
Process AlgebraRance CleavelandDepartment of Computer ScienceP.O. Box 7534North Carolina State UniversityRaleigh, NC 27695-7534USAScott A. SmolkaDepartment of Computer ScienceState University of New York at Stony BrookStony Brook, NY 11794-4400USAApril 7, 1999AbstractProcess algebra represents a mathematically rigorous framework for modeling con-current systems of interacting processes. The process-algebraic approach relies onequational and inequational reasoning as the basis for analyzing the behavior of suchsystems. This chapter surveys some of the key results obtained in the area within thesetting of a particular process-algebraic notation, the Calculus of Communicating Sys-tems (CCS) of Milner. In particular, the Structural Operational Semantics approachto de�ning operational behavior of languages is illustrated via CCS, and several opera-tional equivalences and re�nement orderings are discussed. Mechanisms are presentedfor deducing that systems are related by the equivalence relations and re�nement or-derings, and di�erent process-algebraic modeling formalisms are brie
y surveyed.Keywords: process algebra, equational reasoning, veri�cation, veri�cation tools, bisimula-tion, failures/testing relations.1 IntroductionThe term process algebra encompasses a collection of theories that support mathematicallyrigorous (in)equational reasoning about systems consisting of concurrent, interacting pro-cesses. The �eld grew out of a seminal book due to Milner [34] in 1980 and has been anactive area of research since then. In particular, researchers have developed a number of1

di�erent process-algebraic theories in order to capture di�erent aspects of system behavior;however, each such formalism generally includes the following characteristics.1. A language, or algebra, is de�ned for describing systems.2. A behavioral equivalence is introduced that is intended to relate systems whose behavioris indistinguishable to an external observer.3. Equational rules, or axioms, are developed that permit proofs of equivalences betweensystems to be conducted in a syntax-driven manner.Some formalisms include a re�nement ordering, in lieu of an equivalence; in this case, thetheories allow one to determine if a system is \greater than or equal to" (i.e. re�nes) another.The literature typically refers to each theory as a process algebra; so the �eld of processalgebra contains many process algebras.Process algebras derive their motivation from the fact that a system design often con-sists of several di�erent descriptions of the system involving di�erent levels of detail. Thebehavioral equivalence or re�nement relation provided by a process algebra may be used todetermine whether these di�erent descriptions conform to one another. More speci�cally,higher-level descriptions of system behavior may be related to lower-level ones using theequivalence or re�nement ordering supplied by the algebra. These relations are typicallysubstitutive, meaning that related systems may be used interchangeably inside larger sys-tem descriptions; this facilitates compositional system veri�cation, since low-level designs ofsystem components may be checked in isolation against their high-level designs.This chapter surveys some of the main features of process algebra, and it developsalong the following lines. The next section introduces CCS, the process algebra that weuse throughout the chapter to illustrate the principles we cover. Section 3 then introducesbehavioral equivalences based on the notion of bisimulation, a fundamental concept due toMilner and Park. We then show how two of these equivalences may be given equationalaxiomatizations. The section following then introduces the failures/testing re�nement rela-tions and provides inequational axiomatizations for them for CCS. Section 6 then shows howthese relations may be computed for �nite-state systems. The penultimate section surveysrelated work, and the �nal one summarizes the contents of the chapter.2 A Calculus of Communicating SystemsThis section introduces the syntax and semantics of the process algebra A Calculus of Com-municating Systems (CCS). CCS will serve as a vehicle for illustrating the di�erent ingredi-ents that make up a process algebra throughout the remainder of this chapter. Other processalgebras are brie
y discussed in Section 7.2.1 The Syntactic Form of CCS ProcessesCCS provides a small set of operators that may be used to construct system descriptionsfrom de�nitions of subsystems. The basic building blocks of these descriptions, and indeed of2

