
Chapter 9Chapter 9Chapter 9Chapter 9
Design EngineeringDesign Engineering

Moonzoo Kim
CS Division of EECS DeptCS Division of EECS Dept.

KAIST

1

Roadmap of SEPA covered inRoadmap of SEPA covered in CS550CS550Roadmap of SEPA covered in Roadmap of SEPA covered in CS550CS550
Ch 1 Ch 1 –– Ch 5Ch 5

1 I t t SE1 I t t SE

Ch 7Ch 7-- Ch 9Ch 9
7. Requirement 7. Requirement

Ch 10 Ch 10 –– Ch 14Ch 14
10. Creating an 10. Creating an

1. Intro to SE1. Intro to SE
2. A2. A Generic View Generic View
of Processof Process

qq
EngineeringEngineering

Req. eng tasksReq. eng tasks
Req. elicitationReq. elicitation
Developing useDeveloping use--

gg
Architectural Design Architectural Design
11. Modeling 11. Modeling
ComponentComponent--Level Level

3. Process Models3. Process Models
4. An Agile View 4. An Agile View
of Processof Process

Developing useDeveloping use--
casescases
Building the Building the
analysis modelanalysis model

8 Building the8 Building the

pp
DesignDesign
12. Performing UI 12. Performing UI
DesignDesign

5. SE Practice5. SE Practice
6. System 6. System
EngineeringEngineering

8. Building the 8. Building the
Analysis ModelAnalysis Model
9. Design 9. Design
EngineeringEngineering

gg
13. Testing 13. Testing
Strategies Strategies
14 Testing Tactics14 Testing TacticsEngineeringEngineering

SafeHomeSafeHome ProjectProject
-- UseUse--case diagramcase diagram

14. Testing Tactics14. Testing Tactics
SafeHomeSafeHome ProjectProject
-- Class diagramClass diagram

CRC cardsCRC cards

2

gg
-- UseUse--casescases
-- Activity diagramActivity diagram

-- CRC cards CRC cards
-- Sequence diagramSequence diagram
-- State diagram State diagram

Overview of Ch 9. Design EngineeringOverview of Ch 9. Design EngineeringOverview of Ch 9. Design EngineeringOverview of Ch 9. Design Engineering

9.1 Design within the Context of SE9.1 Design within the Context of SE 9.4 Design Model9.4 Design Model
9.2 Design Process and Design 9.2 Design Process and Design
QualityQuality
9.3 Design Concepts 9.3 Design Concepts

gg
Data Design ElementsData Design Elements
Architectural Design ElementsArchitectural Design Elements
Interface Design ElementsInterface Design Elements

AbstractionAbstraction
ArchitectureArchitecture
PatternsPatterns
M d l itM d l it

ComponentComponent--level Design level Design
ElementsElements
DeploymentDeployment--level Design level Design
ElementsElementsModularityModularity

Information HidingInformation Hiding
Functional IndependenceFunctional Independence
RefinementRefinement

ElementsElements
9.5 Pattern9.5 Pattern--based SW Designbased SW Design

Describing a Design PatternDescribing a Design Pattern
Using Patterns in DesignUsing Patterns in DesignRefinementRefinement

RefactoringRefactoring
Design ClassesDesign Classes

Using Patterns in DesignUsing Patterns in Design
FrameworksFrameworks

3

Analysis Model Analysis Model --> Design Model> Design Model

use-cases - text
use-case diagrams

data flow diagrams
control flow diagrams

f l ow- or i e nt e d
e l e me nt s

sc e na r i o- ba se d
e l e me nt s

Com pone nt -
Le v e l De sign

Analysis Model

use case diagrams
activity diagrams
swim lane diagrams

control-flow diagrams
processing narratives

In t e rf a c e De sign

be ha v i or a l
e l e me nt s

c l a ss- ba se d
e l e me nt s

class diagrams state diagrams

Arc hit e c t ura l De sign

g
analysis packages
CRC models
collaboration diagrams

state dag a s
sequence diagrams Da t a / Cla ss De sign

Design Model

4

Design Model

Design and QualityDesign and QualityDesign and QualityDesign and Quality

The design must implement all of the explicitThe design must implement all of the explicitThe design must implement all of the explicit The design must implement all of the explicit
requirementsrequirements contained in the analysis model, and it contained in the analysis model, and it
must accommodate all of the implicit requirements must accommodate all of the implicit requirements
desired by the customer.desired by the customer.
The design must be a readable, The design must be a readable, understandableunderstandable guideguide
for those who generate code and for those who test andfor those who generate code and for those who test andfor those who generate code and for those who test and for those who generate code and for those who test and
subsequently support the software.subsequently support the software.
the design should provide a complete picture of thethe design should provide a complete picture of thethe design should provide a complete picture of the the design should provide a complete picture of the
softwaresoftware, addressing the data, functional, and behavioral , addressing the data, functional, and behavioral
domains from an domains from an implementationimplementation perspective.perspective.pp p pp p

