Chapter 8
Analysis Modeling

Moonzoo Kim
CS Division of EECS Dept.
KAIST

Overview of Ch 8. Building the Analysis Model

8.1 Requirement Analysis

8.2 Analysis Modeling Approaches
8.3 Data Modeling Concepts

8.4 Object-Oriented Analysis

8.5 Scenario-based modeling

8.6 Flow-oriented modeling

8.7 Class-based modeling

8.8 Creating a behavioral model

Requirements Analysis

At a technical level, SE begins with a building
an analysis model of a target system

Requirements analysis
m specifies software’s operational characteristics

= Indicates software's interface with other system
elements

m establishes constraints that software must meet

Objectives
1. To describe what the customer requires
2. Establish a basis for the creation of a SW design

3. To define a set of requirements that can be validated

once the software is built
KAIST

T ———

Requirements Analysis

Requirements analysis allows the software engineer

to:
elaborate on basic requirements established during earlier
requirement engineering tasks
see Ch 7. “Requirements Engineering”
build models that depict
user scenarios
functional activities
problem classes and their relationships

system and class behavior
the flow of data as it is transformed.

A Bridge

system
description

analysis
model

Elements of the Analysis Model

Scenario-based Flow-oriented
Elements Elements
-Use cases | -Data-flow diagrams
-Activity diagrams -Control-flow diagrams
-Swimlane diagrams -Processing narratives

Analysis

Model

Class-based Elements Behavioral Elements
-Class diagrams -State diagrams
-CRC models == _Sequence diagrams

-Collaboration diagrams

Rules of Thumb

The model should focus on requirements that are visible within the
problem or business domain.

The level of abstraction should be relatively high.
Each element of the analysis model should
add to an overall understanding of software requirements

provide insight into the
information domain
function of the system
behavior of the system

Delay consideration of infrastructure and other non-functional models
until design.

Minimize coupling throughout the system.
Be certain that the analysis model provides value to all stakeholders.
Keep the model as simple as it can be.

—_—

Domain Analysis

Software domain analysis is the identification, analysis, and specification
of common requirements from a specific application domain, typically for
reuse on multiple projects within that application domain . . . [Object-
oriented domain analysis is] the identification, analysis, and specification
of common, reusable capabilities within a specific application domain, in
terms of common objects, classes, subassemblies, and frameworks . . .

Donald Firesmith

Define the domain to be investigated.

Collect a representative sample of applications in the domain.
Analyze each application in the sample.

Develop an analysis model for the objects.

KAIST 8

—_—

Data Modeling

Analysis modeling often Typical data objects
begins with data modeling External entities

Examines data objects printer, user, sensor

independently of Things

processing reports, displays, signals

Focuses attention on the Occurrences or events

data domain interrupt, alarm

Indicates how data objects Roles

relate to one another manager, engineer, salesperson
Relationship among data Organizational units
objects can be expressed in division, team
UML very well Places

manufacturing floor
Structures

KAIST employee record

e S ——

Object-Oriented Concepts

Must be understood to apply class-based
elements of the analysis model

Key concepts:
Classes and objects
Attributes and operations
Encapsulation and instantiation
Inheritance

10

Classes

Object-oriented thinking OCC“hf_fence
begins with the definition of thing

a class, often defined as: external entitiex

roles
organizational units
places
{[structures

template
generalized description Mo)
“blueprint” ... describing a rbutes,
collection of similar items
A superclass establishes a .
hierarchy of classes _
Once a class of items is —_—
defined, a specific instance %
of the class can be identified N y

11

e S ——

Methods

(a.k.a. Operations, Services)

An executable procedure that is
encapsulated in a class and is designed
to operate on one or more data attributes
that are defined as part of the class.

12

Encapsulation/Hiding

The object encapsulates

both data and the logical

procedures required t0 method method
manipulate the data o ¢

method method
#5 #4

Achieves “information hiding”

13

Class Hierarchy

Furniture (superclass)

k
subcla

14

How to Define All Classes

Basic user requirements must be communicated
between the customer and the SW engineer

Classes must be identified
= Attributes and methods are to be defined

A class hierarchy is defined
Object-to-object relationships should be represented
Object behavior must be modeled

Tasks 1 through 5 are repeated until the model is
complete

15

Scenario-Based Modeling

“[Use-cases] are simply an aid to defining what exists
outside the system (actors) and what should be
performed by the system (use-cases).” lvar Jacobson
(1) What should we write about?
(2) How much should we write about it?

(3) How detailed should we make our description?

(4) How should we organize the description?

16

Use-Cases

a scenario that describes a “thread of usage” for a
system

actors represent roles people or devices play as the
system functions

users can play a number of different roles for a given
scenario
Developing a use case

= What are the main tasks or functions that are performed by the
actor?

