Software Model Checking
A Case Study: High-Availability Protocol

Moonzoo Kim
CS Dept. KAIST

Copyright © 2006 CS750B KAIST Korea Advanced Institute of
Software Model Checking Science and Technology



HW#3 Is due Oct 31

E 1. Implement a quick sort in Promela and show
the correctness of your Promela code

+ Use the algorithm in “Intro. To Algorithms 2" ed” by
T.H.Cormen
» Use recursion as indicated in 146 pg of the book
e Hint: do it in a similar way to the sieve of the Eratosthenes

+ Assume the following conditions
e an input array is a byte array of size 4
» each element of the array is 0~7

4+ Write down statistics of your model
o # of states, # of transition, and the amount of memory your
model consumes
+ Increase the size of the array until the memory of your
PC becomes exhausted.

« Write down the maximum size of the array, # of states, # of
with your memory

KAIST

CS750 Softwar

Model Checking 2
Copyright © 2006




HW#3 gcont.z

B 2. Implement the Needham-Schroeder (NS) public-key
protocol and show that your design makes handshake
between A and B successfully

*

B 3. Augmenting your NS protocol with modeling an
Intruder and show the vulnerability of the protocol

+ Your augmented model should work without an intruder, i.e, A
and B can make handshake regardless of the presence of the
iIntruder

4+ Assume that A and B are communicating through internet, which
means that intruder can

» see all messages between A and B
» send arbitrary messages to A or B

B 4. Generalize your NS protocol model with a general
Intruder so that attack scenario can be obtained through
a counter example

KAIST

CS750 Softwar

Model Checking 3
Copyright © 2006




Last Caution about d step and atomic

byte x; byte Xx; byte Xx;
active proctype A() { active proctype A() { active proctype A() {
atomic { d_step {
if if if
ox=1; ox=1; x=1;
X=2; X=2; I X=2;
fi fi fi
} }
} } }
active proctype B() { active proctype B() { active proctype B() {
assert(x!=2); assert(x!=2); assert(x!=2);
} } }
KAIST

750 SO A e — I ——

Model Checking 4
Copyright © 2006



Overview of the High-Availability Protocol

E Multiple firewalls are often
deployed in a group for both
internet fault-tolerance and

a Router increased throughput

— E HA protocol manages a
ZS group of firewalls as if there

Masteﬁj Si%;:je %.".VE ﬁf,jg,ii?er exists single firewall
'-'u'k: :-E:k: :-E:f;: :-E:ff: + Synchronize information
/ n/ " ui/ y among the group such as
Firewalls session info, etc

+ Elect a master and a bkup-
master to coordinate firewalls

KAIS erver

CS750 Softwar

Model Checking 5
Copyright © 2006




Specification of the HA Protocol

4 E When a slave becomes
- - operational, the slave
broadcasts join_request
J join_request
) : B The master allows the slave to
) loin_request join the group by sending
join_permit Yoy -
join_permit
B Then, the master sends
member information via
members_info and and session

- Legend Information via
Broadcast message —» update_session_rule

Unicast message ——

members_info

A 4

update_session_rulel

update_session_ruleN

a) Message sequence of
adding a slave

750 SO A € —————
Model Checking 6

Copyright © 2006



Specification of the HA Protocol

-

Wait
for
3 sec

b) Message sequence of deleting
a backup master

m_alive
S alive.
s_alive
m_alive ! I |
( s_alive
m_alive - ~
s_alive
m_alive R -
s_alive
.| m_alive -
bkup_m_assign
members_info

A master assigns a slave as a
backup master to prepare a case
of master crash

A master broadcasts m_ali1ve

heartbeat messages to the slaves

in the group. Similarly each slave
sends as_al1ve heartbeat

message to the master

If a master does not receive
s_al1ve for 3 seconds,
corresponding slave is removed

A master sends a backup master

assignment message
bkup_m _assignto aslaveifa

backup master is dead

750 SO A e — I —

Model Checking
Copyright © 2006

7



S

ecification of the HA Protocol

m_alive .
s_alive | )
. Wait
: ~for

3 sec

query_m_alive|_
: Try 3

query_m_alive lqueries

query_m_alive| |

bkup_m_assign
~ members_info

m_alive

A

c) Message sequence of
changing a master

B When a backup master does not

receive m_alive for three
seconds, the backup master
sends three queries to the master
to confirm whether it really
crashes

