Process Algebra

Rance Cleaveland
Department of Computer Science
P.O. Box 7534
North Carolina State University
Raleigh, NC 27695-7534
USA

Scott A. Smolka
Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11794-4400
USA

April 7, 1999

Abstract

Process algebra represents a mathematically rigorous framework for modeling con-
current systems of interacting processes. The process-algebraic approach relies on
equational and inequational reasoning as the basis for analyzing the behavior of such
systems. This chapter surveys some of the key results obtained in the area within the
setting of a particular process-algebraic notation, the Calculus of Communicating Sys-
tems (CCS) of Milner. In particular, the Structural Operational Semantics approach
to defining operational behavior of languages is illustrated via CCS, and several opera-
tional equivalences and refinement orderings are discussed. Mechanisms are presented
for deducing that systems are related by the equivalence relations and refinement or-
derings, and different process-algebraic modeling formalisms are briefly surveyed.

Keywords: process algebra, equational reasoning, verification, verification tools, bisimula-
tion, failures/testing relations.

1 Introduction

The term process algebra encompasses a collection of theories that support mathematically
rigorous (in)equational reasoning about systems consisting of concurrent, interacting pro-
cesses. The field grew out of a seminal book due to Milner [34] in 1980 and has been an
active area of research since then. In particular, researchers have developed a number of

different process-algebraic theories in order to capture different aspects of system behavior;
however, each such formalism generally includes the following characteristics.

1. A language, or algebra, is defined for describing systems.

2. A behavioral equivalence is introduced that is intended to relate systems whose behavior
is indistinguishable to an external observer.

3. Equational rules, or azioms, are developed that permit proofs of equivalences between
systems to be conducted in a syntax-driven manner.

Some formalisms include a refinement ordering, in lieu of an equivalence; in this case, the
theories allow one to determine if a system is “greater than or equal to” (i.e. refines) another.
The literature typically refers to each theory as a process algebra; so the field of process
algebra contains many process algebras.

Process algebras derive their motivation from the fact that a system design often con-
sists of several different descriptions of the system involving different levels of detail. The
behavioral equivalence or refinement relation provided by a process algebra may be used to
determine whether these different descriptions conform to one another. More specifically,
higher-level descriptions of system behavior may be related to lower-level ones using the
equivalence or refinement ordering supplied by the algebra. These relations are typically
substitutive, meaning that related systems may be used interchangeably inside larger sys-
tem descriptions; this facilitates compositional system verification, since low-level designs of
system components may be checked in isolation against their high-level designs.

This chapter surveys some of the main features of process algebra, and it develops
along the following lines. The next section introduces CCS, the process algebra that we
use throughout the chapter to illustrate the principles we cover. Section 3 then introduces
behavioral equivalences based on the notion of bisimulation, a fundamental concept due to
Milner and Park. We then show how two of these equivalences may be given equational
axiomatizations. The section following then introduces the failures/testing refinement rela-
tions and provides inequational axiomatizations for them for CCS. Section 6 then shows how
these relations may be computed for finite-state systems. The penultimate section surveys
related work, and the final one summarizes the contents of the chapter.

2 A Calculus of Communicating Systems

This section introduces the syntax and semantics of the process algebra A Calculus of Com-
municating Systems (CCS). CCS will serve as a vehicle for illustrating the different ingredi-
ents that make up a process algebra throughout the remainder of this chapter. Other process
algebras are briefly discussed in Section 7.

2.1 The Syntactic Form of CCS Processes

CCS provides a small set of operators that may be used to construct system descriptions
from definitions of subsystems. The basic building blocks of these descriptions, and indeed of

system definitions in all existing process algebras, are actions. Intuitively, actions represent
atomic, uninterruptible execution steps, with some actions denoting internal execution and
others representing potential interactions with its environment that the system may engage
in.

Actions in CCS. A binary, synchronous model of process communication underlies CCS,
and the structure of the set of actions reflects this design decision. Actions represent either
inputs/outputs on ports or internal computation steps. The former are sometimes called
external, as they require interaction from the environment in order to take place.

To formalize these intuitions, let A represent a countably infinite set of labels, or ports,
not containing the distinguished symbol 7. Then an action in CCS has one of the following
three forms.

e «, where a € A, represents the act of receiving a signal on port a.
e o, where a € A, represents the act of emitting a signal on port a.

e 7 represents an internal computation step.

In what follows we use Accg to stand for the set of all CCS actions; that is,
ACCSZAU{§|(1€A}U{T}.

We also abuse notation by defining @ = «; note that 7 is not a valid action. We refer to the
actions « and @, where a € A, as complementary, as they represent the input and output
action on the same channel. The set Accs — {7} then contains the set of external, or visible,
actions; the only internal action is 7.

CCS operators. Having defined the set Agcg of CCS actions we now introduce the op-
erators the process algebra provides for assembling actions into systems. In what follows,
we assume that p, p; and p, denote CCS system descriptions that have previously been
constructed, and we also assume a countably infinite set C of process variables. CCS then
includes seven different mechanisms for building systems.

e nil represent the terminated process that has finished execution.

e Given a € Accg, the prefizing operator a. allows an action to be “prepended” onto an
existing system description. Intuitively, a.p is capable first of an @ and then behaves
like p.

e + represents a choice construct. The system p; + p, offers the potential of behaving
like either p; or py, depending on the interactions offered by the environment.

e | denotes parallel composition. The system p;|p, interleaves the execution of p; and ps
while also permitting complementary actions of p; and py to synchronize; in this case
case, the resulting composite action is a 7.

o If L C Accs — {7} then the restriction operator \L permits actions to be localized
within a system. Intuitively, p\L behaves like p except that it is disallowed from
interacting with its environment using actions mentioned in L. Note that 7 can never
be restricted.

e The operator [f] allows actions in a process to be renamed. Here f is a function from
Accs to Aces that is required to satisfy the following two restrictions.

- f(7)
- f(@) = f(a).

When this is the case, f is called a renaming. The system p[f] behaves exactly like p
except that f is applied to each action that p wishes to engage in.

T

e If C' € C then C represents a valid system provided that a defining equation of the
form C 2 p has been given. Intuitively, C' represents an “invocation” that behaves like
p. This construct allows systems to be defined recursively.

In process-algebraic parlance, system descriptions built using the above operators are often
referred to as terms or processes. We use Pocos to represent the set of all CCS processes. As
examples, consider the following, where we assume that A contains send, recv, msg, ack, get,
put, get_ack and put_ack.

e The term send.recv.nil represents a system that engages in a sequence of two actions:
an “input” on the send channel, followed by an “output” on the recv channel.

e Consider the definition
M 2 put.get. M + put_ack.get_ack.M

This defines a system M that may be thought of as a one-place communication buffer:
given a “message” on its put channel it delivers it on its get channel, and similarly for
acknowledgments. This example illustrates how, although the version of CCS consid-
ered here does not explicitly support value-passing, a limited form of data exchange
can be implemented by encoding values in port names. Here M can handle two kinds
of “data”: messages and acknowledgments.

e Now consider the following definitions, where M is as defined previously.

S £ send.msg.ack.S
2 msg.recv.ack.R
P £ (S[put/msg, get_ack/ack] | M| R[get/msg, put_ack/ack])\{get, put, get_ack, put_ack}

P represents the CCS term for a simple communications protocol consisting of a sender
S, a receiver R, and a medium M, a graphical depiction of which may be found in
Figure 1. The sender repeatedly accepts “messages” on its send channel, outputs them

/ /
send recv
S R
msg ack msg ack
() () () ()
put get_ack get put_ack

Figure 1: The architecture of a sample communications protocol.

on its msg channel, and then awaits an acknowledgment on its ack channel. The receiver
behaves similarly: it awaits a message on its msg channel, delivers it on its recv channel,
and then sends an acknowledgment via its ack channel. The relabeling operators are
given in the form a/b, c/d, .. .; intuitively, such a relabeling changes b (and its inverse)
to a, d to ¢, etc. Actions not mentioned are unaffected. In this example the relabelings
effect the “wiring” given in the figure. The restriction operator ensures that only the
sender and receive may interact directly with the medium.

2.2 The Operational Semantics of CCS Terms

In the account so far we have relied on the reader’s intuition to understand the meaning of
the CCS operators. To make these meanings precise, CCS and other process algebras usually
include an operational semantics that is intended precisely to define the “execution steps”
that processes may engage in. This semantics is usually specified in the form of a ternary
relation, —; intuitively, p —= p’ holds if system p is capable of engaging in action a and
then behaving like p'. Process algebras such as CCS typically define — inductively using
a collection of inference rules for each operator. These rules have the following form.

remises . .
P (side condition)

conclusion

A rule states that, if one has established the premises, and the side condition holds, then one
may infer the conclusion. This presentation style for operational semantics is often called

SOS, for Structural Operational Semantics, and was devised by Plotkin [39].

The remainder of this section covers the SOS rules for CCS and shows how they may be
used rigorously to characterize the behavior of CCS system descriptions. We group the rules
on the basis of the CCS operators to which they apply.

nil. The CCS process nil has no rules; consequently, it is incapable of any transitions.

