Chapter 9
Design Engineering

Moonzoo Kim
CS Division of EECS Dept.
KAIST

Roadmap of SEPA covered in CS550

Ch1-Ch5

1. Intro to SE

2. A Generic View
of Process

3. Process Models

4. An Agile View
of Process

5. SE Practice

Ch7-Ch9

= 7. Requirement
Engineering

Req. eng tasks
Reg. elicitation
Developing use-

cases
Building the

analysis model

= 8. Building the
Analysis Model

= 9. Design
Engineering

SafeHome Project
Use-case diagram
Use-cases
Activity diagram

Ch10-Ch 14

= 10. Creating an
Architectural Design

= 11. Modeling
Component-Level
Design

= 13. Testing
Strategies

= 14. Testing Tactics

SafeHome Project

Class diagram

CRC cards

Sequence diagram
State diagram 2

9.1 Design within the Context of SE
9.2 Design Process and Design

Overview of Ch 9. Design Engineering

Quality
9.3 Design Concepts

Abstraction

Architecture

Patterns

Modularity

Information Hiding
Functional Independence
Refinement

Refactoring

Design Classes

9.4 Design Model

Data Design Elements
Architectural Design Elements
Interface Design Elements

Component-level Design
Elements

Deployment-level Design
Elements

9.5 Pattern-based SW Design

Describing a Design Pattern
Using Patterns in Design
Frameworks

Analysis Madel -> Design Model

scenario-based |
elements

use-cases - text
use-case diagrams
activity diagrams
swim lane diagrams

Component-
flow-oriented Level Design

elements

data flow diagrams
control-flow diagrams
processing narratives

Interface Desig

Analysis Model

class-based
elements

: Architectural Design
behavioral

elements

class diagrams
analysis packages
CRC models
collaboration diagrams

KAIST

state diagrams
sequence diagrams

Data/ Class Design

Design Model

Design and Quality

contained in the analysis model, and it
must accommodate all of the implicit requirements
desired by the customer.
understandable
for those who generate code and for those who test and
subsequently support the software.

, addressing the data, functional, and behavioral
domains from an implementation perspective.

Quality Guidelines

which
1. has been created using recognizable architectural styles or patterns,
2. Is composed of components that exhibit good design characteristics
3. can be implemented in an evolutionary fashion
modular

of data, architecture,
interfaces, and components.

1. appropriate for the classes to be implemented
2. drawn from recognizable data patterns.

of connections
between components and with the external environment.

Quality Attributes — FURPS [GRAS87]

Functionality

= Assessed by evaluating feature set and capabilities of the
program and generality of the functions that are delivered

Usability
= Assessed by considering human factors, overall aesthetics
Reliability
Performance
Supportability

= Maintainability
= Compatibility, ease of configuration, ease of installation, etc

Fundamental SW Design Concepts

= data, procedure

= “conveys the essence” of a proven design solution
= compartmentalization of data and function

= controlled interfaces

= single-minded function (cohesion) and low coupling
= elaboration of detail for all abstractions

m areorganization technique that simplifies the design

Data Abstraction

door

manufacturer
model number
type
swing direction
T inserts
lights
type
number
weight
opening mechanism

implemented as a data structure

Procedural Abstraction

open

details of enter
algorithm

implemented with a "knowledge" of the
object that is associated with enter

10

Design Patterns

The best designers in any field have an ability to see
= patterns that characterize a problem
= patterns that can be combined to create a solution

A design pattern may also consider a set of design forces.

o describe non-functional requirements (e.g., ease of

maintainability, portability) associated the software for which the pattern is to
be applied.

The (classes, responsibilities, and collaborations)
indicate the attributes of the design that may be adjusted to enable the
pattern to accommodate a variety of problems.
Levels of abstraction

= Architectural patterns

= Design patterns

= Idioms (coding patterns)

. 11

Design Patterns Template

=Pattern name

» describes the essence of the pattern in a short but expressive name
=Intent

sdescribes the pattern and what it does
=Motivation

=provides an example of the problem
=Applicability

=notes specific design situations in which the pattern is applicable
=Structure

=describes the classes that are required to implement the pattern
=Participants

sdescribes the responsibilities of the classes that are required to implement
the pattern

=Collaborations
=describes how the participants collaborate to carry out their responsibilities
»Related patterns—cross-references related design patterns

KAIST 12

—_—

Modular Design

easier to build, easier to change, easier to fix ...

13

Modularity: Trade-offs

What is the "right" number of modules
for a specific software design?

module development cost

cost of
software

module
integration
DD cost

number of modules

ZEDDD

optimal number
of modules

14

Information Hiding

module algorithm
= controlled
interface data structure

details of external interface

resource allocation policy

clients

"secret”

a specific design decision

15

Why Information Hiding?

Reduces the likelihood of “side effects”
limits the global impact of local design decisions

Emphasizes communication through controlled
Interfaces

Discourages the use of global data

Leads to encapsulation—an attribute of high quality
design

Results in higher quality software

—_——

Stepwise Refinement

open

walk to door;

reach for knob;

open door; repeat until door opens
turn knob clockwise;
if knob doesn't turn, then
take key out;
find correct key;
insert in lock;
endif
pull/push door
move out of way;
end repeat

walk through;
close door.

