (i i)(i i) N tN t

easier to implement, I think.easier to implement, I think.
JamieJamie: : And what if marketing And what if marketing
decides to change the way that we decides to change the way that we

t th i fi ld?t th i fi ld?JamieJamie (grimacing): (grimacing): Not sure Not sure
that's such a good idea.that's such a good idea.
EdEd (frowning): (frowning): Why? All of these Why? All of these
li l h d hli l h d h

represent the view field?represent the view field?
EdEd: : I'll just jump into the I'll just jump into the
displayCamera() displayCamera() op and make the op and make the

ddlittle ops can cause headaches.little ops can cause headaches.
JamieJamie: : The problem with The problem with
combining them is we lose combining them is we lose

mod.mod.
JamieJamie: : What about side effects? What about side effects?
Ed: Ed: Whaddaya mean?Whaddaya mean?

cohesion. You know, the cohesion. You know, the
displayCameradisplayCamera() () op won't be op won't be
singlesingle--minded.minded.

JamieJamie: : Well, say you make the Well, say you make the
change but inadvertently create a change but inadvertently create a
problem with the ID display.problem with the ID display.

12

p p yp p y

12

EdEd: : I wouldn't be that sloppyI wouldn't be that sloppy..
JamieJamie: : Maybe not, but what if Maybe not, but what if
some support person two years some support person two years

JamieJamie: : Good decision.Good decision.

from now has to make the mod. from now has to make the mod.
He might not understand the op as He might not understand the op as
well as you do and, who knows, well as you do and, who knows,
h i ht b lh i ht b lhe might be sloppy.he might be sloppy.
EdEd: : So you're against it?So you're against it?
JamieJamie: : You're the designer . . . it's You're the designer . . . it's
your decision . . . just be sure you your decision . . . just be sure you
understand the consequences of understand the consequences of
low cohesion.low cohesion.
EdEd (thinking a moment): (thinking a moment): Maybe Maybe
we'll go with separate display ops.we'll go with separate display ops.

1313

CouplingCoupling

Conventional view: Conventional view:
The degree to which a component is connected to otherThe degree to which a component is connected to otherThe degree to which a component is connected to other The degree to which a component is connected to other
components and to the external worldcomponents and to the external world

OO view:OO view:
a qualitative measure of the degree to which classes area qualitative measure of the degree to which classes area qualitative measure of the degree to which classes are a qualitative measure of the degree to which classes are
connected to one anotherconnected to one another

Level of couplingLevel of coupling
Content: one component modifies data of another componentContent: one component modifies data of another componentContent: one component modifies data of another componentContent: one component modifies data of another component
Common: when components make use of a global variableCommon: when components make use of a global variable
Control: A() invokes B() and passes a control flag to BControl: A() invokes B() and passes a control flag to B
Routine call: one op invokes anotherRoutine call: one op invokes anotherRoutine call: one op invokes anotherRoutine call: one op invokes another
Type use: class A uses a data type defined in class BType use: class A uses a data type defined in class B
Inclusion or importInclusion or import

14

Component Level DesignComponent Level Design--IIComponent Level DesignComponent Level Design II
Step 1. Identify all design classes that correspond to the Step 1. Identify all design classes that correspond to the
problem domain.problem domain.problem domain. problem domain.
Step 2. Identify all design classes that correspond to the Step 2. Identify all design classes that correspond to the
infrastructure domain.infrastructure domain.

Ex GUI components OS components object & data managementEx GUI components OS components object & data managementEx. GUI components, OS components, object & data management Ex. GUI components, OS components, object & data management
components, etccomponents, etc

Step 3. Elaborate all design classes that are not acquired as Step 3. Elaborate all design classes that are not acquired as
reusable componentsreusable componentsreusable components.reusable components.

Step 3a. Specify Step 3a. Specify message detailsmessage details when classes or component when classes or component
collaborate. collaborate.
Step 3b. Identify appropriateStep 3b. Identify appropriate interfacesinterfaces for each component.for each component.Step 3b. Identify appropriate Step 3b. Identify appropriate interfacesinterfaces for each component. for each component.
Step 3c. Elaborate Step 3c. Elaborate attributesattributes and define data types and data and define data types and data
structures required to implement them. structures required to implement them.
Step 3d.Step 3d. Describe Describe processing flow (activity diagram)processing flow (activity diagram) within each within each pp p g (y g)p g (y g)
operation in detail.operation in detail.

