
Korea Advanced Institute of
Science and Technology

Copyright © 2006 CS750B
Software Model Checking

Software Model CheckingSoftware Model Checking
A Case Study: HighA Case Study: High--Availability ProtocolAvailability Protocol

Moonzoo Kim
CS Dept. KAIST

CS750 Software
Model Checking

Copyright © 2006
2

HW#3 is due Oct 31HW#3 is due Oct 31

1. Implement a quick sort in Promela and show
the correctness of your Promela code

Use the algorithm in “Intro. To Algorithms 2nd ed” by
T.H.Cormen

• Use recursion as indicated in 146 pg of the book
• Hint: do it in a similar way to the sieve of the Eratosthenes

Assume the following conditions
• an input array is a byte array of size 4
• each element of the array is 0~7

Write down statistics of your model
• # of states, # of transition, and the amount of memory your

model consumes
Increase the size of the array until the memory of your
PC becomes exhausted.

• Write down the maximum size of the array, # of states, # of
with your memory

CS750 Software
Model Checking

Copyright © 2006
3

HW#3 (cont.)HW#3 (cont.)

2. Implement the Needham-Schroeder (NS) public-key
protocol and show that your design makes handshake
between A and B successfully

http://en.wikipedia.org/wiki/Needham-Schroeder
3. Augmenting your NS protocol with modeling an
intruder and show the vulnerability of the protocol

Your augmented model should work without an intruder, i.e, A
and B can make handshake regardless of the presence of the
intruder
Assume that A and B are communicating through internet, which
means that intruder can

• see all messages between A and B
• send arbitrary messages to A or B

4. Generalize your NS protocol model with a general
intruder so that attack scenario can be obtained through
a counter example

CS750 Software
Model Checking

Copyright © 2006
4

Last Caution about Last Caution about d_stepd_step and atomicand atomic

byte x;
active proctype A() {

atomic {
if
:: x=1;
:: x=2;
fi
}

}

active proctype B() {
assert(x!=2);

}

byte x;
active proctype A() {

d_step {
if
:: x=1;
:: x=2;
fi
}

}

active proctype B() {
assert(x!=2);

}

byte x;
active proctype A() {

if
:: x=1;
:: x=2;
fi

}

active proctype B() {
assert(x!=2);

}

CS750 Software
Model Checking

Copyright © 2006
5

Overview of the HighOverview of the High--Availability ProtocolAvailability Protocol

Internet

Router

Firewalls

Switch

Server
PCs

Multiple firewalls are often
deployed in a group for both
fault-tolerance and
increased throughput
HA protocol manages a
group of firewalls as if there
exists single firewall

Synchronize information
among the group such as
session info, etc
Elect a master and a bkup-
master to coordinate firewalls

Master slaveslave Bkup-
master

CS750 Software
Model Checking

Copyright © 2006
6

join_request

Master Slave

join_permit

members_info

join_request

update_session_rule1

update_session_ruleN

a) Message sequence of
adding a slave

Legend
Broadcast message
Unicast message

Specification of the HA ProtocolSpecification of the HA Protocol

When a slave becomes
operational, the slave
broadcasts join_request

The master allows the slave to
join the group by sending
join_permit

Then, the master sends
member information via
members_info and and session
information via
update_session_rule

CS750 Software
Model Checking

Copyright © 2006
7

A master assigns a slave as a
backup master to prepare a case
of master crash
A master broadcasts m_alive
heartbeat messages to the slaves
in the group. Similarly each slave
sends a s_alive heartbeat
message to the master
If a master does not receive
s_alive for 3 seconds,
corresponding slave is removed
A master sends a backup master
assignment message
bkup_m_assign to a slave if a
backup master is dead