5

Quality GuidelinesQuality Guidelines
1.1. A design should exhibit an architectureA design should exhibit an architecture whichwhich

1.1. has been created using recognizable has been created using recognizable architectural styles architectural styles or patterns, or patterns,
22 is composed of components that exhibitis composed of components that exhibit good design characteristicsgood design characteristics2.2. is composed of components that exhibit is composed of components that exhibit good design characteristics good design characteristics
3.3. can be implemented in an can be implemented in an evolutionary fashionevolutionary fashion

2.2. A design should be A design should be modularmodular
33 A design should contain distinct representationsA design should contain distinct representations of data architectureof data architecture3.3. A design should contain distinct representations A design should contain distinct representations of data, architecture, of data, architecture,

interfaces, and components.interfaces, and components.
4.4. A design should lead to data structures that are A design should lead to data structures that are

11 appropriate for the classes to be implementedappropriate for the classes to be implemented1.1. appropriate for the classes to be implemented appropriate for the classes to be implemented
2.2. drawn from recognizable data patterns.drawn from recognizable data patterns.

5.5. A design should lead to components that exhibit independent functional A design should lead to components that exhibit independent functional
characteristics.characteristics.

6.6. A design should lead to interfaces that reduce the complexityA design should lead to interfaces that reduce the complexity of connections of connections
between components and with the external environment.between components and with the external environment.

7.7. A design should be represented effectively for communicating its meaning.A design should be represented effectively for communicating its meaning.

6

Quality AttributesQuality Attributes –– FURPS [GRA87]FURPS [GRA87]Quality Attributes Quality Attributes FURPS [GRA87]FURPS [GRA87]

FunctionalityFunctionalityFunctionalityFunctionality
Assessed by evaluating feature set and capabilities of the Assessed by evaluating feature set and capabilities of the
program and generality of the functions that are deliveredprogram and generality of the functions that are delivered

UsabilityUsability
Assessed by considering Assessed by considering human factorshuman factors, overall aesthetics, overall aesthetics

R li bilitR li bilitReliabilityReliability
PerformancePerformance
S t bilitS t bilitSupportabilitySupportability

MaintainabilityMaintainability
Compatibility ease of configuration ease of installation etcCompatibility ease of configuration ease of installation etcCompatibility, ease of configuration, ease of installation, etcCompatibility, ease of configuration, ease of installation, etc

7

Fundamental SW Design ConceptsFundamental SW Design Concepts
AbstractionAbstraction

data, proceduredata, procedurepp
PatternsPatterns

“conveys the essence” of a proven design solution“conveys the essence” of a proven design solution
ModularityModularityModularityModularity

compartmentalization of data and functioncompartmentalization of data and function
HidingHiding

controlled interfacescontrolled interfacescontrolled interfacescontrolled interfaces
Functional independenceFunctional independence

singlesingle--minded function (cohesion) minded function (cohesion) and and low couplinglow coupling
R fiR fiRefinementRefinement

elaboration of detail for all abstractionselaboration of detail for all abstractions
RefactoringRefactoring

a reorganization technique that simplifies the designa reorganization technique that simplifies the design

8

Data AbstractionData Abstraction
doordoor

manufacturermanufacturer
model numbermodel number
typetype
swing directionswing directionswing directionswing direction
insertsinserts
lightslights

typetype
numbernumbernumbernumber

weightweight
opening mechanismopening mechanism

implemented as a data structure

9

Procedural AbstractionProcedural AbstractionProcedural AbstractionProcedural Abstraction

openopenpp

details of enter details of enter
algorithmalgorithmalgorithmalgorithm

implemented with a "knowledge" of the
object that is associated with enter

10

Design PatternsDesign PatternsDesign PatternsDesign Patterns
The best designers in any field have an ability to see The best designers in any field have an ability to see

patterns that characterize a problem patterns that characterize a problem p pp p
patterns that can be combined to create a solutionpatterns that can be combined to create a solution

A design pattern may also consider a set of design forces. A design pattern may also consider a set of design forces.
D i fD i f d ibd ib f ti l i tf ti l i t (f(fDesign forcesDesign forces describe describe nonnon--functional requirements functional requirements (e.g., ease of (e.g., ease of
maintainability, portability) associated the software for which the pattern is to maintainability, portability) associated the software for which the pattern is to
be applied. be applied.

