Algebra of Communicating Shared Resources (ACSR)

Moonzoo Kim
CS Dept. KAIST
Real-time systems
Resource-bound computation
ACSR
 Algebra, analysis techniques, examples
Real-time systems

- Correctness and reliability of real-time systems depends on
 - Functional correctness
 - Temporal correctness
 - Failures

- Factors that affect behavior:
 - Synchronization and communication
 - Availability of resources and scheduling
 - Computational systems are always constrained in their behavior
 - Resources capture physical constraints
 - Resources should be used as a primitive notion in modeling and analysis
 - Resource-bound computation is a general framework of wide applicability
Design Issues

- Time -- discrete time, dense time
- Concurrency Semantics -- interleaving, synchronous lock step, true parallelism
- Operators -- prefix, choice, parallel, restriction, recursion
- Timed Operators -- delay, timeout, bound (deadline)
- Communication -- two-synchronous, n-way
- Abstraction -- hiding, restriction
- Resource -- implicit, explicit, unlimited, bounded
- Priorities -- static, dynamic
ACSR (Algebra of Communicating Shared Resources) has two types of actions:

1. **Timed Actions** -- represent the passage of time and resource consumption (e.g., CPUs)
2. **Instantaneous Events** -- provide a synchronization between processes.

A labelled transition system:

\[
P_0 \xrightarrow{\emptyset} P_1 \xrightarrow{NC} P_2 \xrightarrow{\{gate, train\}} P_3 \xrightarrow{\{gate, train\}} P_4 \xrightarrow{IC} \ldots
\]
Timed Actions

- A finite set of serially reusable resources, denoted by \(\mathcal{R} \)
- The domain, \(\mathcal{D}_R = \mathbb{P}(\mathcal{R} \times \mathbb{N}) \) with the restriction that each resource be represented at most once, e.g., \(\{(r, p)\} \), \(\{(r_1, p_1), (r_2, p_2)\} \), \(\emptyset \)
- \(\rho(A) \) denotes the set of resources used by the action \(A \); e.g., \(\rho(\{(r_1, p_1), (r_2, p_2)\}) = \{r_1, r_2\} \)
- \(\pi_r(A) \) denotes the priority level of the action \(A \) in the resource \(r \); e.g., \(\pi_{r_1}(\{(r_1, p_1), (r_2, p_2)\}) = p_1 \)
 - If \(r \) is not in \(\rho(A) \), then \(\pi_r(A) = 0 \)
- \(A, B, \) and \(C \) range over \(\mathcal{D}_R \)
Instantaneous Events

- An event is denoted by a pair \((a, p)\), where \(a\) is the label of the event, and \(p\) is its priority.
- Labels are drawn from the set \(A \cup \overline{A} \cup \{\tau\}\).
- The special label, \(\tau\), arises when two events with inverse labels (e.g., \(a, \overline{a}\)) are executed in parallel.
- \(\mathcal{D}_E\) denotes the domain of events. \(l(e)\) and \(\pi(e)\) to represent the label and priority.
- \(e, f\) and \(g\) range over \(\mathcal{D}_E\).
- The entire domain of actions is \(\mathcal{D} = \mathcal{D}_R \cup \mathcal{D}_E\), and we let \(\alpha\) and \(\beta\) range over \(\mathcal{D}\).
Resources capture constraints on executions

Resources can be

- Serially reusable:
 - processors, memory, communication channels

- Consumable
 - power

Resource capacities

- Single-capacity resources
- Multiple-capacity resources
- Time-sliced, etc.
Events represent communication

- events are instantaneous
- point-to-point communication across channels
- prioritized access to channels
- input and output events

\[(e?, p_1) \quad \text{and} \quad (e!, p_2)\]
Actions represent computation
- actions take time
- require access to resources
- each resource has priority of access

\[A = \{(r_1, p_1), (r_2, p_2)\} \]
- each resource can be used at most once
- resources of action \(A \): \(\rho(A) \)
- idling action: \(\emptyset \)
A specification is composed of processes.