Prefixing. The prefixing operator contains one rule.

a.p L>p

This rule has no premises, and the conclusion states that processes of the form a.p may
engage in a and thereafter behave like p. Note that the side condition is omitted; in
such cases it is assumed to be “true”.

Choice. The choice operator has two symmetric rules.

p—p qg—q
p+q—p p+q— ¢

These rules in essence state that a system of the form p + ¢ “inherits” the transitions
of its subsystems p and q.

Parallel Composition. The parallel composition operator has three rules, the first two of
which are symmetric.

p——p qg-—=4q
plg = p'lq plg —= plg’

These rules indicate that | interleaves the transitions of its subsystems. The next rule
allows processes connected by | to interact.

a ! a]
p—p.q —(¢
plg — 'ld

According to this rule, subsystems may synchronize on complementary actions (i.e.
inputs and outputs on the same port). Note that the action produced as the result
of the synchronization is a 7; since 7 is undefined, this ensures that synchronizations
involve only two partners.

Restriction. The restriction operator has one rule.

p-——p
P\L — p'\L

(a7 ¢ L)

This rule, which includes a side condition, only allows actions not mentioned in L
(or whose complements are not in L) to be performed by p\L. Restriction in effect
“localizes” actions in L, since the operator forbids the system’s environment from
interacting with the system using them.

Relabeling. The relabeling operation has one rule.

p——p

plf] 24 i)

As the intuitive account above suggests, p[f] engages in the same transitions as p, the
difference being that the actions are relabeled via f.

Process Variables. The behavior of process variables is given by one rule.

p——p

A
C Sy (C=p)

This rule states that a system C behaves like its “body”, p, provided that C has been
provided with a definition of the form C' 2 .

Examples. As stated above, the SOS rules for CCS define the single-step transitions that
CCS processes may engage in. As one example, consider the medium process M defined
above. Using the prefixing rule, one may infer the transition

put.get.M LN get.M
Using this fact and one of the rules for +, one may therefore infer that
put.get.M + put_ack.get_ack.M 2 get.M
This observation and the rule for constants then permit the following transition to be inferred.
M 225 get.M
Using similar lines of reasoning, one may also deduce that
p send ((msg.ack.S)[put/msg, get_ack/ack] | M | R[get/msg, put_ack/ack])\{get, get_ack, put, put_ack}

Note that this is the only transition available to P, since the transitions of M and R all
involve actions in the restriction set.

2.3 CCS, Processes and Labeled Transition Systems

The definition of — just given allows CCS processes to be viewed as state machines of a
certain type. To begin with, we show how CCS may be viewed as a structure called a labeled
transition system consisting of a collection of possible system states and transitions.

Definition 2.1 A labeled transition system (LTS) is a triple (Q, A, —), where Q) is a set
of states, A is a set of actions, and —C) X A X Q) is a transition relation.

Some definitions of LTS also designate a start state. We refer to labeled transitions of this
form (i.e. quadruples of the form (@, A, —, qs) where g5 € @ is the start state) as rooted
labeled transition systems.

Perhaps surprisingly, the definitions of this chapter show that CCS may be viewed as a
single LTS. Recall that Pccog represents the (infinite) set of syntactically valid CCS system
definitions, and let —ccg be the transition relation defined in the previous subsection.
Then (Pcocs, Accs, —rcos) satisfies the definition of LTS. This observation also holds for
other process algebras and has two consequences. The first is that certain definitions, such
as those for behavioral equivalences and refinement orderings, may be given in a language-
independent manner by defining them with respect to LTS’s. The second consequence is that
that individual system descriptions may be “converted” into rooted L'TS’s. Mathematically,
for any CCS system p the quadruple (Pccs, Accs, —>ccs, p) constitutes a rooted LTS. As
Pccos is infinite this observation is only of theoretical interest until one observes that not
every state in Poog is “reachable” from p via —ccg. Consequently, we may instead define
another LTS, M, consisting only of CCS terms reachable from p via sequences of transitions.
If M, contains only finitely many states, then it may be analyzed using algorithms for
manipulating finite-state machines. As an example, Figure 2 contains the finite-state rooted
LTS corresponding to the communication protocol P described above.

3 Behavioral Congruences for CCS

Process algebras usually use a notion of behavioral congruence as a basis for system analy-
sis. A congruence for an algebra is an equivalence relation (i.e. a relation that is reflexive,
symmetric and transitive) that also has the substitution property: equivalent systems may
be used interchangeably inside any larger system. Formally, define a context C[] to be a
system description with a “hole”, []; given a system description p, then, C[p] represents the
system obtained by “filling” the hole with p. Then an equivalence = is a congruence for a
language if, whenever p & ¢, then C[p| &~ C|[q] for any context C[] built using operators in
the language. It should be noted that relations that are congruences for some languages are
not congruences for others.

In this section we study congruences for CCS with a view toward defining a relation that
relates systems with respect to their “observable” behavior. In each case we first define an
equivalence relation on states in an arbitrary LTS; since CCS may be viewed as an LTS,
these relations may then be used to relate CCS system descriptions. We then consider the
suitability of the equivalence from the standpoint of the observable behavior to which it is
sensitive and study whether or not the relation is a congruence for CCS. In the first part of
the section we make no special allowance for the “unobservability” of the action 7, deferring
its treatment to later.

3.1 The Inadequacy of Trace Equivalence

State machines have a well-studied equivalence, language equivalence, that stipulates that
two machines are equivalent if they accept the same sequences of symbols. Rooted labeled
transition systems do not contain “accepting states” per se, and consequently the notion

(SL.] I M| RL.D\...}

send

((msg.ack.S)[...] | M | R[..D\{...}

T

((ack.S)[...] | get.M | R[..D\...}
((ack.S)[...] | M | (tecv.ack.R)[..)\X...}

recv

((ack.S)[...]1 | M|

(ack.R)[..D\...}

((ack.S)[...] | get_ack.M | R[..]\...}

Figure 2: The state machine for P.

of language equivalence from finite-state machine theory cannot be directly applied. How-
ever, if we identify every state in a rooted LTS as being accepting, then the “language” of
the machine contains the execution sequences, or “traces”, that a machine may engage in.
Consequently, a reasonable first attempt at defining a behavioral equivalence for CCS and
other process algebras might be to relate two system descriptions (i.e. states in the LTS
(Q, A, —) exactly when the machines for them have exactly the same traces.

Before formalizing these notions we first review some concepts from the theory of finite
sequences. If A is a set, then A* consists of the set of (possibly empty) finite sequences of
elements of A. We use € to represent the empty sequence. One may now define traces, and
trace equivalence, as follows.

Definition 3.1 Let (Q, A, —>) be a labeled transition system.

1. Let s = ay...a, € A* be a sequence of actions. Then q —= ¢ if there are states
qo,---,4n such that qd = {qo, g; l) qiv1, and ql = (p.

2. s is a strong trace of q if there exists q' such that ¢ — q'. We use S(q) to represent
the set of all strong traces of q.

3. p g q exactly when S(p) = S(q).

We use the term strong traces because the definition given above does not distinguish
between internal and external actions; all may appear in a strong trace. In contrast, the
traditional definition of traces treats 7 actions in a special manner.

Since CCS is a labeled transition system whose states are system descriptions we may
apply the definition of &g to CCS systems. Unfortunately, ~g suffers from severe deficiencies
for CCS and other languages that permit the definition of nondeterministic systems, as the
following examples illustrate.

1. Let p be a.b.nil + a.c.nil and g be a.(b.nil + c.nil). Then p =g ¢, as S(p) = S(q) =
{€,a,ab,ac}. However, after an a-transition ¢ can perform both a b and a ¢, whereas p
must reject one or the other of these possibilities after each of its (two) a-transitions.

2. Let C} 2 a.C; and Oy 2 a.Cy + a.nil. Then C; =g Cs, and yet Cy can reach a
“deadlocked” state after an a-transition (i.e. a state that is incapable of any transitions)
while C'; cannot.

The trouble with trace equivalence and nondeterministic systems is that even though
two systems have the same traces, they may go through inequivalent states in performing
them. (This situation cannot occur in deterministic systems.) In particular, trace equivalent
systems can have different deadlocking behavior.

10

3.2 Bisimulation Equivalence

The last observation in the previous section suggests that an appropriate equivalence for
CCS, and indeed for any language permitting the definition of nondeterministic systems,
ought to have a recursive flavor: execution sequences for equivalent systems ought to “pass
through” equivalent states. This intuition underlies the definition of bisimulation, or strong
equivalence. The name of the equivalence stems from the fact that it is defined in terms of
special relations called bisimulations.

Definition 3.2 Let (Q, A,—>) be an LTS. A relation R C @ %X @ is a bisimulation if,
whenever (p,q) € R, then the following conditions hold for any a, p' and ¢'.

1. if p % p' then ¢ - ¢' for some ¢’ such that (p',q') € R.
2. ifq % ¢ thenp —> p' for some p' such that (p',q') € R.