Then, the backup master
becomes a master and assigns a
new backup master and
broadcasts new members_i1nfo

When a firewall recovers from a
crash, it starts as a slave

4+ Firewall O starts as a master after
recovery if there exists no master

750 SO A e —— I ——

Model Checking
Copyright © 2006

8



Reguirement ProEertieS

E Deadlock-free property
+Can be checked with spin’s default option

B Single master property
4[] assert(# of master <= 1)
B Fault-tolerant property
+« ¢ =[] 41 € Group. working(1)
+For N=3,
* [] (working[O] || working[1] || working[2])

SSSSSSSSSSSS

Copyright © 2006



Reguirement ProEerties gcont.z

B But the HA protocol cannot satisfy the fault-
tolerant property due to physical constraints

+A machine may crash for several reasons which
are out of our control

 Ex. Power failure, network line failure, etc

E We need more refined/weakened fault-
tolerant property which our model can satisfy
(=
[(Vie G.(—alive(i)—»<>(3j € G. working(j))))

SSSSSSSSSSSS

Model Checking 10
C ight © 2006




Reguirement ProEerties gcont.z

B But still ¢’ Is not fully satisfactory because

+ (¢’ does not require recovery of crashed machine

e |l.e., a machine does not have to join the group after
recovery from crash

e This is not desirable for the HA protocol because it
pursuits increased network throughput by recovering
crashed machine as well as fault-tolerance

B Final requirement property ¢”
+ [ (Vi € G.(alive(i)—<>(working(i) VV —alive(i)))))
B What is still missing?

KAIST

CS750 Softwar

Model Checking 11
Copyright © 2006




Abstractions of the HA Design

E We have to simplify the HA model in order to get a useful
result with reasonable computing resource

+ Abstraction of general crash behaviors
« We limited possible crash scenarios

+ Abstracted heartbeat messages
» Use a global variable live[N] instead

4+ Abstracted channel communications
 We add a special channel (ch2mst) to make join activity simpler

* We reduced a possible types of messages, and thus, reduce
necessary size of buffer

KAIST

750 SO W A € ————
Model Checking 12

Copyright © 2006



Abstraction of General Crashes

B Do we model a general/random crash?

+ A general crash (finest granularity of a crash) can be modeled using
unless statement

bool crash[N];
active proctype firewall() {
machine_init;
{ ...} unless {crash[_pid]; crash_behavior(); goto machine_init}
}
active proctype random_crash() {
do
.. atomic{crash[0]=false->crash[0]=true}
.. crash[O]=false

od
)

+ We should be careful about every possible crash behavior in order to
prevent deadlock due to the crash

<+ ex. flushing buffer, timeout of communicating party, etc
B Instead, we allow a firewall to crash at only special states

KAIST

750 SO W A € —————
Model Checking 13

Copyright © 2006



Abstracted Heartbeat Messages

E To model a real-time behavior is a complex task,
especially using a modeling system which does not
support real-time with its primitive operators

B For general heartbeat messages, we need to model a
synchronization among processes to simulate time
advance

B A firewall must handle heartbeat messages in time
(within “1 sec”). And a firewall must handle heartbeat
message concurrently with other messages (extra
concurrency required)

B Channels between a master and slaves should be
flushed appropriately when a firewall is dead in order to
prevent unnecessary deadlock due to full channel buffer

B We decided to model heartbeat messages using global
boolean variables alive[N]

KAIST

CS750 Softwar

Model Checking 14
Copyright © 2006




Abstracted Channel Communications

B Originally, a slave broadcasts join_request messages
repeatedly until it receives join_permit. We created a
special channel (ch2mst) designated to a current master

4+ A slave needs to send only one join_request message to the
channel

4+ This abstraction models livelock into deadlock, which can be
detected more efficiently
E We also use a global variable instead of using
bkup_m_assign