= What system information will the actor acquire, produce or
change?

= What information does the actor desire from the system?

17

Use-Case Diagram

/]

homeowner

SafeHome

Access camera
surveillance viathe
Internet

[~/ Configure SafeHome
system parameters

cameras

18

Activity Diagram

Supplements the use-
case by providing a

diagrammatic

representation of
procedural flow

(Fig 8.7 of 224 pg)

19

Swimlane Diagrams

homeowner camera interface

Allows the modeler to
represent the flow of
activities described by
the use-case

This diagram indicates
which actor or analysis
class has responsibility
for the action described |Gt i) o)
by an activity rectangle

(Fig 8.8 of 225 pg)

view camera output
in labelled window

Flow-Oriented Modeling

*Represents how data objects are transformed at they
move through the system

A data flow diagram (DFD) is the diagrammatic form
that is used

*Considered by many to be an ‘old school’ approach

* flow-oriented modeling continues to provide a
view of the system that is unique—it should be
used to supplement other analysis model elements

21

The Flow Model

Every computer-based system is an
iInformation transform

computer
based

system

22

Flow Modeling Notation (1/2)

- external
entity

‘ process

A producer (origin) or consumer (sink) of data
Examples: a person, a device, a sensor

Another example: computer-based system

Data must always originate somewhere

and must always be sent to something

A data transformer (changes input to output)
Examples: compute taxes, determine area,
format report, display graph

Data must always be processed in some

way to achieve system function

23

Flow Modeling Notation (2/2)

Data
store

Data flows through a system, beginning
as input and be transformed into output.

base

\

height

area

Data is often stored for later use.
sensor #

\

report

req W

sensor number

sensor #, type,
location, age
—

type,
Naﬁon, age

sensor data

24

Data Flow Diagramming: Guidelines

All icons must be labeled with meaningful names
The DFD evolves through a number of levels of detall

Always begin with a context level diagram (also called
level 0)
Top-down approach

Always show external entities at level 0
Always label data flow arrows

Do not represent procedural logic unless DFD reaches
the final level

e S ——

25

Constructing a DFD—I

Review the data model to isolate data
objects and use a grammatical parse
to determine “operations”

Determine external entities (producers
and consumers of data)

Create a level 0 DFD

26

Level O DFD Example

processing

wist

NTSC
video signal

requested
video
signal

—

27

Constructing a DFD—II

Write a narrative describing the transform
Parse to determine next level transforms

“balance” the flow to maintain data flow continuity
Develop a level 1 DFD

Use a 1:5 (approx.) expansion ratio

28

The Data Flow Hierarchy

29

Flow Modeling Notes

Each bubble is refined until it does just one thing

The expansion ratio decreases as the number of
levels increase

Most systems require between 3 and 7 levels for
an adequate flow model

A single data flow item (arrow) may be expanded
as levels increase (data dictionary provides
Information)

30

Process Specification (PSPEC)

bubble

Appearing at
the final level narrative
of refinement pseudocode (PDL)

equations

tables
diagrams and/or charts

31

Class-Based Modeling

|dentify analysis classes by examining the
problem statement

Use a “grammatical parse” to isolate potential
classes from use case scenarios

Identify the attributes of each class
Identify operations that manipulate the attributes

32

Analysis Classes

(e.g., other systems, devices, people) that produce or
consume information to be used by a computer-based system.

(e.q, reports, displays, letters, signals) that are part of the
information domain for the problem.

(e.g., a property transfer or the completion of a
series of robot movements) that occur within the context of system
operation.

(e.g., manager, engineer, salesperson) played by people who
interact with the system.

(e.g., division, group, team) that are relevant to an
application.

(e.g., manufacturing floor or loading dock) that establish the
context of the problem and the overall function of the system.

(e.g., sensors, four-wheeled vehicles, or computers) that define
a class of objects or related classes of objects.

33

Selecting Classes—<Criteria

E retained information

M needed services
K4 multiple attributes

£Z common attributes
£4 common operations

B4 essential requirements

34

Class Diagram

is placed withinb

HoorPlan

type
name
outsideDimensions

determineType ()
positionAoorplan
scale()

change color()

Camera

type

ID

location
fieldView
panAngle
Zoom Setting

determineType ()
translateLocation ()
displayID()
displayView()
displayZoom ()

is part of

Wall

type

wallDimensions

determineType ()
computeDimensions ()

is used to build p»

<« is used to build

A

is used to build

WallSegm ent

Window

Door

type

startCoordinates
stopCoordinates
nextWallSement

type

startCoordinates
stopCoordinates
nextWindow

type
startCoordinates
stopCoordinates
nextDoor

determineType ()

draw()

draw()

determineType ()

determineType ()
draw()

35

Class-Responsibility-Collaborator
(CRC) Modeling

Analysis classes have “responsibilities”

are the attributes and operations encapsulated
by the class

Analysis classes collaborate with one another

are those classes that are required to provide a
class with the information needed to complete a responsibility.