Intuitively, if two systems are related by a bisimulation, then it is possible for each to
simulate, or “track”, the other’s behavior: hence the term bisimulation. More specifically,
for a relation to be a bisimulation, related states must be able to “match” transitions of each
other by moving to related states. Two states are then bisimulation equivalent exactly when
a bisimulation may be found relating them.

Definition 3.3 Systems p and g are bisimulation equivalent, or bisimilar, if there exists a
bisimulation R containing (p,q). We write p ~ q whenever p and q are bisimilar.

Since CCS may be viewed as an LTS, one may use ~ to relate CCS processes. As examples,
we have the following.

1. a.b.nil+ a.b.nil ~ a.b.nil
2. a.b.nil+ a.c.nil £ a.(b.nil + c.nil)
3. C1 # Cs.

Bisimulation equivalence has a number of pleasing properties. Firstly, for any labeled
transition system it is indeed an equivalence; that is, the relation ~ is reflexive, symmetric
and transitive. Secondly it can be shown in a precise sense that two equivalent systems must
have the same “deadlock potential”; this point is addressed in more detail below. Thirdly,
~ implies ~¢ and coincides with it if the LTS is deterministic in the sense that every state
has at most one outgoing transition per action. Finally, ~ is a congruence for CCS; if p ~ ¢
then p and ¢ may be used interchangeably inside any larger system.

However, ~ does suffer from a major flaw from the perspective of CCS and other process
algebras allowing asynchronous execution: it is too sensitive to internal computation. In
particular, the definition does not take account of the special status that 7 has wvis a vis
other actions. For example, the systems a.7.b.n:l and a.b.nil are not bisimulation equivalent,
even though an external observable cannot detect the difference between them. Nevertheless,
~ has been studied extensively in the literature, and for process algebras in which internal
computation in one component can indeed affect the behavior of other components, it is a
reasonable basis for verification.

11

Deadlock, Logical Characterizations and ~

The preceding discussion states that ~ relates systems on the basis of their relative “deadlock
potentials”. The remainder of this subsection makes this statement precise by defining a
logic, called the Hennessy-Milner Logic (HML) [26], that permits the formulation of simple
system properties, including potentials for deadlock. The logic also characterizes ~ in the
following sense: two systems are bisimilar if and only if they satisfy exactly the same formulas
in the logic.

Syntax of HML. The definition of HML is parameterized with respect to a set A of
actions. Given such a set, the syntax of HML formulas can be given via the following
grammar.

24

ff

¢ =
|
| PN
|
|
|

PV

We use @ for the set of all well-formed HML formulas.

The constructs in the logic may be understood as follows. First, it should be noted that
formulas are intended to be interpreted with respect states in a labeled transition system.
Then tt and ff represent the constants “true” and “false” that hold of any state and no state,
respectively, while A and V denote conjunction (“and”) and disjunction (“or”), respectively.
The final two operators are referred to as modalities, as they permit statements to be made
about the transitions emanating from a state; thus HML is a modal logic. A state satisfies
(a)¢ if a target state of one of its a-transitions satisfies ¢, while [a]¢ holds of a state if the
target states of all of its a-transitions satisfy ¢.

Semantics of HML. In order to formalize the previous informal discussion, we first fix
a labeled transition system £ = (@, A, —) having the same action set as HML. We then
define a relation =, C @ x @; intuitively, ¢ =, ¢ should hold if state ¢ “satisfies” ¢. The
formal definition is given inductively as follows.

e g =, ttfor any q € Q).

e g =, ffforno g € Q.

q Ec ¢1 A ¢y if and only if g =£ ¢y and g = ¢o.
q | 01V ¢q if and only if ¢ = ¢4 or ¢ =¢ ¢s.

q =r (a)¢ if and only if ¢ —% ¢’ and ¢’ =, ¢ for some ¢’ € Q.

q = [a]¢ if and only if for every ¢’ such that ¢ - ¢, ¢’ =, ¢.

12

This definition includes some subtleties that deserve comment. To begin with, formula
[alff is satisfied by any state not having an a-transition; such states vacuously fulfill the
requirement imposed by [a]. Indeed, a state with no a-transitions satisfies [a]¢ for any ¢.
These facts also imply that a state incapable of any action in the set {ay,. .., a,} will satisfy
the formula [a1|ff A --- A anff. If such a state occurs in an environment that requires one
of these actions, then a deadlock results. In a related vein, a state satisfies (b)¢t if and only
if it has an b-transition; more generally, given a (nonempty) sequence of actions by ...b,,, a
state includes by ... b,, as one of its strong traces if and only if the state satisfies the formula

(b1) - - - (b) tt. Finally, consider a state satisfying a formula of the form

(br) -+ bm) ([an]fF A -+ A fan]£F).

Such a state satisfies this formula if it can engage in the sequence b, ...b,, and arrive at
a state that rejects offers for interaction involving any of a,...,a,. In an environment
capable of exercising the sequence b; ...b,, and then requiring an interaction involving one
of ai,...,a,, the given state could deadlock. It is in this sense that HML permits the
formulation of properties expressing potentials for deadlock.

HML and ~. The relationship between HML and ~ is captured by the following theorem
that states that HML characterizes ~ for labeled transition systems that are image-finite. An
LTS is image-finite if every state in the LTS has at most finitely many transitions sharing the
same action label. In practice almost all labeled transition systems satisfy this requirement;
in particular, CCS does provided the definitions of process variables obey a small restriction.

Theorem 3.4 Let L = (Q, A, —) be an image-finite LTS, and let p,q € Q). Then p ~ q if
and only if for all HML formulas ¢, either p |=r ¢ and q = ¢ or p |~r ¢ and q [~ .

On the one hand, this result and the previous discussion substantiates the claim that bisim-
ulation equivalence requires equivalent systems to have the same “deadlock potentials”. On
the other hand, the theorem provides a useful mechanism for explaining why two systems
fail to be equivalent; one need only present a formula satisfied by one system and not the
other. The following provides examples illustrating this latter point in the context of CCS.

e Consider the system p given by a.b.nil+a.c.nil and the system ¢ given by a.(b.nil+c.nil).
Since p +¢ ¢ there must be a formula satisfied by one and not the other. One such
formula is {a)[b|ff, which is satisfied by p but not by g.

e Consider C and Cy given above. The formula (a)[a]ff distinguishes them, as C satisfies

it and C; does not.

3.3 Observational Equivalence and Congruence for CCS

This subsection presents a coarsening of bisimulation equivalence that is intended to relax
the sensitivity of the former to internal computation. The definition of this relation relies
on the introduction of so-called “weak” transitions.

13

Definition 3.5 Let (@), A, —) be an LTS with T € A, and let q € Q.

1. If s € A* then § € (A—{7})* is the action sequence obtained by deleting all occurrences
of T from s.

2. Let s € (A—{7})*. Then q == ¢ if there exists s' such that q g and s = 5.

Intuitively, § returns the “visible content” (i.e. non-7 elements) of sequence s; in particular,
if @ € Athen @ = € if a = 7, while @ = a if @ # 7. In addition, ¢ == ¢ if ¢ can
perform a sequence of transitions with the same visible content as s and evolve to ¢'. In this
case note that the sequence of transitions that is performed is the same as s except that it
potentially includes an arbitrary number of 7 transitions in between the visible actions of
s. In particular, ¢ == ¢' if a sequence of 7-transitions leads from ¢ to ¢’, while for a single
visible action a, ¢ == ¢' if ¢ can perform an a, possibly “surrounded” by some internal
computation, in order to arrive at ¢'.
We may now define weak bisimulations as follows.

Definition 3.6 Let (Q, A, —) be an LTS, with 7 € A. Then a relation R C Q X Q is
a weak bisimulation if, whenever (p,q) € R, then the following hold for all a € A and

p.q € Q.
1. If p % p' then q N q for some ¢' such that (p',q') € R.

2. If ¢ % ¢ thenp =Ly for some p' such that (p',q') € R.

States p and q are observationally equivalent, or weakly equivalent, or weakly bisimilar, if
there exists a weak bisimulation R containing (p,q). When this is the case we write p = q.

A weak bisimulation closely resembles a regular bisimulation; the only difference lies in
the fact that systems may use weak transitions to simulate normal transitions in the other
system.

As CCS is a labeled transition system whose action set contains 7, the definition of =~
may be used to relate CCS system descriptions. Doing so leads to the following observations.

e a.7.b.nil ~ a.b.nil.
e For any p, 7.p = p.

A — . . .
e Let Svc = send.recv.Svc. Then P = Svc, where P is the simple communications protocol
described in the previous section.

The last example illustrates the power of equivalences in relating system designs at different
levels of abstraction, since Svc could be thought of as a “high-level” design that P is intended
to conform to.

