Chapter 11
Component-Level Design

Moonzoo Kim

CS Division of EECS Dept.
KAIST

Overview of Ch 11.

Modeling Component-level Design

11.1 What is a component
An object-oriented view

11.2 Designing class-based components
Basic design principles
Component-level design guidelines
Cohesion
Coupling
11.3 Conducting component-level design
11.4 Object constraint language (OCL)

11.5 Designing conventional components
Graphical design notation
Tabular design notation
Program design language

What is a Component?

OMG Unified Modeling Language Specification [OMGO01]
defines a component as

OO view: a component contains a set of collaborating
classes

Conventional view: logic, the internal data structures
that are required to implement the processing logic, and
an interface that enables the component to be invoked
and data to be passed to it.

OO Component

Analysis class

PrintJob

numberOfPages
numberOfSides

paperType
magnification

Design component

) computeJob
productionFeatures 0——
computeJobCost() PrintJob
passJobtoPrinter()

initiateJob

——— Elaborated design class
computelob -
PrintJob

comput ePageCost () number Of Pages

corm$ zm%;ﬁ(;) number Of Sdes
zmmemt alJobCost () ‘ pﬂivngm

N paper Sze

N pape_rpolor
N magnif icat ion

<<interface>>
initiateJob

color Requir ement s
product ionFeat ur es
collat ionOpt ions
bindingOpt ions
cover S ock
bleed
priority
tot alJobCost

buildwWor kOr der () WOnumber
checkPriority ()

passJobto Production()

T
comput ePaper Cost ()
comput ePr odCost ()
comput eTot alJobCost ()
buildwWor kOr der ()
checkPriority ()
passJobto Production()

Basic Design Principles

The Open-Closed Principle (OCP).

“A module [component] should be open for extension but closed for
modification.

“Subclasses should be substitutable for their base classes.

“Depend on abstractions. Do not depend on concretions.”

“Many client-specific interfaces are better than one general purpose interface.
“The granule of reuse is the granule of release.”

“Classes that change together belong together.”

“Classes that aren’t reused together should not be grouped together.”

Source: Martin, R., “Design Principles and Design Patterns,” downloaded from

Design Principles and
Design Patterns

Robert C. Martin
www.objsetmantor.com

What is software architecture” The answer is multitiersd. At the highest level, thers
are te architesture patterns that define the overall shape and sirueture of softwars
applications’, Down a level Is the architecture that Is specifically related to the pur-
pose of the software applicatien. Yet another level down resides the architesiure of
the modules and thedr limercommections. This 1s the domeain of design pattenﬁz. pack=
aliges, conponsnls, aud clsses. I s (s level il we will concein ourselves wilh
this chapter.

Chur seope m this chapter is quite limitted. There is much more to be said abow the
prineiples and patterns that are exposed here. Interested readsrs mie reforred to
[Martin®¥],

The OCP in Action (pg332)

The scene:
= Vinod's cubicle.

The players:
= Vinod, Shakira

members of the SafeHome software
engineering team.

The conversation:

Vinod: I'just got a call from Doug
[the team manager]. He says
marketing wants to add a new
sensor.

Shakira (smirking): Not again,
jeez!

Vinod: Yeah ... and you're not
going to believe what these

——

guys have come up with.
Shakira: Amaze me.

Vinod (laughing): They call it a
doggie angst sensor.

Shakira: Say what?

Vinod: It's for people who leave
their pets home in apartments or
condos or houses that are close to
one another. The dog starts to bark.
The neighbor gets angry and
complains. With this sensor, if the
dog barks for more than, say, a
minute, the sensor sets a special
alarm mode that calls the owner on
his or her cell phone.

Shakira: You're kidding me, right?

Vinod: Nope. Doug wants to know
how much time it's going to take to
add it to the security function.

Shakira (thinking a moment): Not
much ... look. [She shows Vinod
Figure 11.4] We've isolated the
actual sensor classes behind the
sensor interface. As long as we
have specs for the doggie sensor,
adding it should be a piece of cake.
Only thing I'll have to do is create an
appropriate component ... uh, class,
for it. No change to the Detector
component at all.

Vinod: So I'll tell Doug it's no big

deal.

Shakira: Knowing Doug, he'll keep
us focused and not deliver the
doggie thing until the next release.

Vinod: That's not a bad thing, but
can you implement now if he wants
you to?

Shakira: Yeah, the way we
designed the interface lets me do it
with no hassle.

1
Window/
door
sensor

<<interface>>
Sensor | i
read() Detector
enable() <t
disable()
test()
A
______ . mmm e
: ! : !
Smoke Motion Heat CO,

sensor detector sensor sensor

—_—

Design Guidelines

Naming conventions should be established for components that are
specified as part of the architectural model and then refined and
elaborated as part of the component-level model

Interfaces provide important information about communication and
collaboration (as well as helping us to achieve the OCP)

it is a good idea to model dependencies from left to right and
iInheritance from bottom (derived classes) to top (base classes).