In general, a collaboration implies either a request for
information or a request for some action.

36

CRC Modeling

OClocco:

Class: FloorPlan

Description:

Responsibility:

Collaborator:

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

incorporates walls, doors and windows

Wall

shows position of video cameras

Camera

37

Class Types

, also called model or business classes, are
extracted directly from the statement of the problem (e.g.,
FloorPlan and Sensor).

are used to create the interface (e.g.,
Interactive screen or printed reports) that the user sees and
interacts with as the software is used.

manage a “unit of work” [UMLO3] from start to
finish. That is, controller classes can be designed to manage

= the creation or update of entity objects;

= the instantiation of boundary objects as they obtain information from
entity objects;

= complex communication between sets of objects;

= validation of data communicated between objects or between the
user and the application.

38

Responsibilities

System intelligence should be distributed across classes
to best address the needs of the problem

Each responsibility should be stated as generally as
possible (for higher reuse)

Information and the behavior related to it should reside
within the same class

Information about one thing should be localized with a
single class, not distributed across multiple classes.

Responsibilities should be shared among related classes,
when appropriate.

39

Collaborations

Classes fulfill their responsibilities in one of two ways:

= A class can use its own operations to manipulate its own attributes, thereby
fulfilling a particular responsibility, or

= aclass can collaborate with other classes.
Collaborations identify relationships between classes
Collaborations are identified by determining whether a class can fulfill each
responsibility itself
three different generic relationships between classes [WIR90]:
= the is-part-of relationship
= the has-knowledge-of relationship
= the depends-upon relationship

40

KAIST

Composite Aggregate Class

Player

?

PlayerHead

PlayerBody

PlayerArms

PlayerLegs

center-position

center-position

41

Reviewing the CRC Model

All participants in the review (of the CRC model) are given a subset of the CRC
model index cards.

= Cards that collaborate should be separated (i.e., no reviewer should have two cards that
collaborate).

All use-case scenarios (and corresponding use-case diagrams) should be
organized into categories.
The review leader reads the use-case deliberately.

= As the review leader comes to a named object, she passes a token to the person
holding the corresponding class index card.

When the token is passed, the holder of the class card is asked to describe the
responsibilities noted on the card.

= The group determines whether one (or more) of the responsibilities satisfies the use-
case requirement.

If the responsibilities and collaborations noted on the index cards cannot
accommodate the use-case, modifications are made to the cards.

= This may include the definition of new classes (and corresponding CRC index cards) or
the specification of new or revised responsibilities or collaborations on existing cards.

st "

Dependencies

DisplayWindow Camera

43

Analysis Packages

Various elements of the analysis model (e.g., use-cases,
analysis classes) are categorized in a manner that
packages them as a grouping

The + sign preceding the analysis class name in each
package indicates that the classes have public visibility
and are therefore accessible from other packages.

Other symbols can precede an element within a package.

A - sign indicates that an element is hidden from all other
packages and a # symbol indicates that an element is

accessible only to packages contained within a given
package.

44

Analysis Packages

- - package name

-

-]

Environment -~ ~

+Tree
+Landscape
+Road
+Wall
+Bridge
+Building
+VisualEffect
+Scene

RulesOf TheGame

+RulesOfMovement
+ConstraintsOnAction

Characters

+Player
+Protagonist

+Antagonist
+SupportingRole

45

Behavioral Modeling

The behavioral model indicates how software will
respond to external events or stimuli. To create the
model, the analyst must perform the following steps:

Evaluate all use-cases to fully understand the sequence of
interaction within the system.

ldentify events that drive the interaction sequence and understand
how these events relate to specific objects.

Create a sequence for each use-case.
Build a state diagram for the system.
Review the behavioral model to verify accuracy and consistency.

46

Behavioral Modeling

make a list of the different states of a system
(How does the system behave?)

Indicate how the system makes a transition from
one state to another

How does the system change state?
Indicate event
indicate action

draw a

a7

Sequence Diagram

homeowner control panel system sensors

system
ready

password ent ered

request lookup

comparing

result

password = correct

o

numberOfTries > maxTries request activation

() iimer> locked Time

>

activation successful

activation successful

=t
g

'___l_______________.
A

Figure 8.27 Sequence diagram (partial) for SafeHome security function

KAIST

State Diagram for the ControlPanel Class

timer< lockedTime

timer > lockedTime locked

password = incorrect
& numberOfTries £ maxTries

| > f comparing XJ numberOfTries > maxTries

password
entered

reading

do: validatePassword

\ / password = correct

selecting

activation successful

Fig 8.20 pg 251 in SEPA
KAIST

49