Processes evolve by performing events and actions.

\[
\emptyset \xrightarrow{\{cpu,2\}} P_1 \xrightarrow{(done!,1)} P_2 \xrightarrow{\{cpu,2\}} P_3
\]
Syntax for ACSR processes

Process terms

\[P ::= NIL \]
\[| A : P \]
\[| (a, n).P \]
\[| P + P \]
\[| P \parallel P \]
\[| P\Delta^a_i(Q, R, S) \]
\[| [P]_i \]
\[| P \setminus F \]
\[| b \rightarrow P \]
\[| C \]

Process names

\[C = P \]
Two-level semantics:

- A collection of inference rules gives an unprioritized transition relation:
 \[P \xrightarrow{\alpha} P' \]

- A preemption relation on actions and events disables some of the transitions, giving a prioritized transition relation:
 \[P \xrightarrow{\alpha} P' \]
Unprioritized transition relation

Prefix operators

- **ActT**
 \[A : P \xrightarrow{A} P \]

- **ActI**
 \[(a, p) : P \xrightarrow{(a,p)} P \]

Choice

- **ChoiceL**
 \[P \xrightarrow{\alpha} P' \]
 \[P + Q \xrightarrow{\alpha} P' \]

Parallel

- **ParIL**
 \[P \parallel Q \xrightarrow{(a,p)} P' \parallel Q \]
Unprioritized transition relation (II)

Resource-constrained execution

\[
\begin{align*}
\text{ParT} & \quad P \xrightarrow{A_1} P' \quad Q \xrightarrow{A_2} Q' \\
& \quad P \parallel Q \xrightarrow{A_1 \cup A_2} P' \parallel Q' \\
& \quad \rho(A_1) \cap \rho(A_2) = \emptyset
\end{align*}
\]

Priority-based communication

\[
\begin{align*}
\text{ParCom} & \quad P \xrightarrow{(a?, p_1)} P' \quad Q \xrightarrow{(a!, p_2)} Q' \\
& \quad P \parallel Q \xrightarrow{(\tau, p_1 + p_2)} P' \parallel Q'
\end{align*}
\]

Resource reservation

\[
\begin{align*}
\text{CloseT} & \quad P \xrightarrow{A_1} P' \\
& \quad [P]_I \xrightarrow{A_1 \cup A_2} [P']_I \\
& \quad A_2 = \{ (r, 0) \mid r \in I - A_1 \}
\end{align*}
\]
The process \(\{(r_1, p_1), (r_2, p_2)\} : P \) simultaneously uses resources \(r_1 \) and \(r_2 \) for one time unit, and then executes \(P \).

The process \((a,p).P \) executes the event "(a, p)" and proceeds to \(P \)
E.g., \((a,7)\cdot P + \{(r_1, 3), (r_2, 7)\}: Q\) may choose between executing the event \((a, 7)\) (from ActI) or the time-consuming action \\{(r_1, 3), (r_2, 7)\} (from ActT).
The condition $\rho(A_1) \cap \rho(A_2) = \emptyset$ ensures that at most one process uses a single resource during any time step.
Example 1

\[P \overset{\text{def}}{=} ((a, 3).P_1) + \{(r_3, 8)\} : P_2) \]
\[Q \overset{\text{def}}{=} ((a, 5).Q_1) + \{(r_1, 7)\} : P_2) \]

\(P||Q\) admits the following four transitions:

\[P||Q \xrightarrow{(a,3)} P_1||Q \quad \text{[by ParIL]} \]
\[P||Q \xrightarrow{(\overline{a},5)} P||Q_1 \quad \text{[by ParIR]} \]
\[P||Q \xrightarrow{(\tau,8)} P_1||Q_1 \quad \text{[by ParCom]} \]
\[P||Q \xrightarrow{\{(r_1,7),(r_3,8)\}} P_2||Q_2 \quad \text{[by ParT]} \]
Example 2(Why add priorities in ParCom?)

\[P \overset{\text{def}}{=} (a, 2).P_1 + (a, 3).P_2 \]
\[Q \overset{\text{def}}{=} (\bar{a}, 5).Q_1 + (\bar{a}, 3).Q_2 \]

In \(P \) the second choice is preferred, while in \(Q \) the first choice is preferred.