B We do not model update_session_rule<N>,
members_info, etc. In other words, our model is not
detailed enough to to show session-over behavior

E As aresult, we have only two messages join_request
and join_permit which reduces necessary buffer size as
4+ chan ch2mst = [N] of {mtype,byte};
4+ chan ch2s[N] = [1] of {mtype,byte};

KAIST

CS750 Softwar

Model Checking 15
Copyright © 2006




Modeling the HA Protocol

LQkupmst_assig

add_slave del_slave

slv_dead

mst_acting

o group—+Co-scing>

B Each firewall is modeled as a process starting at machine_init state
Depending on its context, a firewall is configured as a master (mst_init) or
a slave (slv_i1nit)

B A slave becomes a master through a transition from slv_acting to
mst_initvia become mst

I(AIS% fault can occur at only slv_dead and mst_dead states

750 SO A e — I ——
16

Model Checking
Copyright © 2006




Modeling the HA Protocol in PROMELA

#define MACHINE_INIT 1
#define NULL 255

bool alive[N];

bool working[n];

byte mst=NULL, bkupmst=NULL;
mtype = {jReq,JAck}

chan ch2mst = [N] of {mtype,byte};
chan ch2s[N] = [1] of {mtype,byte};

Inline machine_init() { ...}
active [N] proctype firewall() {
byte current=MACHINE_INIT, next=MACHINE_INIT;
do
/* normal behavior */

.. atomic{ next==MACHINE_INIT -> current=MACHINE_INIT; machine_init();}
.. atomic{ next==MST _INIT -> current=MST _INIT; mst_init();}

.. atomic{ next==BECOME_MST -> current=BECOME_MST;become_mst();}
QUIST

OS50 SO A e ———

Model Checking 17
Copyright © 2006



Modeling the HA Protocol in PROMELA

inline machine_init() {

d_step{

printf("MSC: %d machine starts\n", pid);

if /* If this machine is a statically configured master, and
there exists no master, the machine starts as a master */ " E

> mst == NULL && pid==0-> 25 '
mst = 0;
printf("MSC: %d master starts\n",_pid):; LR
next=MST _INIT

.. else ->
printf("MSC: %d slave starts\n", pid);
next=SLV_INIT

ﬁ; i =mlave starkts

jReg, 0 43
] —

KAIST

CS750 Softwar

Model Checking 18
Copyright © 2006




Verification Results

B We could generate state space upto N=5

B Single master property Is satisfied
+ we need to verify the property 4 times for N=2,3,4,5

B We found that the model has a deadlock

| Number of machines || 2 | 3 | 4 | 5 | 6 |
States 24617489 551052 [1.40 x 107 |N/A
Transitions 409[43419]1.75 x 10%[5.24 x 107|N/A
Memory usage{in Mb}|(228]| 220 204 1321 |[N/A

Table 2. Statistics on the HA protocol model

KAIST

750 SO W A € ————
Model Checking 19

Copyright © 2006



Identification of an Bugs Causing Deadlock

B The counter example shows that all T e
machines are slaves at join_group state.
Thus, no master exists to accept new

slaves and progress is blocked

» Could we conclude that this is the only
cause for deadlock?

B We analyzed all counter examples and
found that all machines are slaves.
Thus, we can conclude that master
election has a problem

B Thus, it is clear that our HA model does not

Satisfy (1)" 1!jnj;j%m

KAIST

CS750 Softwar

Model Checking 20
Copyright © 2006




ldentification of Bugs Causing the Deadlock

E Bug B,
+ A master (machine 1) died immediately after a -
backup master (machine 0) had died and  slate starts

revived as a slave. Then, machine 1 revived as h
a slave and all machines became slaves.

B Bug B,

+ A master elected a machine that was dead, as a 2
backup master without knowing that the
machine was dead. Then, the master died and it
happened that there existed no master.

B Bug B,
+ A backup master died immediately after a 5 B
master had died and revived as a slave. Then, 1!jneqfh

the backup master revived as a slave and all
machines became slaves
KAIST

CS750 Softwar

Model Checking 21
Copyright © 2006