17

Refactoring

Fowler [FOW99] defines refactoring in the following
manner:

When software is refactored, the existing design is
examined for

redundancy

unused design elements

Inefficient or unnecessary algorithms

poorly constructed or inappropriate data structures

or any other design failure that can be corrected to yield a
better design.

18

Functional Independence

module performs one and only one

T COHESION - the degree to which a
function.

module Is "connected" to other
modules in the system.

l COUPLING - the degree to which a

19

high

analysis modg¢

class diagrams
analysis packages
CRC models
collaboration diagrams
data flow diagrams
control-flow diagrams
processing narratives

Y~ -

design class realizations
subsystems

collaboration diagrams

abstraction dimension
|
|
|
|
|

design mode

low

use-cases - text
use-case diagrams
activity diagrams
swim lane diagrams

collaboration diagrams

state diagrams
sequence diagrams

technical interface

class diagrams
analysis packages
CRC models
collaboration diagrams
data flow diagrams
control-flow diagrams
processing narratives
state diagrams
sequence diagrams

S ———
~ ——

component diagrams

The Design Model

-

Requirements:
constraints
interoperability
targets and

configuration

design class realizations

T~

design design classes
S . o) subsystems
Navigation design activity diagrams . :
.) collaboration diagrams
GUIl design sequence diagrams .
component diagrams
design classes
refinements to: activity diagrams
refinements to: component diagrams sequence diagrams
design class realizations design classes
subsystems activity diagrams
collaboration diagrams ;
g sequence diagrams deployment diagrams
architecture interface component-level deployment-level
elements elements elements elements

KAIST

process dimension

20

Design Model Elements

a model of data and/or information that is represented at a high
level of abstraction (the customer/user’s view of data)

Refined into more implementation-specific representations

Application domain

Analysis classes, their relationships, collaborations and behaviors
are transformed into design realizations

Patterns and “styles” (Chapter 10)

the user interface (Ul)

external interfaces to other systems, devices, networks or other
producers or consumers of information

internal interfaces between various design components

21

KAIST

Interface Elements

ControlPanel

LCDdisplay
LEDindicators
keyPadCharacteristics
speaker
wirelessinterface

MobilePhone
WirelessPDA
|
|
\ :
\\ |
N
N |
AN
N |
N |
A /
\ |
\ |
\
KeyPad

readKeyStroke()
decodeKey ()
displayStatus()
light LEDs()
sendControlMsg()

realization
—

<<interface>>
KeyPad

|
|
|
|
|
|
-

readKeystroke()
decodeKey()

22

Component Elements

a - Local data

structures
- Procedural

algorithms

~

)

V

SensorManagement

Sensor

23

Deployment Elements

Contl’Ol Panel CP| server
— —
Security homeownerAccess
1 7 I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| [l
| |
| |
| |
| }
| Personal computer |
| |
| ! |
| externalAccess |
| |
—— et —— ———— e —— —— |
| |
Security Surveillance
— —
homeManagement communication

Design Principles

The design process should not suffer from ‘tunnel vision.’

The design should be traceable to the analysis model.
The design should exhibit uniformity and integration.
The design should be structured to accommodate change.

The design should be structured to degrade gently, even
when aberrant data, events are encountered.

Design is not coding, coding is not design.

The design should be assessed for quality as it is being
created, not after the fact.

The design should be reviewed to minimize conceptual
(semantic) errors.

KAIST 25

——

OO Design Concepts

Entity classes
Boundary classes
Controller classes

—all responsibilities of a superclass is
Immediately inherited by all subclasses

—stimulate some behavior to occur in the
receiving object
—a characteristic that greatly reduces
the effort required to extend the design

26

Inheritance

Design options:
= The class can be designed and built from scratch. That is,
iInheritance is not used.

= The class hierarchy can be searched to determine if a class
higher in the hierarchy (a superclass)contains most of the
required attributes and operations. The new class inherits from
the superclass and additions may then be added, as required.

= The class hierarchy can be restructured so that the required
attributes and operations can be inherited by the new class.

= Characteristics of an existing class can be overridden and
different versions of attributes or operations are implemented for
the new class.

27

:SenderObject

Messages

:ReceiverObject

28

Polymorphism

Conventional approach ...

All of the graphs become subclasses of a general class called graph.

Using a concept called overloading [TAY90], each subclass defines an
operation called draw. An object can send a draw message to any one
of the objects instantiated from any one of the subclasses. The object

receiving the message will invoke its own draw operation to create the
appropriate graph.

graphtype draw

29

Design Classes

Analysis classes are refined during design to become

are developed during design to create the interface
(e.g., interactive screen or printed reports) that the user sees and
Interacts with as the software is used.

= Boundary classes are designed with the responsibility of managing the way
entity objects are represented to users.

are designed to manage
the creation or update of entity objects;

= the instantiation of boundary objects as they obtain information from entity
objects;

complex communication between sets of objects;

= validation of data communicated between objects or between the user and
the application.

KAIST 30