Master
Backup
master

m_alive
s_alive

Slave

s_alive

crash
m_alive

s_alive
m_alive

s_alive
m_alive

s_alive
m_alive

b) Message sequence of deleting
a backup master

members_info

Wait
for
3 sec

bkup_m_assign

Specification of the HA ProtocolSpecification of the HA Protocol

CS750 Software
Model Checking

Copyright © 2006
8

When a backup master does not
receive m_alive for three
seconds, the backup master
sends three queries to the master
to confirm whether it really
crashes
Then, the backup master
becomes a master and assigns a
new backup master and
broadcasts new members_info

When a firewall recovers from a
crash, it starts as a slave

Firewall 0 starts as a master after
recovery if there exists no master

Master
Backup
master

m_alive
s_alive

crash

query_m_alive
query_m_alive
query_m_alive

Wait
for
3 sec

Try 3
queries

m_alive

bkup_m_assign

c) Message sequence of
changing a master

members_info

Specification of the HA ProtocolSpecification of the HA Protocol

CS750 Software
Model Checking

Copyright © 2006
9

Requirement PropertiesRequirement Properties

Deadlock-free property
Can be checked with spin’s default option

Single master property
[] assert(# of master <= 1)

Fault-tolerant property
φ = [] ∃ i ∈ Group. working(i)

For N=3,
• [] (working[0] || working[1] || working[2])

CS750 Software
Model Checking

Copyright © 2006
10

But the HA protocol cannot satisfy the fault-
tolerant property due to physical constraints

A machine may crash for several reasons which
are out of our control

• Ex. Power failure, network line failure, etc

We need more refined/weakened fault-
tolerant property which our model can satisfy

φ’=
[](∀ i ∈ G.(¬alive(i)→<>(∃ j ∈ G. working(j))))

Requirement Properties (cont.)Requirement Properties (cont.)

CS750 Software
Model Checking

Copyright © 2006
11

But still φ’ is not fully satisfactory because
φ’ does not require recovery of crashed machine

• i.e., a machine does not have to join the group after
recovery from crash

• This is not desirable for the HA protocol because it
pursuits increased network throughput by recovering
crashed machine as well as fault-tolerance

Final requirement property φ”
[] (∀ i ∈ G.(alive(i)→<>(working(i) \/ ¬alive(i)))))

What is still missing?

Requirement Properties (cont.)Requirement Properties (cont.)

CS750 Software
Model Checking

Copyright © 2006
12

Abstractions of the HA DesignAbstractions of the HA Design

We have to simplify the HA model in order to get a useful
result with reasonable computing resource

Abstraction of general crash behaviors
• We limited possible crash scenarios

Abstracted heartbeat messages
• Use a global variable live[N] instead

Abstracted channel communications
• We add a special channel (ch2mst) to make join activity simpler
• We reduced a possible types of messages, and thus, reduce

necessary size of buffer

CS750 Software
Model Checking

Copyright © 2006
13

Abstraction of General CrashesAbstraction of General Crashes

Do we model a general/random crash?
A general crash (finest granularity of a crash) can be modeled using
unless statement

bool crash[N];
active proctype firewall() {

machine_init:
{ …} unless {crash[_pid]; crash_behavior(); goto machine_init}

}
active proctype random_crash() {

do
:: atomic{crash[0]=false->crash[0]=true}
:: crash[0]=false
…
od

}
We should be careful about every possible crash behavior in order to
prevent deadlock due to the crash

ex. flushing buffer, timeout of communicating party, etc

Instead, we allow a firewall to crash at only special states

CS750 Software
Model Checking

Copyright © 2006
14

Abstracted Heartbeat MessagesAbstracted Heartbeat Messages

To model a real-time behavior is a complex task,
especially using a modeling system which does not
support real-time with its primitive operators
For general heartbeat messages, we need to model a
synchronization among processes to simulate time
advance
A firewall must handle heartbeat messages in time
(within “1 sec”). And a firewall must handle heartbeat
message concurrently with other messages (extra
concurrency required)
Channels between a master and slaves should be
flushed appropriately when a firewall is dead in order to
prevent unnecessary deadlock due to full channel buffer
We decided to model heartbeat messages using global
boolean variables alive[N]