Cohesion

OO0 view:

cohesion implies that a component or class encapsulates only
attributes and operations that are closely related to one another
and to the class or component itself

Levels of cohesion

Functional
Layer
Communicational: all operations that access the same data

Sequential: passing data from the first op to the following ops
Procedural: similar to Sequential, not without data passing
Temporal: ex. Error handling class, initialization class

Utility: ex. Statistics class

10

Cohesion in Action (pg336-337)

The scene:
= Jamie's cubicle.

The players:
m Jamie, Ed

members of the SafeHome software
engineering team who are working on
the surveillance function.

The conversation:

Ed: | have a first-cut design of the
camera component.

Jamie: Wanna do a quick review?

Ed: I guess ... but really, I'd like
your input on something.

(Jamie gestures for him to
continue.)

—

Ed: We originally defined five
operations for camera. Look ...
[shows Jamie the list]

= determineType() tells me the type of
camera.

= translateLocation() allows me to move
the camera around the floor plan.

= displaylD() gets the camera ID and
displays it near the camera icon.

= displayView() shows me the field of
view of the camera graphically.

= displayZoom() shows me the
magnification of the camera graphically.

Ed: I've designed each separately,
and they're pretty simple
operations. So | thought

it might be a good idea to combine
all of the display operations into
just one that's called
displayCamera()--it'll show the ID,
the view, and the zoom.
Whaddaya think?

Jamie (grimacing): Not sure
that's such a good idea.

Ed (frowning): Why? All of these
little ops can cause headaches.

Jamie: The problem with
combining them is we lose
cohesion. You know, the
displayCamera() op won't be
single-minded.

p— p—

Ed (mildly exasperated): So
what? The whole thing will be less
than 100 source lines, max. It'll be
easier to implement, | think.

Jamie: And what if marketing
decides to change the way that we
represent the view field?

Ed: I'll just jump into the
displayCamera() op and make the
mod.

Jamie: What about side effects?
Ed: Whaddaya mean?

Jamie: Well, say you make the
change but inadvertently create a
problem with the ID display.

Ed: | wouldn't be that sloppy.

Jamie: Maybe not, but what if
some support person two years
from now has to make the mod.
He might not understand the op as
well as you do and, who knows,
he might be sloppy.

Ed: So you're against it?

Jamie: You're the designer . . . it's
your decision . . . just be sure you
understand the consequences of
low cohesion.

Ed (thinking a moment): Maybe
we'll go with separate display ops.

Jamie: Good decision.

Coupling

Conventional view:

= The degree to which a component is connected to other
components and to the external world

OO0 view:

= a qualitative measure of the degree to which classes are
connected to one another

Level of coupling

Content: one component modifies data of another component
Common: when components make use of a global variable
Control: A() invokes B() and passes a control flag to B
Routine call: one op invokes another

Type use: class A uses a data type defined in class B
Inclusion or import

14

Component Level Design-|

Step 1. Identify all design classes that correspond to the
problem domain.

Step 2. ldentify all design classes that correspond to the
infrastructure domain.

= Ex. GUI components, OS components, object & data management
components, etc

Step 3. Elaborate all design classes that are not acquired as
reusable components.

m Step 3a. Specify message details when classes or component
collaborate.

= Step 3b. ldentify appropriate interfaces for each component.

m Step 3c. Elaborate attributes and define data types and data
structures required to implement them.

m Step 3d. Describe processing flow (activity diagram) within each
operation in detail.

15

Component-Level Design-Il

Step 4. Describe persistent data sources (databases
and files) and identify the classes required to manage
them.

Step 5. Develop and elaborate behavioral
representations (statechart) for a class or component.

Step 6. Elaborate deployment diagrams to provide
additional implementation detalil.

Step 7. Factor every component-level design
representation and always consider alternatives.

16

Collaboration Diagram

:ProductionJob

1: buildJob (WOnumber)

[x>1] y:= f(WOnumber)

‘WorkOrder

Xs\ubmiwob (WOnumber)

:JobQueue

17

Processing Flow In
Activity Diagram

KAIST

validate attributes
input

Y

accessPaperDB (weight)

returns baseCostperPagev

paperCostperPage =
baseCostperPage
A

paperCostperPage =
paperCostperPage *1.2

paperCostperPage =
paperCostperPage *1.4

iy

paperCostperPage =
paperCostperPage *1.6

-

color is
paperCostperPage =

paperCostperPage *1.1

o/

color is standard

returns
(paperCostperPage)

18

Behavioral

datainputincomplete

behavior within the
state buidingJobDat a

7
(buildingJobData w ;7

entry/ readJobData () 4 g
exit/displayJobData()