system de�nitions in all existing process algebras, are actions. Intuitively, actions representatomic, uninterruptible execution steps, with some actions denoting internal execution andothers representing potential interactions with its environment that the system may engagein.Actions in CCS. A binary, synchronous model of process communication underlies CCS,and the structure of the set of actions re
ects this design decision. Actions represent eitherinputs/outputs on ports or internal computation steps. The former are sometimes calledexternal, as they require interaction from the environment in order to take place.To formalize these intuitions, let � represent a countably in�nite set of labels, or ports,not containing the distinguished symbol � . Then an action in CCS has one of the followingthree forms.� �, where � 2 �, represents the act of receiving a signal on port �.� �, where � 2 �, represents the act of emitting a signal on port �.� � represents an internal computation step.In what follows we use ACCS to stand for the set of all CCS actions; that is,ACCS = � [f� j � 2 � g [f�g:We also abuse notation by de�ning � = �; note that � is not a valid action. We refer to theactions � and �, where � 2 �, as complementary, as they represent the input and outputaction on the same channel. The set ACCS�f�g then contains the set of external, or visible,actions; the only internal action is � .CCS operators. Having de�ned the set ACCS of CCS actions we now introduce the op-erators the process algebra provides for assembling actions into systems. In what follows,we assume that p, p1 and p2 denote CCS system descriptions that have previously beenconstructed, and we also assume a countably in�nite set C of process variables. CCS thenincludes seven di�erent mechanisms for building systems.� nil represent the terminated process that has �nished execution.� Given a 2 ACCS, the pre�xing operator a: allows an action to be \prepended" onto anexisting system description. Intuitively, a:p is capable �rst of an a and then behaveslike p.� + represents a choice construct. The system p1 + p2 o�ers the potential of behavinglike either p1 or p2, depending on the interactions o�ered by the environment.� j denotes parallel composition. The system p1jp2 interleaves the execution of p1 and p2while also permitting complementary actions of p1 and p2 to synchronize; in this casecase, the resulting composite action is a � .3

� If L � ACCS � f�g then the restriction operator nL permits actions to be localizedwithin a system. Intuitively, pnL behaves like p except that it is disallowed frominteracting with its environment using actions mentioned in L. Note that � can neverbe restricted.� The operator [f] allows actions in a process to be renamed. Here f is a function fromACCS to ACCS that is required to satisfy the following two restrictions.{ f(�) = �{ f(a) = f(a).When this is the case, f is called a renaming. The system p[f] behaves exactly like pexcept that f is applied to each action that p wishes to engage in.� If C 2 C then C represents a valid system provided that a de�ning equation of theform C �= p has been given. Intuitively, C represents an \invocation" that behaves likep. This construct allows systems to be de�ned recursively.In process-algebraic parlance, system descriptions built using the above operators are oftenreferred to as terms or processes. We use PCCS to represent the set of all CCS processes. Asexamples, consider the following, where we assume that � contains send, recv, msg, ack, get,put, get ack and put ack.� The term send:recv:nil represents a system that engages in a sequence of two actions:an \input" on the send channel, followed by an \output" on the recv channel.� Consider the de�nition M �= put:get:M + put ack:get ack:MThis de�nes a system M that may be thought of as a one-place communication bu�er:given a \message" on its put channel it delivers it on its get channel, and similarly foracknowledgments. This example illustrates how, although the version of CCS consid-ered here does not explicitly support value-passing, a limited form of data exchangecan be implemented by encoding values in port names. Here M can handle two kindsof \data": messages and acknowledgments.� Now consider the following de�nitions, where M is as de�ned previously.S �= send:msg:ack:SR �= msg:recv:ack:RP �= (S[put=msg; get ack=ack] jM jR[get=msg; put ack=ack])nfget; put; get ack; put ackgP represents the CCS term for a simple communications protocol consisting of a senderS, a receiver R, and a medium M, a graphical depiction of which may be found inFigure 1. The sender repeatedly accepts \messages" on its send channel, outputs them4