Even though it ignores internal computation observational equivalence still enjoys a sim-
ilar degree of deadlock-sensitivity to bisimulation equivalence: a variant of HML can be
defined that characterizes ~ in the same way that HML characterizes ~. (This logic re-
places the (a) and [a] modalities of HML by two new operators, ((a)) and [[a]]; a state

14

q = ((a))¢ if there exists a ¢' such that ¢ == ¢ and ¢’ =, ¢, and similarly for [[a]].)
Consequently it would appear to be a viable candidate for relating CCS system descriptions.
Unfortunately, however, it is not a congruence for CCS. To see why, consider the context
C[] given by [] + b.nil. Tt is easy to establish that p &~ ¢, where p is given by 7.a.nil and ¢
by a.nil. However, C|[p] % Cl[q]. To see this, note that C[p] — a.nil. This transition must
be matched by a weak e-labeled transition from C[g]. The only such transition C[q] has is
Clq] == Clg]. However, a.nil % C|q], since the latter can engage in a b-labeled transition
that cannot be matched by the former.

This defect of & arises from the interplay between + and the initial internal computation
that a system might engage in; in particular, the only CCS operator that “breaks” the
congruence-hood of = is +. Some researchers reasonably suggest that this is an argument
against including + in the language. Milner [34, 36| adopts another point of view that we
pursue in the remainder of this section, and that is to focus on finding the largest CCS
congruence ~“ that implies 2. Such a largest congruence is guaranteed to exist [26].

Definition 3.7 Let (Q, A, —) be an LTS with 7 € A, and let p,q € Q. Then p = q if the
following hold for alla € A and p', ¢ € Q.

1. If p =% p' then ¢ == ¢’ for some q' such that p' =~ ¢'.
2. If ¢ - ¢ then p == p' for some p' such that p' ~ ¢'.

Some remarks about this relation are in order. Firstly, it should be noted that for p ¢ ¢
to hold, any 7-transition of p must be matched by a ==-transition of ¢; in particular,
this weak transition must consist of a non-empty sequence of 7-transitions. Secondly, the
definition is not recursive: the targets of initial matching transitions need only be related by
~. Finally, it indeed turns out that ~¢ is a congruence for CCS and that it is the largest
CCS congruence entailing ~. That is, p = ¢ implies p = ¢, and for any other congruence R
such that p R g implies p ~ ¢, p R q also implies p ~¢ ¢. As examples, we have the following.

1. a.7.b.nil =€ a.b.nil

2. T.a.nil #° a.nil, since the — transition of the former cannot be matched by a ==
transition of the latter.

3. For any p, q, if p ~ ¢ then 7.p =¢ 7.q.

4. Svc = P, where Svc and P are as defined above.

4 Equational Reasoning in CCS

In addition to definitions of behavioral congruences, process algebras traditionally provide
equational axiomatizations that permit equivalences to be established by means of simple

syntactic manipulations. This section presents such axiomatizations for CCS for both ~ and
~C

15

Table 1: Axiomatizing ~ for Basic CCS: Rule Set Ej.

(A1) r+y = y+ux

(A2) z+(y+2) = (z+y) +=z
(A3) r+nil =

(A4) r+zr = =

4.1 Axiomatizing ~

We present the axiomatization of ~ for CCS in stages by considering successively larger
fragments of CCS. The first, and most basic, subset of CCS we investigate we term “Basic
CCS™.

4.1.1 Axiomatizing Basic CCS

Basic CCS contains only the nil, prefixing and + operators of CCS, and hence it only allows
the definition of “sequential” (i.e. no parallelism) terminating systems. The axiomatization
of ~ for Basic CCS consists of the four rules given in Table 1.

Some words of explanation about these axioms are in order. Firstly, and for convenience,
each rule we present has a name; in this case, the rules are named (A1)-(A4). Secondly,
each rule contains variables that are intended to be arbitrary terms in the language under
consideration. In (A2), for example, z, y and z are variables, and the rule should be read as
asserting that regardless of the Basic CCS terms substituted for these variables, the indicated
equivalence holds. Finally, axioms are used to construct equational proofs as illustrated by
the following example.

a.(b.nil + nil) + (a.nil + a.b.nil) = a.b.nil+ (a.nil+ a.b.nil) by (A3)
= a.b.nil+ (a.b.nil+ a.nil) by (A1)
= (a.b.nil + a.b.nil) + a.nil by (A2)
= a.b.nil + a.nil by (A4)

This proof establishes that a.(b.nil + nil) + (a.nil + a.b.nil) = a.b.nil + a.nil in four steps,
where each step represents the “application” of a rule to a subterm, yielding a new term.
The development of such equational proofs typically relies on four rules of inference reflecting
the fact that = is reflexive, symmetric, and transitive and that equal terms may be used
interchangeably; these rules implicitly support the construction of proofs such as the one
above. We will not say more about this matter.

When a proof that terms t; and ¢y exists using axioms in set E, we write F F t; = t,.
Thus,

Ey F a.(b.nil + nil) + (a.nil + a.b.nil) = a.b.nil + a.nil,

where FE; contains the four rules in Table 1.

Returning to the rules in Table 1, Rules (A1) and (A2) assert that + is commutative and
associative, respectively. Rule (A3) indicates that nil is an identity element for +; these first
three rules are sometimes referred to as the monoid laws, a monoid being any mathematical

16

Table 2: Axiomatizing ~ for Basic Parallel CCS: Rule Set E.

(A1) (A4) from Table 1

(Exp) (Xies ai-mi) | (ZjeJ bjy;) =
Yier @i (i | Tjesbjyi) + Yjes bj-(Zieraimi)|y;) + Z{(i,j)\ai:b_j} T.(zi]y;)

structure obeying these axioms. The final rule is often called the absorption law, as it allows
multiple copies of the same summand to be “absorbed” into one.

Metatheory. Given a proposed axiomatization for an equivalence relation, one may ask
two questions.

1. Is the axiomatization sound? That is, are all proved equalities true?
2. Is the axiomatization complete? That is, are all true equalities provable?

Soundness is an absolute necessity; an unsound proof system is worse than useless, since it
allows the derivation of untrue information. Completeness is highly desirable, since once a
proof system is shown complete, one knows that there can be no “missing” axioms.

The following results establish the soundness and completeness of the axioms in Table 1
for ~ over Basic CCS.

Theorem 4.1 (Soundness)
Let ty and ty be terms in Basic CCS, and suppose that Ey &=ty =ty. Then ty ~ t,.

Theorem 4.2 (Completeness)
Let t; and ty be terms in Basic CCS such that t; ~ t9. Then B Ft1 = to.

4.1.2 Axiomatizing Basic Parallel CCS

The next fragment of CCS we present an axiomatization for extends Basic CCS with the
inclusion of the parallel composition operator, |. We call this fragment Basic Parallel CCS.

As it turns out Rules (Al)—(A4) remain sound for Basic Parallel CCS, but they are
obviously not complete, since none of the rules mentions |. In order to devise a complete
axiomatization for this subset of CCS we therefore must add axioms for |. The new axiom-
atization is presented in Table 2.

The single new axiom, (Exp), is often referred to as the expansion law, as it shows
how terms involving | at the top level may be “expanded” into ones involving prefixing
and summation. This axiom is the most complicated rule for CCS, and it deserves further
commentary. Firstly, the 3 notation needs explanation. Rules (A1) and (A2) indicate that
+ is commutative and associative. This means that expressions of the form t; + --- + t,,,
while not strictly speaking expressions since they are not fully parenthesized, nevertheless

17

have a precise meaning, since all parenthesizations of such expressions are equivalent. More
generally, given a finite index set I and an [I-indexed set of terms of the form ¢;, we may
define }_,c; t; as nil if I is empty and as the summation of all the #;’s otherwise.

The second feature of (Exp) is that it may only be applied to a term ¢;|t, if both ¢; and ¢,
have a special form: namely, each must be a summation of terms whose outermost operator
involves prefixing. Technically speaking, (Exp) is not a single axiom but an axiom schema,
with each different value of I and J yielding a different axiom.

Finally, the right-hand side of (Exp) consists of three summands, each corresponding to a
different SOS rule for |. The first summand allows the left subterm to “move” autonomously,
and the second permits the same behavior from the right subterm. The third summand
handles possible synchronizations.

To see how (Exp) is used in equation proofs, consider the following example showing that
Ey F nil] b.nil = b.nil; recall that nil is the same as ;¢ t;.

nil|b.nil = nil+ b.(nil| nil) + nil by (Exp)
= b.(nil| nil) by (A3) twice
— b.(nil+nil+nil) by (Exp)
= b.nil by (A3) twice

Indeed, for any term ¢ in Basic Parallel CCS it follows that Ey & nil|t = ¢. It may also
be shown that for any terms t1,ty and t3 Fy F t1|ty = 19|ty and Ey b t1|(ta|ts) = (t1]ta)]|ts;
consequently, | is commutative and associative. Finally, as the strict application of (Exp)
results in many occurrences of nil as a summand, these nil’s are suppressed in practice, since
they may be removed by applying (A3) appropriately.

It may be shown that Fs is a sound and complete axiomatization of ~ for Basic Parallel

CCS.

4.1.3 Axiomatizing ~ for Finite CCS

The next fragment of CCS we axiomatize includes all operators except for process variables;
the literature refers to this fragment as Finite CCS. Finite CCS extends Basic Parallel CCS
with the restriction and relabeling operators; the axioms for this subset of CCS appear in
Table 3.