ThTh tt h t i titt h t i ti (l ibiliti d ll b ti)(l ibiliti d ll b ti)The The pattern characteristicspattern characteristics (classes, responsibilities, and collaborations) (classes, responsibilities, and collaborations)
indicate the attributes of the design that may be indicate the attributes of the design that may be adjustedadjusted to enable the to enable the
pattern to accommodate a variety of problems.pattern to accommodate a variety of problems.
Levels of abstractionLevels of abstraction

Architectural patternsArchitectural patterns
Design patternsDesign patternsDesign patternsDesign patterns
Idioms (coding patterns)Idioms (coding patterns)

11

Design Patterns TemplateDesign Patterns Templateg pg p
Pattern name Pattern name

describes the essence of the pattern in a short but expressive name describes the essence of the pattern in a short but expressive name
IntentIntent

describes the pattern and what it doesdescribes the pattern and what it does
MotivationMotivation

id l f th blid l f th blprovides an example of the problem provides an example of the problem
ApplicabilityApplicability

notes specific design situations in which the pattern is applicablenotes specific design situations in which the pattern is applicable
Str ct reStr ct reStructureStructure

describes the classes that are required to implement the patterndescribes the classes that are required to implement the pattern
ParticipantsParticipants

describes the responsibilities of the classes that are required to implementdescribes the responsibilities of the classes that are required to implementdescribes the responsibilities of the classes that are required to implement describes the responsibilities of the classes that are required to implement
the patternthe pattern

CollaborationsCollaborations
describes how the participants collaborate to carry out their responsibilitiesdescribes how the participants collaborate to carry out their responsibilities

12

describes how the participants collaborate to carry out their responsibilitiesdescribes how the participants collaborate to carry out their responsibilities
Related patternsRelated patterns——crosscross--references related design patternsreferences related design patterns

Modular DesignModular Design
easier to build, easier to change, easier to fix ...

13

Modularity: TradeModularity: Trade--offsoffsModularity: TradeModularity: Trade offsoffs
What is the "right" number of modules What is the "right" number of modules
for a specific software design?for a specific software design?

cost ofcost of

module development cost module development cost

cost ofcost of
softwaresoftware

modulemodule
integrationintegrationgg

costcost

optimal numberoptimal number
of modulesof modules number of modulesnumber of modules

14

Information HidingInformation Hidinggg

modulemodulemodulemodule
controlledcontrolled
interfaceinterface

• algorithm• algorithm

• data structure• data structure

• details of external interface• details of external interface

• resource allocation policy• resource allocation policy

li tli t "secret""secret"clientsclients

a specific design decisiona specific design decision

15

Wh I f ti Hidi ?Wh I f ti Hidi ?Why Information Hiding?Why Information Hiding?
Reduces the likelihood of “Reduces the likelihood of “side effectsside effects””Reduces the likelihood of Reduces the likelihood of side effectsside effects
limits the limits the global impact global impact of local design decisionsof local design decisions
E h i i ti th hE h i i ti th h t ll dt ll dEmphasizes communication through Emphasizes communication through controlled controlled
interfacesinterfaces
Discourages the use of global dataDiscourages the use of global data
Leads to encapsulationLeads to encapsulation——an attribute of high quality an attribute of high quality pp g q yg q y
designdesign
Results in higher quality softwareResults in higher quality softwareResults in higher quality softwareResults in higher quality software

16

Stepwise RefinementStepwise RefinementStepwise RefinementStepwise Refinement
open

walk to door;
reach for knob;reach for knob;

open door;

walk through;

repeat until door opens
turn knob clockwise;
if knob doesn't turn, theng ;

close door.
if knob doesn t turn, then

take key out;
find correct key;
insert in lock;

endif
ll/ h dpull/push door

move out of way;
end repeat

17

RefactoringRefactoringRefactoringRefactoring
Fowler [FOW99] defines refactoring in the following
manner:

"Refactoring is the process of changing a software system in
such a way that it does not alter the external behavior of the
code [design] yet improves its internal structure ”code [design] yet improves its internal structure.

When software is refactored, the existing design is
examined for

d dredundancy
unused design elements
inefficient or unnecessary algorithms
poorly constructed or inappropriate data structurespoorly constructed or inappropriate data structures
or any other design failure that can be corrected to yield a
better design.

18

Functional IndependenceFunctional IndependenceFunctional IndependenceFunctional Independence

COHESION - the degree to which a
module performs one and only one
f tifunction.