send recv

msg ack msg ack

put_ackgetget_ackput

S R

MFigure 1: The architecture of a sample communications protocol.on itsmsg channel, and then awaits an acknowledgment on its ack channel. The receiverbehaves similarly: it awaits a message on its msg channel, delivers it on its recv channel,and then sends an acknowledgment via its ack channel. The relabeling operators aregiven in the form a=b; c=d; : : :; intuitively, such a relabeling changes b (and its inverse)to a, d to c, etc. Actions not mentioned are una�ected. In this example the relabelingse�ect the \wiring" given in the �gure. The restriction operator ensures that only thesender and receive may interact directly with the medium.2.2 The Operational Semantics of CCS TermsIn the account so far we have relied on the reader's intuition to understand the meaning ofthe CCS operators. To make these meanings precise, CCS and other process algebras usuallyinclude an operational semantics that is intended precisely to de�ne the \execution steps"that processes may engage in. This semantics is usually speci�ed in the form of a ternaryrelation, �!; intuitively, p a�! p0 holds if system p is capable of engaging in action a andthen behaving like p0. Process algebras such as CCS typically de�ne �! inductively usinga collection of inference rules for each operator. These rules have the following form.premisesconclusion (side condition)A rule states that, if one has established the premises, and the side condition holds, then onemay infer the conclusion. This presentation style for operational semantics is often called5

SOS, for Structural Operational Semantics, and was devised by Plotkin [39].The remainder of this section covers the SOS rules for CCS and shows how they may beused rigorously to characterize the behavior of CCS system descriptions. We group the ruleson the basis of the CCS operators to which they apply.nil. The CCS process nil has no rules; consequently, it is incapable of any transitions.Pre�xing. The pre�xing operator contains one rule.a:p a�! pThis rule has no premises, and the conclusion states that processes of the form a:p mayengage in a and thereafter behave like p. Note that the side condition is omitted; insuch cases it is assumed to be \true".Choice. The choice operator has two symmetric rules.p a�! p0p+ q a�! p0 q a�! q0p+ q a�! q0These rules in essence state that a system of the form p + q \inherits" the transitionsof its subsystems p and q.Parallel Composition. The parallel composition operator has three rules, the �rst two ofwhich are symmetric. p a�! p0pjq a�! p0jq q a�! q0pjq a�! pjq0These rules indicate that j interleaves the transitions of its subsystems. The next ruleallows processes connected by j to interact.p a�! p0; q a�! q0pjq ��! p0jq0According to this rule, subsystems may synchronize on complementary actions (i.e.inputs and outputs on the same port). Note that the action produced as the resultof the synchronization is a � ; since � is unde�ned, this ensures that synchronizationsinvolve only two partners.Restriction. The restriction operator has one rule.p a�! p0pnL a�! p0nL (a; a 62 L)This rule, which includes a side condition, only allows actions not mentioned in L(or whose complements are not in L) to be performed by pnL. Restriction in e�ect\localizes" actions in L, since the operator forbids the system's environment frominteracting with the system using them.6

Relabeling. The relabeling operation has one rule.p a�! p0p[f] f(a)�! p0[f]As the intuitive account above suggests, p[f] engages in the same transitions as p, thedi�erence being that the actions are relabeled via f .Process Variables. The behavior of process variables is given by one rule.p a�! p0C a�! p0 (C �= p)This rule states that a system C behaves like its \body", p, provided that C has beenprovided with a de�nition of the form C �= p.Examples. As stated above, the SOS rules for CCS de�ne the single-step transitions thatCCS processes may engage in. As one example, consider the medium process M de�nedabove. Using the pre�xing rule, one may infer the transitionput:get:M put�! get:MUsing this fact and one of the rules for +, one may therefore infer thatput:get:M+ put ack:get ack:M put�! get:MThis observation and the rule for constants then permit the following transition to be inferred.M put�! get:MUsing similar lines of reasoning, one may also deduce thatP send�! ((msg:ack:S)[put=msg; get ack=ack] jM jR[get=msg; put ack=ack])nfget; get ack; put; put ackgNote that this is the only transition available to P, since the transitions of M and R allinvolve actions in the restriction set.2.3 CCS, Processes and Labeled Transition SystemsThe de�nition of �! just given allows CCS processes to be viewed as state machines of acertain type. To begin with, we show how CCS may be viewed as a structure called a labeledtransition system consisting of a collection of possible system states and transitions.De�nition 2.1 A labeled transition system (LTS) is a triple hQ;A;�!i, where Q is a setof states, A is a set of actions, and �!� Q� A�Q is a transition relation.7