The axioms for \ L and [f] only explain how these operators interact with nil, prefixing
and +. That no rules are needed defining the interaction between | and \ L, or \L and [f], is
a consequence of the fact that the innermost occurrences of these so-called static operators
(with nil, prefixing and + being the dynamic ones) can be eliminated by repeated use of
the laws for the operator in conjunction with (A1) (A4). This argument may be formalized
and used to show that rule set E3 constitutes a sound and complete axiomatization of ~ for

Finite CCS.

4.1.4 Rules for Recursive Processes

In order to axiomatize full CCS, we need rules for reasoning about terms that include process
variables. Unfortunately, results from computability theory imply that no complete axiom-

18

Table 3: Axiomatizing ~ for Finite CCS: Rule Set FEj.

(A1) (A4) from Table 1; (Exp) from Table 2

(Resl) ni\L = mil

nil ifa,ae L
(Res2) (a.x)\L = { a.(x\L) otherwise
(Res3) (z +y)\L = 2\L+y\L

(Rell) nillf] = mnil
(Rel2) (a.x)[f] = fla).(z[f])
(Rel3) (z+y)lf] = =[f]+ylf]

atization can exist for ~ for full CCS.! However, two useful heuristics have been developed
for handling process variables, and we review these here.

Both techniques take the form of inference rules and are therefore similar in form to the
SOS rules used to define the operational semantics of CCS. The first rule, called the unrolling
rule, states that a process invocation is equivalent to the body of the invocation.

C=p
C=p

The second inference rule is often called the unique fixpoint induction principle, and
stating it relies on introducing the notion of equation and solution. Given a variable X and
a CCS term t potentially containing X, such that at most X appears “free” in ¢, we call
the expression X = t an equation. A CCS process p is a solution to X = t if and only if
p ~ t[p/X], where t[p/X] is the CCS term obtained by replacing all occurrences of variable
X by p. An equation has a unique solution up to ~ if for any two solutions p and ¢ to the
equation, p ~ ¢g. We may now formulate the unique fixpoint induction rule as follows.

(Unr)

(UFT) p=1tp/X] q=1t[q/X] (X

= t has a unique solution)
p=49q

This rule allows one to conclude that two terms are equal, provided one can prove that they
are both solutions to the same equation and the equation has a unique solution.

A couple of comments about (UFT) are in order. Firstly, every equation X = t has a
solution: given definition X 2 t, it is easy to see that process X is a solution of X = ¢
Secondly, (UFI) is only useful insofar as one may readily identify when equations have a
unique solution. Omne such class of equations, and a large one at that, can be defined as
follows.

!The set of equalities one can prove using any axiomatization can only be recursively enumerable; however,
~ for full CCS is known not to be recursively enumerable.

2For the present discussion, variables only occur free; i.e. they are not bounded by a fixed-point operator.
See [36] for further details.

19

Table 4: Axiomatizing ~¢ for Finite CCS: Rule Set E,.

(A1) (A4) from Table 1; (Exp) from Table 2; (Resl) (Res3), (Rell) (Rel3) from Table 3

(1) a.T.r = a.x
(12) r+Tr = T
(r3) a(r+T1y) = a(x+71Y) +ay

Definition 4.3 Let X be a variable, and t be a CCS term involving X. Then X is guarded
in t if every occurrence of X in t falls within the scope of a prefiz operator.

For example, X is guarded in a.X and a.X|(b.(X + c.nil)), but it is not guarded in X +0.X.
We now have the following result.

Theorem 4.4 Let X be guarded in t. Then equation X =1t has a unique solution up to ~.

As an application of (Unr) and (UFI), suppose we wish to prove that A and B are

bisimilar, where A 2 4.A and B £ a.a.B. Consider the equation X = a.a.X. We can show
that both A and B are solutions to this equation:

A = aA by (Unr)
= a.a.A by (Unr)

B = a.B by (Unr)

Since X is guarded in a.a.X, X = «a.a.X has a unique solution, and consequently using
(UFI) one may conclude that A = B.

4.2 Axiomatizing ~¢

This section presents an axiomatization for ~“ and CCS. Following the development in the
previous subsection, we first consider the Finite CCS fragment and then full CCS.

4.2.1 Axiomatizing Finite CCS

To begin with, it should be noted that the axioms in rule set E5 of Table 3 are also sound
for ~¢, since whenever p ~ ¢ it immediately follows that p ~¢ ¢. In order to obtain a full
axiomatization for ~©, then, we need only add axioms reflecting the special status of the
action 7 in this congruence.

One tempting axiom to add would be x = 7.x; however, this is not sound for &, since it
would allow one to prove that 7.a.nil = a.nil, which is not valid. The correct rules are listed
in Table 4 and are often called the 7 [aws.

Rule (71) allows for the “absorption” of 7 actions that immediately follows prefixing

operations. Rule (72) is more subtle, and may be understood as follows. First, note that

C

20

any strong transition of 7.z is also a strong transition of x 4+ 7.x. Secondly, any strong
transition of x + 7.z, including any 7-transition, may be matched by an appropriate weak
transition in 7.x. The final rule, (73) is perhaps the most difficult to interpret; note that the
strong transition

a.(r+71y)+ay vy

of the right-hand side may however be matched by the weak transition
a.(z+1y) ==y

of the left-hand side.
Somewhat surprisingly, these rules suffice; the axiomatization Ej is sound and complete
for ~“ and Finite CCS.

4.2.2 Axiomatizing Full CCS

The same observations for ~ also hold for ~% wis @ vis sound and complete axiomatizations:

none can exist. The (Unr) and (UFI) rules nevertheless still hold, although the characteriza-
tion of which equations have unique fixpoints becomes somewhat more complex; guardedness
no longer suffices. To see this, consider the equation X = 7.X. X is guarded in 7.X, and
yet any process capable of an initial 7 action is a solution to this equation up to ~¢. In
particular, 7.a.nil ¢ 7.7.a.nil and 7.b.nil =¢ 7.7.b.nil, and yet 7.a.nil £ 7.b.nil.

One potential solution to this problem is to require a stronger condition than guardedness
in equations.

Definition 4.5 Let X be a variable and t a CCS term involving X. Then X 1is strongly
guarded in t if every occurrence of X falls within the scope of a prefiving operator a where

a#T.

That is, X is strongly guarded in ¢ if a prefix operator involving a visible action “guards”
each occurrence of X in ¢. Note that X is not strongly guarded in 7.X. However, even if X
is strongly guarded in ¢ it does not follow that X =t has a unique solution up to ~“. To
see this, consider the equation

X = (a.X |a.nil)\{a}.

X is strongly guarded in the right-hand side of the equation, and yet it can be shown that
e.g. 7.b.nil and 7.c.nil are both solutions. We may nevertheless fix this problem by requiring
the following.

Definition 4.6 Let X be a variable and t a CCS term involving X. Then X 1is sequential
i t if no occurrence of X in t falls within the scope of a parallel composition operator.

As examples, X is sequential in a.X and 7.X + (b.nil | ¢.nil) but not sequential in a.X | b.nil.
The following can now be proved.

Theorem 4.7 Let X =1t be an equation with X strongly guarded and sequential in t. Then

X =t has a unique solution up to ~C.

21

We conclude this section with an extended example illustrating the use of the axioms. Recall
the simple communications protocol P given in Section 2.1 and the specification Svc in
Section 3.3. We may establish that E4 U {(Unr), (UFI)} F P = Svc as follows. First note
that X is strongly guarded and sequential in send.recv.X and consequently has a unique
solution up to ~¢. Therefore, we need only show that both P and Svc are solutions to this
equation; then, by (UFI), P = Svc. Now,

Svc = send.recv.Svc by (Unr)
so Svc is a solution. As for P, we can prove that
P = (S[put/msg, get_ack/ack] | M | R[get/msg, put_ack/ack])\{get, put, get_ack, put_ack}

using (Unr), so it suffices to prove that the right-hand side is a solution to the given equation.
The proof of this may be found in Figure 3.

5 Refinement Orderings for CCS

This chapter has so far concentrated on the role of behavioral equivalences in process algebra
in general, and CCS in particular. We now shift our attention to refinement orderings, and
to a particular class of refinement orderings that are often referred to as the failures/testing
orderings. This section presents a definition of these orderings and gives axiomatizations for
them for CCS.

5.1 The Failures/Testing Orderings

The motivation for the failures/testing orderings arises from two sources. On the one hand,
equivalences sometimes impose overly severe restrictions on a designer defining a lower-
level design that is intended to implement a higher-level one. In particular, equivalences
require that the behaviors of the designs be identical; this precludes a higher-level design
offering several possibilities for behavior or including “don’t-care points”. This suggests
that an ordering in which a “more deterministic” system is larger, or “better”, than a less
deterministic one would be desirable. On the other hand, while ~ and ~¢ abstract from
internal computation and are sensitive to deadlock, it can be argued that they are overly
sensitive to unobservable differences in the branching structure of systems. As an example,
consider the two CCS definitions P £ a.b.c.nil+ a.b.d.nil and Q 2 a.(b.c.nil+ b.d.nil). These
two systems are not related by ~; the formula [[a]|{(b))((c))tt is satisfied by the latter and
not the former. However, a user ought not to be able to distinguish them, since to a user it
does not matter when the nondeterministic choice that ultimately eliminates the possibility
of c or d is made.