COUPLING - the degree to which a g
module is "connected" to other
modules in the system.

19

The Design ModelThe Design Model
high

a na ly sis mode l

class diagrams
analysis packages
CRC models
collaborat ion diagrams

use-cases - t ext
use-case diagrams
act ivit y diagrams

dat a f low diagrams

class diagrams
analysis packages
CRC models

Requirement s:
 const raint s

int eroperabilit y
sw im lane diagrams
collaborat ion diagrams dat a f low diagrams

cont rol- f low diagrams
processing narrat ives

dat a f low diagrams
cont rol- f low diagrams
processing narrat ives

st at e diagrams
sequence diagrams

st at e diagrams
sequence diagrams

collaborat ion diagrams t arget s and
 conf igurat ion

sequence diagrams

design class realizat ions
subsyst ems
collaborat ion diagrams component diagrams

design classes design class realizat ions
subsyst ems

t echnical int erf ace
 design

ref inement s t o:

act ivit y diagrams
sequence diagrams

ref inement s t o:

subsyst ems
collaborat ion diagrams
component diagrams
design classes
act ivit y diagrams
sequence diagrams

de sign mode l

Navigat ion design
GUI design

low
design class realizat ions
subsyst ems
collaborat ion diagrams

ref inement s t o:

deployment diagrams

component diagrams
design classes
act ivit y diagrams
sequence diagrams

sequence diagrams

20
process dimension

archit ect ure
element s

int erface
element s

component -level
element s

deployment -level
element s

Design Model ElementsDesign Model Elements
Data elementsData elements

a model of data and/or information that is represented at a high a model of data and/or information that is represented at a high
level of abstraction (the customer/user’s view of data)level of abstraction (the customer/user’s view of data)()()
Refined into more implementationRefined into more implementation--specific representationsspecific representations

Architectural elementsArchitectural elements
Application domainApplication domainApplication domainApplication domain
Analysis classes, their relationships, collaborations and behaviors Analysis classes, their relationships, collaborations and behaviors
are transformed into design realizationsare transformed into design realizations
Patterns and “styles” (Chapter 10)Patterns and “styles” (Chapter 10)Patterns and styles (Chapter 10)Patterns and styles (Chapter 10)

Interface elementsInterface elements
the user interface (UI) the user interface (UI)
external interfaces to other systems devices networks or otherexternal interfaces to other systems devices networks or otherexternal interfaces to other systems, devices, networks or other external interfaces to other systems, devices, networks or other
producers or consumers of informationproducers or consumers of information
internal interfaces between various design componentsinternal interfaces between various design components

Component elementsComponent elementsComponent elementsComponent elements
Deployment elementsDeployment elements

21

Interface ElementsInterface Elements

WirelessPDA

MobilePhone

Cont rolPanel

LCDdisplay
LEDindicat orsLEDindicat ors
keyPadCharact erist ics
speaker
wirelessInt erf ace

readKeySt roke()
decodeKey ()

KeyPad

decodeKey ()
displaySt at us()
light LEDs()
sendCont rolMsg()

KeyPad
< < int erface> >

realization

22

KeyPad

readKeyst roke()
decodeKey()

Component ElementsComponent ElementsComponent ElementsComponent Elements

- Local data
structures

- Procedural
algorithmsalgorithms

SensorManagement
Sensor

23

Deployment ElementsDeployment Elements
Cont rol Panel CPI serv er

Security homeownerAccess

Personal comput er

externalAccess

Security Surveillance

24

homeManagement communication

Design PrinciplesDesign Principles
The design process should not suffer from ‘tunnel vision.’ The design process should not suffer from ‘tunnel vision.’
The design should beThe design should be traceabletraceable to the analysis modelto the analysis modelThe design should be The design should be traceabletraceable to the analysis model. to the analysis model.
The design should exhibit The design should exhibit uniformityuniformity and integration. and integration.
The design should be structured to accommodateThe design should be structured to accommodate changechangeThe design should be structured to accommodate The design should be structured to accommodate changechange. .
The design should be structured to degrade gently, even The design should be structured to degrade gently, even
when aberrant data, events are encountered. when aberrant data, events are encountered.
Design is not coding, coding is not design. Design is not coding, coding is not design.
The design should be assessed for quality as it is being The design should be assessed for quality as it is being
created not after the factcreated not after the factcreated, not after the fact. created, not after the fact.
The design should be reviewed to minimize conceptual The design should be reviewed to minimize conceptual
(semantic) errors.(semantic) errors.(semantic) errors.(semantic) errors.