Some de�nitions of LTS also designate a start state. We refer to labeled transitions of thisform (i.e. quadruples of the form hQ;A;�!; qSi where qS 2 Q is the start state) as rootedlabeled transition systems.Perhaps surprisingly, the de�nitions of this chapter show that CCS may be viewed as asingle LTS. Recall that PCCS represents the (in�nite) set of syntactically valid CCS systemde�nitions, and let �!CCS be the transition relation de�ned in the previous subsection.Then hPCCS; ACCS;�!CCSi satis�es the de�nition of LTS. This observation also holds forother process algebras and has two consequences. The �rst is that certain de�nitions, suchas those for behavioral equivalences and re�nement orderings, may be given in a language-independent manner by de�ning them with respect to LTS's. The second consequence is thatthat individual system descriptions may be \converted" into rooted LTS's. Mathematically,for any CCS system p the quadruple hPCCS; ACCS;�!CCS; pi constitutes a rooted LTS. AsPCCS is in�nite this observation is only of theoretical interest until one observes that notevery state in PCCS is \reachable" from p via �!CCS. Consequently, we may instead de�neanother LTS,Mp, consisting only of CCS terms reachable from p via sequences of transitions.If Mp contains only �nitely many states, then it may be analyzed using algorithms formanipulating �nite-state machines. As an example, Figure 2 contains the �nite-state rootedLTS corresponding to the communication protocol P described above.3 Behavioral Congruences for CCSProcess algebras usually use a notion of behavioral congruence as a basis for system analy-sis. A congruence for an algebra is an equivalence relation (i.e. a relation that is re
exive,symmetric and transitive) that also has the substitution property: equivalent systems maybe used interchangeably inside any larger system. Formally, de�ne a context C[] to be asystem description with a \hole", []; given a system description p, then, C[p] represents thesystem obtained by \�lling" the hole with p. Then an equivalence � is a congruence for alanguage if, whenever p � q, then C[p] � C[q] for any context C[] built using operators inthe language. It should be noted that relations that are congruences for some languages arenot congruences for others.In this section we study congruences for CCS with a view toward de�ning a relation thatrelates systems with respect to their \observable" behavior. In each case we �rst de�ne anequivalence relation on states in an arbitrary LTS; since CCS may be viewed as an LTS,these relations may then be used to relate CCS system descriptions. We then consider thesuitability of the equivalence from the standpoint of the observable behavior to which it issensitive and study whether or not the relation is a congruence for CCS. In the �rst part ofthe section we make no special allowance for the \unobservability" of the action � , deferringits treatment to later.3.1 The Inadequacy of Trace EquivalenceState machines have a well-studied equivalence, language equivalence, that stipulates thattwo machines are equivalent if they accept the same sequences of symbols. Rooted labeledtransition systems do not contain \accepting states" per se, and consequently the notion8