15

ComponentComponent--Level DesignLevel Design--IIIIComponentComponent Level DesignLevel Design IIII
Step 4. Describe persistent data sources (databases Step 4. Describe persistent data sources (databases
and files) and identify the classes required to manageand files) and identify the classes required to manageand files) and identify the classes required to manage and files) and identify the classes required to manage
them. them.
Step 5 Develop and elaborateStep 5 Develop and elaborate behavioralbehavioralStep 5. Develop and elaborate Step 5. Develop and elaborate behavioral behavioral
representations (representations (statechartstatechart)) for a class or component. for a class or component.
Step 6. Elaborate Step 6. Elaborate deployment diagramsdeployment diagrams to provide to provide pp p y gp y g pp
additional implementation detail. additional implementation detail.
Step 7. Factor every componentStep 7. Factor every component--level design level design
representation and always consider representation and always consider alternativesalternatives..

16

Collaboration DiagramCollaboration Diagram

:ProductionJob

1: buildJob (WOnumber)
2: submitJob (WOnumber)

[x>1] y:= f(WOnumber)

:WorkOrder

:JobQueue

17

Processing Flow in Processing Flow in
Activity DiagramActivity Diagram validate at t ributes

inputActivity DiagramActivity Diagram p

accessPaperDB(weight)

returns baseCostperPage

i B

paperCostperPage =
 baseCostperPage

size = B paperCostperPage =
paperCostperPage * 1 .2

size = C paperCostperPage =
paperCostperPage * 1 .4

size = D paperCostperPage =
paperCostperPage * 1 .6

color is custom
paperCostperPage =
 paperCostperPage * 1 .1 4

color is s tandard

18

returns
(paperCostperPage)

Behavioral Behavioral
RepresentationRepresentation

buildingJobDat a

ent ry/ readJobDat a ()

behavior wit h in t he
st at e bu ild ingJobDat a

dat aInput Incomplet e

Representation Representation
in Statechartin Statechart

ent ry/ readJobDat a ()
exit / displayJobDat a ()
do/ checkConsist ency()
include/ dat aInput

dat aInput Complet ed [all dat a
it ems consist ent] / d isp layUserOpt ions

ent ry/ comput eJob
exit / save t ot alJobCost

comput ingJobCost

it ems consist ent] / d isp layUserOpt ions

f ormingJob

jobCost Accept ed [cust omer is aut horized] /
get Elect ronicSignat ure

ent ry/ buildJob
exit / save WOnumber
do/

submit t ingJob

ent ry/ submit Job
exit / init iat eJob

19

do/ place on JobQueue

jobSubmit t ed [all aut horizat ions acquired] /
prin t WorkOrder

Object Constraint Language (OCL)Object Constraint Language (OCL)j g g ()j g g ()
complements UML by allowing a software engineer to use complements UML by allowing a software engineer to use
a formal grammar and syntax to construct unambiguousa formal grammar and syntax to construct unambiguousa formal grammar and syntax to construct unambiguous a formal grammar and syntax to construct unambiguous
statements about various design model elementsstatements about various design model elements
simplest OCL language statements are constructed in four simplest OCL language statements are constructed in four p g gp g g
parts:parts:

(1) a (1) a contextcontext that defines the limited situation in which the statement that defines the limited situation in which the statement
is valid;is valid;is valid; is valid;
(2) a (2) a propertyproperty that represents some characteristics of the context that represents some characteristics of the context
(e.g., if the context is a class, a property might be an attribute)(e.g., if the context is a class, a property might be an attribute)
(3)(3) titi (ith ti t(ith ti t i t d) th t i l ti t d) th t i l t(3) an (3) an operationoperation (e.g., arithmetic, set(e.g., arithmetic, set--oriented) that manipulates or oriented) that manipulates or
qualifies a property, and qualifies a property, and
(4)(4) keywordskeywords (e.g., if, then, else, and, or, not, implies) that are used (e.g., if, then, else, and, or, not, implies) that are used
t if diti l it if diti l ito specify conditional expressions.to specify conditional expressions.