The failures [12, 27] and testing [19, 25] orderings differ substantially in their approaches
to addressing these issues, and yet the resulting orderings turn out to coincide. In this section
we follow the failures presentation given in [32] because it requires the introduction of less
notation given the machinery we have already developed. We need the following definitions.

22

(S[put/ack, get_ack/ack] | M | R[get/msg, put_ack/ack])\{get, put, get_ack, put_ack}

= send.
((msg.ack.S)[put/ack, get_ack/ack] | M | R[get/msg, put_ack/ack])\{get, put, get_ack, put_ack})
by (Exp), (Rell)-(Rel3), (Resl)-(Res3)

= send.T.
((ack.S)[put/ack, get_ack/ack] | (get.M) | R[get/msg, put_ack/ack])\{get, put, get_ack, put_ack})
by (Exp), (Rell) (Rel3), (Resl) (Res3)

= send.
((ack.S)[put/ack, get_ack/ack] | (get.M) | R[get/msg, put_ack/ack])\{get, put, get_ack, put_ack})
by (71)

= send.T.
((ack.S)[put/ack, get_ack/ack] | M | (recv.ack.R)[get/msg, put_ack/ack])\{get, put, get_ack, put_ack})
by (Exp), (Rell) (Rel3), (Resl) (Res3)

= send.
((ack.S)[put/ack, get_ack/ack] | M | (recv.ack.R)[get/msg, put_ack/ack])\{get, put, get_ack, put_ack})

by (1)

= send.recv.
((ack.S)[put/ack, get_ack/ack] | M | (ack.R)|[get/msg, put_ack/ack])\{get, put, get_ack, put_ack})
by (Exp), (Rell)-(Rel3), (Resl)-(Res3)

= send.recv.T.
((ack.S)[put/ack, get_ack/ack] | get-ack.M | R[get/msg, put_ack/ack])\{get, put, get_ack, put_ack})
by (Exp), (Rell) (Rel3), (Resl) (Res3)

= send.recv.
((ack.S)[put/ack, get_ack/ack] | get_ack.M | R[get/msg, put_ack/ack])\{get, put, get_ack, put_ack})

by (1)
= send.recv.T
(S|put/ack, get_ack/ack] | M | R[get/msg, put_ack/ack])\{get, put, get_ack, put_ack})
by (Exp), (Rell) (Rel3), (Resl) (Res3)
= send.recv.
(S[put/ack, get_ack/ack] | M | R[get/msg, put_ack/ack])\{get, put, get_ack, put_ack})

by (71)

Figure 3: Proving that P = Svc.

23

Definition 5.1 Let (@, A, —) be an LTS with T € A, let g € Q, and let s € (A — {1})* be
a sequence of visible actions.

1. ¢ == holds if there exists ¢' such that ¢ == ¢'. In this case we say s is a trace of q.
L(q) denotes the set of all traces of q.

2. q refuses B C A — {7} if |B| < oc and for all b € B, there exists no q' such that
=7

3. q 1s divergent, written q 1}, iof and only if there exists an infinite sequence qq, q1, - . . such
that ¢ = qo and q¢; —— qi1 for all i > 0. q s if and only if there exists a (possibly

empty) prefiz s' of s and state ¢' such that q N q and ¢' . When this is the case we
say q diverges on s. We write q |} s if ¢ {} s is not true and say that q converges on s
in this case.

4. A state q is totally convergent if g || s holds for all sequences s.

5. Let s be a sequence of visible actions and B C A be finite. Then (s, B) is a failure for
q if either q) s or there is a q' such that ¢ == q¢' and q¢' refuses B. We use F(q) to
represent the set of all failures of q.

The failures/testing ordering rely on the notions of trace, refusal, divergence and failure.
Intuitively, a trace of a state consists of a sequence of visible actions the state can perform,
with arbitrary amounts of internal computation allowed in between. A refusal consists
of a finite set of visible actions that a state is incapable of engaging in, no matter how
much internal computation is performed. A state is divergent if it can engage in an infinite
sequence of internal transitions, thereby ignoring its environment; ¢ {} s holds if, in the course
of “executing” s, ¢ could enter a divergent state. Finally, a failure consists of a sequence of
actions and a set of “offered actions” that a state can fail to complete, either by diverging
in the course of performing the sequence or completing the sequence and arriving at a state
that is incapable of responding to the offered actions. As examples, consider the following.

e The pair (a,{b}) is a failure of a.b.nil + a.c.nil and of a.(7.b.nil + 7.c.nil) but not of
a.(b.nil+c.nil). Both of the former processes have == transitions to c.nil, which refuses
{b}; the last process has no such transition.

e Consider D 2 7.D; D 1} s for any sequence s of visible actions, and consequently (s, B)
is a failure for any D for any sequence s and finite set of actions B.

The sets L(q) and F(q) satisfy a number of properties. For example, the empty sequence
e is in L(q) for any ¢. In addition, if ¢ || s then s € L(q) if and only if there is a B such that
(s, B) € F(q). It should also be noted that if (s, B) € F(q) and B’ C B then (s, B') € F(q).
Readers are referred to [32] for other such properties.

We now introduce the following orderings and equivalences.

Definition 5.2 Let (Q, A, —) be an LTS, with p,q € Q.

24

1. pCrqif L(p) CL(q); p~rqifp Ty q and q Cf, p.
2.pCrqif F(p) D F(q); p=pqifpCrqand g Cp p.

The orderings C; and Cp capture different aspects of system behavior. The former relates
systems on the basis of their execution sequences; a “lesser” system has fewer execution
possibilities. The latter identifies failure as undesirable; consequently, a “lesser process” has
more possibilities for failure than a “greater one.” In this case failure can either be the result
of nondeterminism or of divergence; the more nondeterministic or divergent a system is, the
more failures it has.

Both orderings are preorders on @); that is, they are reflexive and transitive relations. The
relation Cj, is also referred to as the may preorder in [19, 25|, while Cr is called the must
preorder. This terminology derives from connections with process testing: p Cj, ¢ holds if
and only if every test that p may pass may also be passed by ¢, in a precisely defined sense,
while p Cx ¢ holds if and only if every test that p must pass must also be passed by ¢. In
addition, if ¢ is totally convergent, then p Cp ¢ implies that ¢ C;, p. This follows because
for any failure (s, B) of ¢, s € L(q).

Finally, it should be noted that in CCS, the system Div given by Div 2 7.Div is a least
element for both C; and Cg. That is, Div Cf, p and Div Cg p for any p.

For many process algebras C; and Cp are precongruences: “larger” systems may be
substituted for “smaller” ones inside any context, with the resulting over-all system being
larger after the substitution. For CCS, C; is a precongruence, but Cy is not, owing to the
impact that initial internal computation can have on the + operator. As was the case with
~, one may identify the largest precongruence C¢ contained within Cp for CCS; it turns
out that for CCS systems p and ¢, p C% ¢ if and only if the following hold: p Cp ¢, and
p /~ implies ¢ /=>.

The relations Cp and C% have attracted much more attention in the literature than C,
because of certain full-abstractness results that have been established for the former. In
particular, for a number of languages it turns out that Cp and Eg are the coarsest (i.e.
most permissive) preorders that preserve deadlock information, in a precisely defined sense.
Accordingly, the remainder of this section is devoted to a study of C&.

5.2 Axiomatizing C% for CCS

As was the case for ~ and ~¢, C% has been axiomatized for (fragments of) CCS. We present
the axiomatization for Finite CCS below and talk briefly about mechanisms for handling
recursive processes.

5.2.1 Finite CCS

The axiomatization for Finite CCS appears in Table 5. Unlike the other axiomatizations we
have seen, it is an inequational axiomatization: it is used to prove statements of the form
p < g rather than p = ¢q. The axioms therefore include inequalities; equalities such as Rule
(F1) should be interpreted as short-hand for two inequalities, one in each direction.

25

Table 5: Axiomatizing C¢ for Finite CCS: Rule Set Es

(A1)—(A4) from Table 1; (Exp) from Table 2

(F1) ar+ay = a.(r.x+T1Y)
(F2) r+1y < T.(r+Y)

(F3) ax+r71.(ay+z2) = 1.(azx+ay+2)
(F4) T <

(F5) rr+1y < x

To see how these rules may be used to derive results, we give a sample proof of E5 F
a.b.nil + a.c.nil < a.b.nil.

a.(r.b.nil + T.c.nil) by (F1)

a.b.nil+a.c.nil =
< a.b.nil by (F5)

The rules in Table 5 are sound and complete for £ for Finite CCS.

5.2.2 Reasoning about Recursive Processes

To handle recursive processes, one may use Rules (Unr) and (UFI) as given in Section 4.1.4.
A sufficient condition for the existence of unique solutions to equations includes a requirement
of divergence-freedom in addition to the strong-guardedness and sequentiality requirements
needed for ~¢.