((msg.ack.S)[...] | M | R[...])\{...}

((ack.S)[...] | get.M | R[...])\{...}

((ack.S)[...] | M | (ack.R)[...])\{...}

((ack.S)[...] | get_ack.M | R[...])\{...}

((ack.S)[...] | M | (recv.ack.R)[...])\{...}

(S[...] | M | R[...})\{...}

send

τ

τ

τ

τ

recv

Figure 2: The state machine for P.
9

of language equivalence from �nite-state machine theory cannot be directly applied. How-ever, if we identify every state in a rooted LTS as being accepting, then the \language" ofthe machine contains the execution sequences, or \traces", that a machine may engage in.Consequently, a reasonable �rst attempt at de�ning a behavioral equivalence for CCS andother process algebras might be to relate two system descriptions (i.e. states in the LTShQ;A;�!i exactly when the machines for them have exactly the same traces.Before formalizing these notions we �rst review some concepts from the theory of �nitesequences. If A is a set, then A� consists of the set of (possibly empty) �nite sequences ofelements of A. We use � to represent the empty sequence. One may now de�ne traces, andtrace equivalence, as follows.De�nition 3.1 Let hQ;A;�!i be a labeled transition system.1. Let s = a1 : : : an 2 A� be a sequence of actions. Then q s�! q0 if there are statesq0; : : : ; qn such that q = q0, qi ai�! qi+1, and q0 = qn.2. s is a strong trace of q if there exists q0 such that q s�! q0. We use S(q) to representthe set of all strong traces of q.3. p �S q exactly when S(p) = S(q).We use the term strong traces because the de�nition given above does not distinguishbetween internal and external actions; all may appear in a strong trace. In contrast, thetraditional de�nition of traces treats � actions in a special manner.Since CCS is a labeled transition system whose states are system descriptions we mayapply the de�nition of �S to CCS systems. Unfortunately, �S su�ers from severe de�cienciesfor CCS and other languages that permit the de�nition of nondeterministic systems, as thefollowing examples illustrate.1. Let p be a:b:nil + a:c:nil and q be a:(b:nil + c:nil). Then p �S q, as S(p) = S(q) =f�; a; ab; acg. However, after an a-transition q can perform both a b and a c, whereas pmust reject one or the other of these possibilities after each of its (two) a-transitions.2. Let C1 �= a:C1 and C2 �= a:C2 + a:nil. Then C1 �S C2, and yet C2 can reach a\deadlocked" state after an a-transition (i.e. a state that is incapable of any transitions)while C1 cannot.The trouble with trace equivalence and nondeterministic systems is that even thoughtwo systems have the same traces, they may go through inequivalent states in performingthem. (This situation cannot occur in deterministic systems.) In particular, trace equivalentsystems can have di�erent deadlocking behavior.
10

3.2 Bisimulation EquivalenceThe last observation in the previous section suggests that an appropriate equivalence forCCS, and indeed for any language permitting the de�nition of nondeterministic systems,ought to have a recursive
avor: execution sequences for equivalent systems ought to \passthrough" equivalent states. This intuition underlies the de�nition of bisimulation, or strongequivalence. The name of the equivalence stems from the fact that it is de�ned in terms ofspecial relations called bisimulations.De�nition 3.2 Let hQ;A;�!i be an LTS. A relation R � Q � Q is a bisimulation if,whenever hp; qi 2 R, then the following conditions hold for any a, p0 and q0.1. if p a�! p0 then q a�! q0 for some q0 such that hp0; q0i 2 R.2. if q a�! q0 then p a�! p0 for some p0 such that hp0; q0i 2 R.Intuitively, if two systems are related by a bisimulation, then it is possible for each tosimulate, or \track", the other's behavior: hence the term bisimulation. More speci�cally,for a relation to be a bisimulation, related states must be able to \match" transitions of eachother by moving to related states. Two states are then bisimulation equivalent exactly whena bisimulation may be found relating them.De�nition 3.3 Systems p and q are bisimulation equivalent, or bisimilar, if there exists abisimulation R containing hp; qi. We write p � q whenever p and q are bisimilar.Since CCS may be viewed as an LTS, one may use � to relate CCS processes. As examples,we have the following.1. a:b:nil+ a:b:nil � a:b:nil2. a:b:nil+ a:c:nil 6� a:(b:nil + c:nil)3. C1 6� C2.Bisimulation equivalence has a number of pleasing properties. Firstly, for any labeledtransition system it is indeed an equivalence; that is, the relation � is re
exive, symmetricand transitive. Secondly it can be shown in a precise sense that two equivalent systems musthave the same \deadlock potential"; this point is addressed in more detail below. Thirdly,� implies �S and coincides with it if the LTS is deterministic in the sense that every statehas at most one outgoing transition per action. Finally, � is a congruence for CCS; if p � qthen p and q may be used interchangeably inside any larger system.However, � does su�er from a major
aw from the perspective of CCS and other processalgebras allowing asynchronous execution: it is too sensitive to internal computation. Inparticular, the de�nition does not take account of the special status that � has vis �a visother actions. For example, the systems a:�:b:nil and a:b:nil are not bisimulation equivalent,even though an external observable cannot detect the di�erence between them. Nevertheless,� has been studied extensively in the literature, and for process algebras in which internalcomputation in one component can indeed a�ect the behavior of other components, it is areasonable basis for veri�cation. 11