25

From Davis [DAV95]

OO Design ConceptsOO Design ConceptsOO Design ConceptsOO Design Concepts
Design classesDesign classes

Entity classesEntity classes
Boundary classesBoundary classes
Controller classesController classesController classesController classes

InheritanceInheritance——all responsibilities of a superclass is all responsibilities of a superclass is
immediately inherited by all subclassesimmediately inherited by all subclassesimmediately inherited by all subclassesimmediately inherited by all subclasses
MessagesMessages——stimulate some behavior to occur in the stimulate some behavior to occur in the
receiving objectreceiving objectg jg j
PolymorphismPolymorphism——a characteristic that greatly reduces a characteristic that greatly reduces
the effort required to extend the designthe effort required to extend the design

26

InheritanceInheritanceInheritanceInheritance

Design options:Design options:g pg p
The class can be designed and built from scratch. That is, The class can be designed and built from scratch. That is,
inheritance is not used.inheritance is not used.
The class hierarchy can be searched to determine if a classThe class hierarchy can be searched to determine if a classThe class hierarchy can be searched to determine if a class The class hierarchy can be searched to determine if a class
higher in the hierarchy (a superclass)contains most of the higher in the hierarchy (a superclass)contains most of the
required attributes and operations. The new class inherits from required attributes and operations. The new class inherits from
the superclass and additions may then be added, as required.the superclass and additions may then be added, as required.the superclass and additions may then be added, as required.the superclass and additions may then be added, as required.
The class hierarchy can be restructured so that the required The class hierarchy can be restructured so that the required
attributes and operations can be inherited by the new class.attributes and operations can be inherited by the new class.
Characteristics of an existing class can be overridden andCharacteristics of an existing class can be overridden andCharacteristics of an existing class can be overridden and Characteristics of an existing class can be overridden and
different versions of attributes or operations are implemented for different versions of attributes or operations are implemented for
the new class.the new class.

27

MessagesMessagesgg

:SenderObject

:ReceiverObject
message (<parameters>)

28

PolymorphismPolymorphismPolymorphismPolymorphism
case of graphtype:case of graphtype:

Conventional approach …Conventional approach …

if graphtype = linegraph then DrawLineGraph (data);if graphtype = linegraph then DrawLineGraph (data);
if graphtype = piechart then DrawPieChart (data);if graphtype = piechart then DrawPieChart (data);
if graphtype = histogram then DrawHisto (data);if graphtype = histogram then DrawHisto (data);
if graphtype = kiviat then DrawKiviat (data);if graphtype = kiviat then DrawKiviat (data);

end case;end case;

All of the graphs become subclasses of a general class called graphAll of the graphs become subclasses of a general class called graphAll of the graphs become subclasses of a general class called graph. All of the graphs become subclasses of a general class called graph.
Using a concept called overloading [TAY90], each subclass defines an Using a concept called overloading [TAY90], each subclass defines an
operation called operation called drawdraw. An object can send a . An object can send a drawdraw message to any one message to any one
of the objects instantiated from any one of the subclasses. The object of the objects instantiated from any one of the subclasses. The object j y jj y j
receiving the message will invoke its own receiving the message will invoke its own drawdraw operation to create the operation to create the
appropriate graph. appropriate graph.

graphtype drawgraphtype draw

29

graphtype drawgraphtype draw

Design ClassesDesign ClassesDesign ClassesDesign Classes
Analysis classes are refined during design to become Analysis classes are refined during design to become entity classesentity classes
B d lB d l d l d d i d i t t th i t fd l d d i d i t t th i t fBoundary classesBoundary classes are developed during design to create the interface are developed during design to create the interface
(e.g., interactive screen or printed reports) that the user sees and (e.g., interactive screen or printed reports) that the user sees and
interacts with as the software is used. interacts with as the software is used.

B d l d i d ith th ibilit f i thB d l d i d ith th ibilit f i thBoundary classes are designed with the responsibility of managing the way Boundary classes are designed with the responsibility of managing the way
entity objects are represented to users. entity objects are represented to users.

Controller classeController classess are designed to manage are designed to manage
th ti d t f tit bj tth ti d t f tit bj tthe creation or update of entity objects; the creation or update of entity objects;
the instantiation of boundary objects as they obtain information from entity the instantiation of boundary objects as they obtain information from entity
objects; objects;
complex communication between sets of objects;complex communication between sets of objects;complex communication between sets of objects; complex communication between sets of objects;
validation of data communicated between objects or between the user and validation of data communicated between objects or between the user and
the application.the application.

30