Interpreting systems as sets of failures also permits the use of reasoning techniques from
fixed-point theory in denotational semantics [25]. This is because the collection of sets of

failures can be turned into a domain. We do not pursue this topic further, however.

6 Computing Behavioral Relations for Finite-State
Systems

The previous sections have developed several semantic equivalences and refinement orderings
in the context of CCS, and (in)equational axiomatizations have been presented for deter-
mining when two systems are related. However, the equational reasoning supported by these
axiomatizations is tedious to undertake by hand. When the systems in question are finite-
state, meaning that the rooted labeled transitions systems for them contain only finitely
many distinct states, these relations can be computed algorithmically. This section discusses
some of the ideas underlying these decision procedures.

6.1 Computing Behavioral Equivalences

Most behavioral equivalences can be computed by combining appropriate LTS transforma-
tions with an algorithm for calculating bisimulation equivalence [17]. Accordingly, we first

26

discuss techniques for deciding ~ and then show how these methods may be used in the
computation of other equivalences as well.

6.1.1 Calculating ~

Algorithms for ~ come in two basic varieties. Global algorithms require the a priori construc-
tion of the state spaces of the systems in question before any analysis can be undertaken.
On-the-fly approaches, on the other hand, combine analysis with state-space construction.
The latter algorithms offer obvious potential benefits: when systems are inequivalent, this
may be determined by examining only a subset of their states. These approaches are rel-
atively new, however, and have not proven themselves in practice. Global approaches also
enjoy better asymptotic efficiency than existing on-the-fly methods. Consequently, we only
discuss the former.

Global approaches to calculating ~ over a finite-state LTS [20, 29, 38| compute the equiv-
alence classes of ~ using approximation-refinement techniques. Typically, these algorithms
begin with a very coarse approximation to ~: they assume that every state is related to
every other state, meaning that there is one equivalence class. Existing classes that are
found to contain inequivalent states are then split. The determination of inequivalence relies
on examining the transitions emanating from states in a given equivalence class and the
equivalence classes containing the targets of these transitions. When no more splitting is
possible, the final equivalence classes indeed represent the equivalence classes of ~ over the
given LTS. These algorithms are sometimes called partition-refinement algorithms, as the
collections of equivalence classes are maintained as partitions (i.e. lists of disjoint sets of
states). The best algorithm has complexity O(mlogn), where m represents the number of
transitions in the LTS and n the number of states [20, 38|.

In order to use a partition-refinement algorithm to determine whether two CCS expres-
sions are bisimilar, one would first construct the labeled transition system whose states
consist of all CCS expressions reachable from the two in question. A partition-refinement
algorithm may then be applied to this LTS, and if the two expressions in question ever
wind up in different equivalence classes, they are inequivalent. Otherwise, if the refinement
procedure terminates with them in the same class, then they are equivalent.

Partition-refinement algorithms may also be used to minimize LTS’s with respect to ~.
This is done by replacing states by equivalence classes; the resulting LTS contains exactly
one state per equivalence class.

6.1.2 Computing Other Equivalences

As the introduction to this section indicates, a variety of other behavioral equivalences may
be computed by first applying a transformation to the underlying LTS and then using an
algorithm for ~. Here we present two examples of this approach.

Calculating ~. To calculate the ~-equivalence classes of an LTS, one may alter the LTS by

replacing the —“-transitions by ==-transitions and then computing ~ over the transformed
LTS. A similar approach works for ~¢, although one must first transform the LTS to ensure

27

that the start state contains no incoming transitions and then replace —“s-transitions from
the start state by ==-transitions (and not ==-transitions).

Computing ~g. To determine whether two states in a given finite-state LTS are strong
trace equivalent, one may apply the well-known subset construction to determinize the
LTS [28] and then compute the equivalence classes of ~. The two states in question will have
the same strong traces if and only if the subsets containing only these states are bisimilar in
the transformed LTS.

6.2 Computing Refinement Orderings

The calculation of refinement orderings follows a similar pattern to that of equivalences: a
given ordering can be computed by combining an LTS transformation with a procedure for
a certain generic ordering [15, 17]. The generic ordering is somewhat less standard than its
equivalence-relation counterpart, ~, but in many cases the simulation ordering may be used.
In the remainder of this section we define this ordering and indicate very briefly how it is
used as a basis for computing other relations.

The simulation ordering. Given an LTS (Q, A, —), a simulationis a relation R C QX Q)
with the property that when (p,q) € R, then the following holds for all a € A.

p —= p' implies ¢ — ¢’ for some ¢’ with (p',¢') € R.

So if p is related to ¢ in a simulation, then ¢ can “simulate” the behavior of p by “matching”
its transitions. The simulation ordering then may be defined by: p C ¢ if and only if there
exists a simulation R with (p, q) € R.

Algorithms for computing C on finite-state LTS’s follow a similar strategy to that for ~
in that they use approximation refinement. Initially, every state is assumed to be related to
every other state; then, as pairs of states are found not to be related because the first has a
transition that can’t be “simulated” by the second, they are removed. When no more pairs
can be removed, the remaining pairs constitute C for this LTS.

Since C is not an equivalence, partitions cannot be used as data structures, and the
resulting algorithms exhibit somewhat worse worst-case performance: the best algorithms
use O(mn) time, where m is the number of transitions and n the number of states [15].

Computing other orderings. As an example of how an algorithm for C may be used
in the calculation of other relations consider the trace-containment relation: p C; ¢ if and
only if L(p) C L(g). This relation may be computed by first replacing - transitions by

=% ones, determinizing the resulting LTS using the subset construction, and then applying
a C algorithm to the result. Other relations, including the failures/testing ordering, may be
computed similarly [17].

28

6.3 Tool Support

Several tools have been implemented that include implementations of algorithms for dif-
ferent behavioral relations. Noteworthy examples include Aldébaran [11], the Concurrency
Workbench [18] and FDR [40].

7 Other Process Algebras

The presentation in this chapter has focused on a particular process algebra, CCS, and on
semantic relations for CCS. In this section we discuss other process algebras and process-
algebra-oriented results. Since 1980 over 1000 journal and conference papers have been
published in the area; as a result, the discussion here will necessarily be incomplete. Inter-
ested readers are referred to the forthcoming Handbook of Process Algebra, to be published
by Elsevier, for a more complete account of the state of the art.

Schools of process algebras. The discussion in this chapter has followed the approach
advocated by the Edinburgh school of process algebra, so named because CCS was invented
at the University of Edinburgh. The Edinburgh school places primacy on operational seman-
tics, with equivalences and refinement relations then defined on labeled transition systems
resulting from these operational definitions. The chief virtue of this approach lies in its insis-
tence on understanding language constructs operationally; this emphasis accords well with
intuitions about system behavior. The drawback of this approach arises from the fact that
since operational equivalences and refinement orderings are defined on language-independent
structures (i.e. labeled transition systems), determining which relations are congruences be-
comes nontrivial.

Two other schools of process algebra have also arisen. The Amsterdam school focuses on
equational axioms as the basis for defining the semantics of languages [6]. In this approach
one defines the syntax of an algebra and then provides a set of axioms that one uses to deduce
equivalences. Traditional techniques from universal algebra may then be used to construct
models of these equational theories. These constructions ensure that the model-theoretic
notions of equivalence are congruences for the language in question; the drawback is that
equations may, to a certain degree, obscure the operational intuitions underlying operators
in the algebra.

The Ozford school focuses on denotational semantics as the basis for defining process
algebras [27]. The Oxford approach relies on defining a mathematical space of system mean-
ings and then interpreting algebraic operators as functions in this space. The space most
studied by Oxford adherents consists of failure sets as presented in Section 5; process con-
structors then become functions mapping sets of failures to sets of failures. As with the
Amsterdam approach, the virtue of this methodology is that the semantic equivalence inher-
ited from the semantic space is guaranteed to be a congruence for the language; additionally,
traditional techniques from denotation semantics may be used to define the semantics of re-
cursive processes in a mathematically elegant fashion. The drawback arises from the paucity
of operational insight the semantics provides for the operators.

29

Operators in traditional algebras. The different schools just mentioned have also tra-
ditionally focused on including somewhat different operators in their algebras. CCS includes
a parallel composition operator that supports binary synchronous communication. The Al-
gebra of Communicating Processes (ACP) algebra developed by the Amsterdam school on
the other hand allows the specific communication mechanism to be parameterized; by in-
cluding different axioms one obtains different synchronization behavior. ACP also includes a
traditional sequential composition operator that generalizes the prefixing construct of CCS.
Theoretical CSP (TCSP), the process algebra studied by the Oxford school, features multi-
way rendezvous as its model of interaction; a hiding operator allows actions to be converted
into internal actions. Another novel feature of this language is its separation of choice (i.e.
+) into two constructs, external and internal. The former can only be resolved by visi-
ble actions, while the latter is always resolved autonomously, without interaction from the
environment.

These algebras have also inspired the development of LOTOS, a process algebra with
explicit data passing that is an ISO standard protocol specification notation [9]. LOTOS
combines CSP-like operators with a facility for user-defined data types; like CCS, actions
may be categorized as inputs or outputs, with the former extended with a capability for
binding incoming values to variables and the latter including specific values to be output.