Deadlock, Logical Characterizations and �The preceding discussion states that � relates systems on the basis of their relative \deadlockpotentials". The remainder of this subsection makes this statement precise by de�ning alogic, called the Hennessy-Milner Logic (HML) [26], that permits the formulation of simplesystem properties, including potentials for deadlock. The logic also characterizes � in thefollowing sense: two systems are bisimilar if and only if they satisfy exactly the same formulasin the logic.Syntax of HML. The de�nition of HML is parameterized with respect to a set A ofactions. Given such a set, the syntax of HML formulas can be given via the followinggrammar. � ::= ttj �j � ^ �j � _ �j hai�j [a]�We use � for the set of all well-formed HML formulas.The constructs in the logic may be understood as follows. First, it should be noted thatformulas are intended to be interpreted with respect states in a labeled transition system.Then tt and � represent the constants \true" and \false" that hold of any state and no state,respectively, while ^ and _ denote conjunction (\and") and disjunction (\or"), respectively.The �nal two operators are referred to as modalities, as they permit statements to be madeabout the transitions emanating from a state; thus HML is a modal logic. A state satis�eshai� if a target state of one of its a-transitions satis�es �, while [a]� holds of a state if thetarget states of all of its a-transitions satisfy �.Semantics of HML. In order to formalize the previous informal discussion, we �rst �xa labeled transition system L = hQ;A;�!i having the same action set as HML. We thende�ne a relation j=L� Q � �; intuitively, q j=L � should hold if state q \satis�es" �. Theformal de�nition is given inductively as follows.� q j=L tt for any q 2 Q.� q j=L � for no q 2 Q.� q j=L �1 ^ �2 if and only if q j=L �1 and q j=L �2.� q j=L �1 _ �2 if and only if q j=L �1 or q j=L �2.� q j=L hai� if and only if q a�! q0 and q0 j=L � for some q0 2 Q.� q j=L [a]� if and only if for every q0 such that q a�! q0, q0 j=L �.12