CS750 Software
Model Checking

Copyright © 2006
15

Abstracted Channel CommunicationsAbstracted Channel Communications

Originally, a slave broadcasts join_request messages
repeatedly until it receives join_permit. We created a
special channel (ch2mst) designated to a current master

A slave needs to send only one join_request message to the
channel
This abstraction models livelock into deadlock, which can be
detected more efficiently

We also use a global variable instead of using
bkup_m_assign
We do not model update_session_rule<N>,
members_info, etc. In other words, our model is not
detailed enough to to show session-over behavior
As a result, we have only two messages join_request
and join_permit which reduces necessary buffer size as

chan ch2mst = [N] of {mtype,byte};
chan ch2s[N] = [1] of {mtype,byte};

CS750 Software
Model Checking

Copyright © 2006
16

Modeling the HA ProtocolModeling the HA Protocol

Each firewall is modeled as a process starting at machine_init state
Depending on its context, a firewall is configured as a master (mst_init) or
a slave (slv_init)
A slave becomes a master through a transition from slv_acting to
mst_init via become_mst

A fault can occur at only slv_dead and mst_dead states

machine_init

mst_init

slv_init join_group slv_acting slv_dead

mst_acting mst_dead

del_slave

bkupmst_assign

add_slave

become_bkupmst

CS750 Software
Model Checking

Copyright © 2006
17

Modeling the HA Protocol in PROMELAModeling the HA Protocol in PROMELA
#define MACHINE_INIT 1
#define NULL 255

bool alive[N];
bool working[n];
byte mst=NULL, bkupmst=NULL;
mtype = {jReq,jAck}
chan ch2mst = [N] of {mtype,byte};
chan ch2s[N] = [1] of {mtype,byte};
…
Inline machine_init() { …}
active [N] proctype firewall() {
byte current=MACHINE_INIT, next=MACHINE_INIT;
...
do

/* normal behavior */
:: atomic{ next==MACHINE_INIT -> current=MACHINE_INIT; machine_init();}
:: atomic{ next==MST_INIT -> current=MST_INIT; mst_init();}
…
:: atomic{ next==BECOME_MST -> current=BECOME_MST;become_mst();}

od
}

CS750 Software
Model Checking

Copyright © 2006
18

Modeling the HA Protocol in PROMELAModeling the HA Protocol in PROMELA

inline machine_init() {
d_step{
printf("MSC: %d machine starts\n",_pid);
if /* If this machine is a statically configured master, and

there exists no master, the machine starts as a master */
:: mst == NULL && _pid == 0 ->

mst = 0;
printf("MSC: %d master starts\n",_pid);
next=MST_INIT

:: else ->
printf("MSC: %d slave starts\n",_pid);
next=SLV_INIT

fi;
}

}

CS750 Software
Model Checking

Copyright © 2006
19

Verification ResultsVerification Results

We could generate state space upto N=5
Single master property is satisfied

we need to verify the property 4 times for N=2,3,4,5
We found that the model has a deadlock

CS750 Software
Model Checking

Copyright © 2006
20

Identification of an Bugs Causing DeadlockIdentification of an Bugs Causing Deadlock

The counter example shows that all
machines are slaves at join_group state.
Thus, no master exists to accept new
slaves and progress is blocked

• Could we conclude that this is the only
cause for deadlock?

We analyzed all counter examples and
found that all machines are slaves.
Thus, we can conclude that master
election has a problem
Thus, it is clear that our HA model does not
satisfy φ”

CS750 Software
Model Checking

Copyright © 2006
21

Identification of Bugs Causing the DeadlockIdentification of Bugs Causing the Deadlock

Bug B1
A master (machine 1) died immediately after a
backup master (machine 0) had died and
revived as a slave. Then, machine 1 revived as
a slave and all machines became slaves.

Bug B2
A master elected a machine that was dead, as a
backup master without knowing that the
machine was dead. Then, the master died and it
happened that there existed no master.

Bug B3
A backup master died immediately after a
master had died and revived as a slave. Then,
the backup master revived as a slave and all
machines became slaves