-

Representation
In Statechart

datainputCompleted[all data o
items consistent]/displayUserOptions ~

jobCost Accepted [customer is authorized]/ v

get Hect ronicSignat ure

KAIST

do/ checkConsistency(3 ~
Qlclude/ datalnput <

~

r computingJobCost

entry/ computeJob
exit/ save totalJobCost

formingJob

ntry/ buildJob
exnt/ save WOnumber

v

N

submittingJob

entry/ submitJob
exit/initiateJob
do/ place on JobQueue

N 5/ N 52 NS 7

jobSubmitted[all authorizations acquired]/
print WorkOrder

19

Object Constraint Language (OCL)

complements UML by allowing a software engineer to use
a formal grammar and syntax to construct unambiguous
statements about various design model elements

simplest OCL language statements are constructed in four

parts:
(1) a that defines the limited situation in which the statement
Is valid;
(2) a that represents some characteristics of the context
(e.qg., if the context is a class, a property might be an attribute)
(3) an (e.g., arithmetic, set-oriented) that manipulates or
gualifies a property, and
(4) (e.qg., If, then, else, and, or, not, implies) that are used

to specify conditional expressions.

KAIST 20

OCL Example

context PrintJob::validate(upperCostBound :
Integer, custDeliveryReq : Integer)
pre: upperCostBound >0
and custDeliveryReq > 0
and self.jobAuthorization = 'no'

post: if self.totalJobCost <= upperCostBound
and self.deliveryDate <= custDeliveryReq
then
self.jobAuthorization = 'yes'
endif

21

Algorithm Design

the closest design
activity to coding 2

the approach:

= review the design
description for the
component

= use stepwise
refinement to

repeat until door opens
turn knob clockwise;
If knob doesn't turn, then

develop algorithm take key out;
= use structured TS| Qe (3
programming to endif !
implement pull/push door
procedural logic move out of way;
= use ‘formal methods’ BN (EHEEL

to prove logic

KAIST 22

—

Algorithm Design Model

represents the algorithm at a level of
detail that can be reviewed for quality

options:
graphical (e.g. flowchart, box diagram)
pseudocode (e.g., PDL) ... choice of many
programming language

decision table
conduct walkthrough to assess gquality

23

Structured Programming
for Procedural Design

uses a limited set of logical constructs:
a sequence
a conditional— if-then-else, select-case
0 |oops— do-while, repeat until

leads to more readable, testable code

can be used in conjunction with ‘proof of
correctness’

Important for achieving high quality,
but not enough

24

KAIST

A Structured Procedural Design

Q add a condition Z,
a if true, exit the program

25

Decision Table

Rules

Conditions

3 4

regular customer

silver customer

gold customer

special discount

Rules

no discount

apply 8 percent discount

apply 15 percent discount

apply additional x percent discount

Use a decision table
when a complex set of
conditions and actions
are encountered within
a component

26

Program Design Language (PDL)

<> if condition X
then process a;

else process b;
endif

if-then-else PDL

Easy to combine with source code

Can be represented in great detall

Machine readable, no need for graphics input
Graphics can be generated from PDL

Enables declaration of data as well as procedure
Easier to review and maintain

27

PROCEDURE security.monitor:

INTERFAQE RETURNG system.status: “Epmt;ngsgi:::::d*;ﬁfﬁ‘:f
TYPE signal 1S STRUQTURE DEFINGD * '
name 19 STRING LENGTH VAR; DO FOR alarm rﬂﬁﬁ = smoke, fire, water, termip. b‘.ﬂ'ﬁlﬂ":
address 1S HEX device locafion: READ address [alarm.type] signal.value:
bound.value IS upper bound SOALAR; IF signal.value > bound [alarm.type]
message IS STRING LENGTH VAR: THEN phone.message = message [alarm.type]:
END signd TYPE; set alarm.bell to on® for alarm.dimesecom
TYPE system.status |19 BIT (4): PARBEGIN
. DALL alarm PROOEDURE WITH "on', alam
X 0ALL phone PROOEDURE WITH message
initialize all system ports and reset all hardware; ENDPAR
OASE OF control.panelswitches (eps): GLSE skip
WHEN cps = "test® SELEOT ENDIF
OALL alarm PROQEDURE WITH "on” for test.fime in seconds: ENDFOR
WHEN epe = "alarm-off* SELEOT ENDREP
OALL alarm PROOEDURE WITH "off"; END security.meonitor
WHEN ¢ps = "new.bound.temp® SELEOT
OALL keypadinput PROOEDURE;

WHEN eps = "burglaralarm.off* SELEOT deactivate signal [buiglar.alarm];

DEFAULT pone;
ENDOASE

n LI 28