This de�nition includes some subtleties that deserve comment. To begin with, formula[a]� is satis�ed by any state not having an a-transition; such states vacuously ful�ll therequirement imposed by [a]. Indeed, a state with no a-transitions satis�es [a]� for any �.These facts also imply that a state incapable of any action in the set fa1; : : : ; ang will satisfythe formula [a1]� ^ � � � ^ [an]�. If such a state occurs in an environment that requires oneof these actions, then a deadlock results. In a related vein, a state satis�es hbitt if and onlyif it has an b-transition; more generally, given a (nonempty) sequence of actions b1 : : : bm, astate includes b1 : : : bm as one of its strong traces if and only if the state satis�es the formulahb1i � � � hbmitt. Finally, consider a state satisfying a formula of the formhb1i � � � hbmi([a1]� ^ � � � ^ [an]�):Such a state satis�es this formula if it can engage in the sequence b1 : : : bm and arrive ata state that rejects o�ers for interaction involving any of a1; : : : ; an. In an environmentcapable of exercising the sequence b1 : : : bm and then requiring an interaction involving oneof a1; : : : ; an, the given state could deadlock. It is in this sense that HML permits theformulation of properties expressing potentials for deadlock.HML and �. The relationship between HML and � is captured by the following theoremthat states that HML characterizes � for labeled transition systems that are image-�nite. AnLTS is image-�nite if every state in the LTS has at most �nitely many transitions sharing thesame action label. In practice almost all labeled transition systems satisfy this requirement;in particular, CCS does provided the de�nitions of process variables obey a small restriction.Theorem 3.4 Let L = hQ;A;�!i be an image-�nite LTS, and let p; q 2 Q. Then p � q ifand only if for all HML formulas �, either p j=L � and q j=L � or p 6j=L � and q 6j=L �.On the one hand, this result and the previous discussion substantiates the claim that bisim-ulation equivalence requires equivalent systems to have the same \deadlock potentials". Onthe other hand, the theorem provides a useful mechanism for explaining why two systemsfail to be equivalent; one need only present a formula satis�ed by one system and not theother. The following provides examples illustrating this latter point in the context of CCS.� Consider the system p given by a:b:nil+a:c:nil and the system q given by a:(b:nil+c:nil).Since p 6� q there must be a formula satis�ed by one and not the other. One suchformula is hai[b]�, which is satis�ed by p but not by q.� Consider C1 and C2 given above. The formula hai[a]� distinguishes them, as C2 satis�esit and C1 does not.3.3 Observational Equivalence and Congruence for CCSThis subsection presents a coarsening of bisimulation equivalence that is intended to relaxthe sensitivity of the former to internal computation. The de�nition of this relation relieson the introduction of so-called \weak" transitions.13

De�nition 3.5 Let hQ;A;�!i be an LTS with � 2 A, and let q 2 Q.1. If s 2 A� then ŝ 2 (A�f�g)� is the action sequence obtained by deleting all occurrencesof � from s.2. Let s 2 (A� f�g)�. Then q s=) q0 if there exists s0 such that q s0�! q0 and s = ŝ0.Intuitively, ŝ returns the \visible content" (i.e. non-� elements) of sequence s; in particular,if a 2 A then â = � if a = � , while â = a if a 6= � . In addition, q s=) q0 if q canperform a sequence of transitions with the same visible content as s and evolve to q0. In thiscase note that the sequence of transitions that is performed is the same as s except that itpotentially includes an arbitrary number of � transitions in between the visible actions ofs. In particular, q �=) q0 if a sequence of � -transitions leads from q to q0, while for a singlevisible action a, q a=) q0 if q can perform an a, possibly \surrounded" by some internalcomputation, in order to arrive at q0.We may now de�ne weak bisimulations as follows.De�nition 3.6 Let hQ;A;�!i be an LTS, with � 2 A. Then a relation R � Q � Q isa weak bisimulation if, whenever hp; qi 2 R, then the following hold for all a 2 A andp0; q0 2 Q.1. If p a�! p0 then q â=) q0 for some q0 such that hp0; q0i 2 R.2. If q a�! q0 then p â=) p0 for some p0 such that hp0; q0i 2 R.States p and q are observationally equivalent, or weakly equivalent, or weakly bisimilar, ifthere exists a weak bisimulation R containing hp; qi. When this is the case we write p � q.A weak bisimulation closely resembles a regular bisimulation; the only di�erence lies inthe fact that systems may use weak transitions to simulate normal transitions in the othersystem.As CCS is a labeled transition system whose action set contains � , the de�nition of �may be used to relate CCS system descriptions. Doing so leads to the following observations.� a:�:b:nil � a:b:nil.� For any p, �:p � p.� Let Svc �= send:recv:Svc. Then P � Svc, where P is the simple communications protocoldescribed in the previous section.The last example illustrates the power of equivalences in relating system designs at di�erentlevels of abstraction, since Svc could be thought of as a \high-level" design that P is intendedto conform to.Even though it ignores internal computation observational equivalence still enjoys a sim-ilar degree of deadlock-sensitivity to bisimulation equivalence: a variant of HML can bede�ned that characterizes � in the same way that HML characterizes �. (This logic re-places the hai and [a] modalities of HML by two new operators, hhaii and [[a]]; a state14