20

OCL ExampleOCL Example
contextcontext PrintJobPrintJob::validate(::validate(upperCostBoundupperCostBound : :
Integer, Integer, custDeliveryReqcustDeliveryReq : Integer): Integer)

pre:pre: upperCostBoundupperCostBound > 0> 0
and and custDeliveryReqcustDeliveryReq > 0> 0
and and self.jobAuthorizationself.jobAuthorization = 'no'= 'no'jj

post: ifpost: if self.totalJobCostself.totalJobCost <= <= upperCostBoundupperCostBound
and and self.deliveryDateself.deliveryDate <= <= custDeliveryReqcustDeliveryReq

thenthenthenthen
self.jobAuthorizationself.jobAuthorization = 'yes'= 'yes'

endifendif

21

Algorithm DesignAlgorithm Designg gg g
the closest design the closest design
activity to codingactivity to coding openopen

the approach:the approach:
review the design review the design
description for thedescription for the

walk to door;walk to door;
reach for knob;reach for knob;description for the description for the

componentcomponent
use stepwise use stepwise
refinement to refinement to

reach for knob;reach for knob;

open door;open door;

walk through;walk through;
repeat until door opensrepeat until door opens
turn knob clockwise;turn knob clockwise;
if knob doesn't turn thenif knob doesn't turn then

develop algorithmdevelop algorithm
use use structured structured
programmingprogramming to to
implementimplement

walk through;walk through;
close door.close door.

if knob doesn t turn, thenif knob doesn t turn, then
take key out;take key out;
find correct key;find correct key;
insert in lock;insert in lock;

endifendifimplement implement
procedural logicprocedural logic
use ‘use ‘formal methodsformal methods’ ’
to prove logicto prove logic

pull/push doorpull/push door
move out of way;move out of way;
end repeatend repeat

to prove logicto prove logic

22

Algorithm Design ModelAlgorithm Design Modelg gg g
represents the algorithm at a level of represents the algorithm at a level of
detail that can be reviewed for qualitydetail that can be reviewed for quality
options:options:options:options:

graphical (e.g. flowchart, box diagram)graphical (e.g. flowchart, box diagram)
d d (PDL)d d (PDL)pseudocode (e.g., PDL)pseudocode (e.g., PDL) ... choice of many... choice of many

programming languageprogramming language
decision tabledecision table
conduct walkthrough to assess qualityconduct walkthrough to assess quality

23

Structured ProgrammingStructured ProgrammingStructured ProgrammingStructured Programming
for Procedural Designfor Procedural Design

uses a limited set of logical constructs:uses a limited set of logical constructs:
sequencesequence
conditionalconditional—— ifif--thenthen--else, selectelse, select--casecase
loopsloops—— dodo--while, repeat untilwhile, repeat until

leads to more readable, testable codeleads to more readable, testable code
can be used in conjunction with ‘proof of can be used in conjunction with ‘proof of
correctness’correctness’
important for achieving high quality, important for achieving high quality,
but not enoughbut not enough

24

A Structured Procedural DesignA Structured Procedural Design
a

x1

add a condition Z,
if true, exit the program

1

x2b

3x

c

d3x

4

d

ef

x4

g

x

5x

25

Decision TableDecision TableDecision TableDecision Table
Condit ions 1 3 5 642

Rule s

regular customer

silver customer

T

TT

T Use a decision table
when a complex set of
conditions and actions
are encountered within

gold customer

special discount

R l

F TT FF

T T

T

are encountered within
a component

Rule s

no discount

apply 8 percent discountapply 8 percent discount

apply 15 percent discount

apply addit ional x percent discount

26

Program Design Language (PDL)Program Design Language (PDL)
if condition x
 then process a;
 else process b;

if-then-else

p ;
endif

PDL

Easy to combine with source codeEasy to combine with source code
Can be represented in great detailCan be represented in great detail
Machine readable, no need for graphics inputMachine readable, no need for graphics input
Graphics can be generated from PDLGraphics can be generated from PDL
Enables declaration of data as well as procedureEnables declaration of data as well as procedure
Easier to review and maintainEasier to review and maintain

27

28