\(P \parallel Q \) can:

\[P \parallel Q (a, 2) \hspace{1cm} P_1 \parallel Q \hspace{1cm} P \parallel Q (a, 3) \hspace{1cm} P_2 \parallel Q \]
\[P \parallel Q (\bar{a}, 5) \hspace{1cm} P \parallel Q_1 \hspace{1cm} P \parallel Q (\bar{a}, 3) \hspace{1cm} P \parallel Q_2 \]
\[P \parallel Q (\tau, 7) \hspace{1cm} P_1 \parallel Q_1 \hspace{1cm} P \parallel Q (\tau, 5) \hspace{1cm} P_1 \parallel Q_2 \]
\[P \parallel Q (\tau, 8) \hspace{1cm} P_2 \parallel Q_1 \hspace{1cm} P \parallel Q (\tau, 6) \hspace{1cm} P_2 \parallel Q_2 \]

Note that the \(\tau \)-transition with the highest priority is that associated with the derivative \(P_2 \parallel Q_1 \).

These transitions had the highest priorities in their original constituent processes. \(\square \)
Scope(sequential composition, timeout and interrupt)

for “continue”

ScopeCT

\[
P \xrightarrow{A} P' \\
P \triangle_t^b (Q, R, S) \xrightarrow{A} P' \triangle_{t-1}^b (Q, R, S)
\]

(t > 0)

ScopeCI

\[
P \xrightarrow{(a,n)} P' \\
P \triangle_t^b (Q, R, S) \xrightarrow{(a,n)} P' \triangle_t^b (Q, R, S)
\]

(t > 0)
for “end”

\[
\text{ScopeE} \quad \frac{P \xrightarrow{(b,n)} P'}{P \bigtriangleup^b_t (Q, R, S) \xrightarrow{(\tau,n)} Q} \quad (t > 0)
\]

for “timeout”

\[
\text{ScopeT} \quad \frac{R \xrightarrow{\alpha} R'}{P \bigtriangleup^b_t (Q, R, S) \xrightarrow{\alpha} R'} \quad (t = 0)
\]

for “interrupt”

\[
\text{ScopeI} \quad \frac{S \xrightarrow{\alpha} S'}{P \bigtriangleup^b_t (Q, R, S) \xrightarrow{\alpha} S'} \quad (t > 0)
\]
Preemption relation

α is preempted by β: $\alpha \prec \beta$

action preempts action: $(r_1,3), (r_2,5) \prec (r_1,7), (r_2,5)$

no lower priorities: $\forall r \in \rho(\alpha), \pi_r(\alpha) \leq \pi_r(\beta)$

some higher priorities: $\exists r \in \rho(\beta), \pi_r(\alpha) < \pi_r(\beta)$

$\rho(\beta) \subseteq \rho(\alpha)$

event preempts event: $(a!,1) \prec (a!,3)$

same label, higher priority

event preempts action: $(\tau,1) \prec \{(r,4)\}$

τ with non-zero priority preempts all actions
We define

\[P \xrightarrow{\alpha} \pi P' \]

when

- there is an unprioritized transition

\[P \xrightarrow{\alpha} P' \]

- there is no \(P \xrightarrow{\beta} P'' \) such that \(\alpha < \beta \)
Resource conflict:

\[P = \{(r,1)\} : P' \quad Q = \{(r,2)\} : Q' \quad P \parallel Q \sim NIL \]

Processes must provide for preemption

\[P = \{(r,1)\} : P' + \emptyset : P \quad Q = \{(r,2)\} : Q' + \emptyset : Q \]

Unprioritized and prioritized transitions:
Resource reservation enforces progress