Algebras for synchrony. Traditional process algebras, including those mentioned above,
typically include a synchronous model of communication but an asynchronous model of ex-
ecution. That is, processes interact by synchronizing, but not every process in a system
need execute in order for a system transition to take place. This makes traditional algebras
useful for modeling loosely coupled systems, but it renders them problematic as vehicles for
describing synchronous, globally-clocked systems like traditional digital circuits. To over-
come this difficulty, several researchers have proposed algebras whose parallel composition
operator requires all subsystems to engage in transitions in order for the system to perform
an execution step. The best-known of these is Synchronous CCS [35], whose action set forms
a commutative group whose product operator is interpreted as “simultaneous execution.”
Other synchronous process algebras of note include Meije [2] and CIRCAL [33]; the latter
was specifically developed for reasoning about circuits. All three algebras use equivalences
based on strong bisimulation; weak equivalences such as observational equivalence will nec-
essarily not be congruences for such languages, since the internal computation a subsystem
may engage in will directly affect the transitions available to the surrounding system.

Meta-algebraic results. The algebras just described feature a variety of different op-
erators; in each case, the Edinburgh approach (which has become dominant) requires the
proof of congruence results for bisimulation. Some researchers have addressed this problem
by proving that, provided the SOS rules defining a language’s operators satisfy a certain
format, bisimulation is guaranteed to be a congruence [7, 8, 23]. Other results show how

equational axiomatizations for languages satisfying these requirements may be automatically
derived [1].

30

Other semantic relations. Researchers have also investigated relations other than the
ones presented here. Branching bisimulation [41] aims to remedy a perceived defect of
observational congruence that allows transitions in one process to be matched by weak
transitions in the other that permit inequivalent states to be “transitioned through”. This
equivalence is somewhat finer (i.e. relates fewer systems) than observational equivalence, and
a sound and complete axiomatization for finite ACP terms, and algorithms for finite-state
systems, have been developed. Ready simulation [7] represents a refinement ordering that
is fully abstract for deadlock when the language considered includes all operators definable
using SOS rules of a certain format. A number of other relations have also been proposed;
the interested reader is referred to [42] for a thorough survey and taxonomy.

Capturing other features of system behavior. Traditional process algebras have fo-
cused on nondeterminism and synchronization as the essential behavioral features distin-
guishing concurrent systems from sequential ones. Inspired by the elegance of the resulting
theories, researchers have attempted to develop operational theories that allow other aspects
of system behavior to be captured (in)equationally. One strand of inquiry has focused on so-
called true concurrency. One criticism of traditional process algebras is that they “reduce”
concurrency to nondeterminism by interpreting parallelism as interleaving. Truly concurrent
models instead attempt to capture “true” notions of simultaneity. A number of different the-
ories have been developed, and a full account is beyond the scope of this chapter. A good
starting point, however, may be found in [10], which introduces the notion of location of a
transition explicitly into the operational semantics of CCS and develops a bisimulation-based
theory of equivalence based on this.

Other work has focused on including notions of priority into the operational semantics of
process algebras. The first such work [4] extends ACP action with priority and and operator
for “enforcing” priorities. In [16] CCS actions are enriched with a two-level priority struc-
ture, with high-priority actions intuitively being thought of as “interrupts”. Camilleri and
Winskel [14] opt instead for a prioritized choice operator that gives precedence to one choice
over another when both are enabled. Also worthy of note is the resource-oriented process
algebra ACSR [21], which allows the modeling of resource contention in which different re-
source requests may be given different priorities. In all of these cases, semantic equivalences
based on strong bisimulation are defined and axiomatizations developed.

Process algebras for real-time systems have also been developed. Generally speaking,
these theories introduce special “time-passing” actions, with all other actions being viewed
as instantaneous. The Algebra of Timed Processes [37] pioneered this approach, with useful
variants being proposed in [30].

Another area of ongoing research involves the incorporation of probabilistic behavior into
systems, with a view toward providing a theory in which quality-of-service statements can
be made. One strand of this research augments traditional process algebra with notions of
probabilistic choice in which nondeterminism is resolved probabilistically [5, 31, 43]. Other
pieces of work incorporate notions of time and probability in order to model stochastic
systems, in which the time needed to perform a given action is drawn from a continuous
probability distribution. Noteworthy examples include [22, 24].

31

8

Conclusion

This chapter has surveyed results in the area of process algebra. It has presented several
behavioral equivalences and refinement orderings, and it has shown how they may be axiom-
atized in the setting of CCS [36]. Decision procedures for finite-state systems have also been
touched on. The treatment has necessarily been sketchy, and much interesting material has
been omitted, including a variety of case studies illustrating different applications of process
algebra. Interested readers may turn to [3, 13, 40] as a starting point for investigating this
topic.

References

1]

2]

L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS rules into equations. Information
and Computation, 111(1):1 52, May 1994.

D. Austry and G. Boudol. Algebre de processus et synchronisation. Theoretical Com-
puter Science, 30:91-131, 1984.

J.C.M. Baeten, editor. Applications of Process Algebra, volume 17 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, England,
1990.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for an
interrupt mechanism in process algebra. Fundamenta Informatica, 9:127-168, 1986.

J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing probabilistic processes:
ACP with generative probabilities. Information and Computation, 121(2):234 255,
September 1995.

J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, England, 1990.

. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of the Associ-
ation for Computing Machinery, 42(1):232 268, January 1995.

R.N. Bol and J.F. Groote. The meaning of negative premises in transition system
specifications. Journal of the Association for Computing Machinery, 43(5):863-914,
September 1996.

T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS.
Computer Networks and ISDN Systems, 14:25-59, 1987.

G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. Theoretical
Computer Science, 114(1):31 61, June 1993.

A. Bozga, J.-C. Fernandez, A. Kerbrat, and L.. Mounier. Protocol verification with the
Aldébaran toolset. Software Tools for Technology Transfer, 1(1+2):166-183, December
1997.

32

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]
28]

S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential
processes. Journal of the Association for Computing Machinery, 31(3):560-599, July
1984.

G. Bruns. Distributed Systems Analysis with CCS. Prentice-Hall, London, 1997.

J. Camilleri and G. Winskel. CCS with priority choice. Information and Computation,
116(1):26-37, January 1995.

U. Celikkan and R. Cleaveland. Generating diagnostic information for behavioral pre-
orders. Distributed Computing, 9:61 75, 1995.

R. Cleaveland and M.C.B. Hennessy. Priorities in process algebra. Information and
Computation, 87(1/2):58 77, July/August 1990.

R. Cleaveland and M.C.B. Hennessy. Testing equivalence as a bisimulation equivalence.
Formal Aspects of Computing, 5:1 20, 1993.

R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A semantics-
based tool for the verification of finite-state systems. ACM Transactions on Program-
ming Languages and Systems, 15(1):36 72, January 1993.

R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83 133, 1983.

J.-C. Fernandez. An implementation of an efficient algorithm for bisimulation equiva-
lence. Science of Computer Programming, 13:219 236, 1989/1990.

R. Gerber and I. Lee. A resource-based prioritized bisimulation for real-time systems.
Information and Computation, 113(1):102-142, August 1994.

R. Gorrieri, M. Roccetti, and E. Stancampiano. A theory of processes with durational
actions. Theoretical Computer Science, 140(1):73-94, March 1995.

J.F. Groote and F. Vaandrage. Structured operational semantics and bisimulation as a
congruence. Information and Computation, 100(2):202-260, October 1992.

P. Harrison and J. Hillston. Process algebras and their application to performance
modelling. The Computer Journal, 38(7):489-491, 1995.

M.C.B. Hennessy. Algebraic Theory of Processes. MIT Press, Boston, 1988.

M.C.B. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the Association for Computing Machinery, 32(1):137 161, January 1985.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.
J. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, Massachusetts, 1979.

33

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

P. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three prob-
lems of equivalence. Information and Computation, 86(1):43-68, May 1990.

K. Larsen and W. Yi. Time-abstracted bisimulation: Implicit specifications and decid-
ability. Information and Computation, 134(2):75-101, May 1997.

K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1-28, September 1991.

M. Main. Trace, failure and testing equivalences for communicating processes. Inter-
national Journal of Parallel Programming, 16(5):383 400, 1987.

G. Milne. CIRCAL and the representation of communication, concurrency and time.
ACM Transactions on Programming Languages and Systems, 7(2):270 298, April 1985.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1980.

R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267—
310, 1983.

R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.

X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application.
Information and Computation, 114(1):131-178, October 1994.

R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal of
Computing, 16(6):973-989, December 1987.

G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI-
FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark, 1981.

A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

R. van Glabbeek and P. Weijland. Branching time and abstraction in bisimulation
semantics. Journal of the Association for Computing Machinery, 43(3):555 600, March
1996.

R.J. van Glabbeek. Comparative Concurrency Semantics, with Refinement of Actions.
PhD thesis, Free University, Amsterdam, 1990.

R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and stratified
models of probabilistic processes. Information and Computation, 121(1):59 80, August
1995.

34