q j=L hhaii� if there exists a q0 such that q a=) q0 and q0 j=L �, and similarly for [[a]].)Consequently it would appear to be a viable candidate for relating CCS system descriptions.Unfortunately, however, it is not a congruence for CCS. To see why, consider the contextC[] given by [] + b:nil. It is easy to establish that p � q, where p is given by �:a:nil and qby a:nil. However, C[p] 6� C[q]. To see this, note that C[p] ��! a:nil. This transition mustbe matched by a weak �-labeled transition from C[q]. The only such transition C[q] has isC[q] �=) C[q]. However, a:nil 6� C[q], since the latter can engage in a b-labeled transitionthat cannot be matched by the former.This defect of � arises from the interplay between + and the initial internal computationthat a system might engage in; in particular, the only CCS operator that \breaks" thecongruence-hood of � is +. Some researchers reasonably suggest that this is an argumentagainst including + in the language. Milner [34, 36] adopts another point of view that wepursue in the remainder of this section, and that is to focus on �nding the largest CCScongruence �C that implies �. Such a largest congruence is guaranteed to exist [26].De�nition 3.7 Let hQ;A;�!i be an LTS with � 2 A, and let p; q 2 Q. Then p �C q if thefollowing hold for all a 2 A and p0; q0 2 Q.1. If p a�! p0 then q a=) q0 for some q0 such that p0 � q0.2. If q a�! q0 then p a=) p0 for some p0 such that p0 � q0.Some remarks about this relation are in order. Firstly, it should be noted that for p �C qto hold, any � -transition of p must be matched by a �=)-transition of q; in particular,this weak transition must consist of a non-empty sequence of � -transitions. Secondly, thede�nition is not recursive: the targets of initial matching transitions need only be related by�. Finally, it indeed turns out that �C is a congruence for CCS and that it is the largestCCS congruence entailing �. That is, p �C q implies p � q, and for any other congruence Rsuch that pR q implies p � q, pR q also implies p �C q. As examples, we have the following.1. a:�:b:nil �C a:b:nil2. �:a:nil 6�C a:nil, since the ��! transition of the former cannot be matched by a �=)transition of the latter.3. For any p; q, if p � q then �:p �C �:q.4. Svc �C P, where Svc and P are as de�ned above.4 Equational Reasoning in CCSIn addition to de�nitions of behavioral congruences, process algebras traditionally provideequational axiomatizations that permit equivalences to be established by means of simplesyntactic manipulations. This section presents such axiomatizations for CCS for both � and�C . 15

Table 1: Axiomatizing � for Basic CCS: Rule Set E1.(A1) x + y = y + x(A2) x + (y + z) = (x+ y) + z(A3) x + nil = x(A4) x+ x = x4.1 Axiomatizing �We present the axiomatization of � for CCS in stages by considering successively largerfragments of CCS. The �rst, and most basic, subset of CCS we investigate we term \BasicCCS".4.1.1 Axiomatizing Basic CCSBasic CCS contains only the nil, pre�xing and + operators of CCS, and hence it only allowsthe de�nition of \sequential" (i.e. no parallelism) terminating systems. The axiomatizationof � for Basic CCS consists of the four rules given in Table 1.Some words of explanation about these axioms are in order. Firstly, and for convenience,each rule we present has a name; in this case, the rules are named (A1){(A4). Secondly,each rule contains variables that are intended to be arbitrary terms in the language underconsideration. In (A2), for example, x; y and z are variables, and the rule should be read asasserting that regardless of the Basic CCS terms substituted for these variables, the indicatedequivalence holds. Finally, axioms are used to construct equational proofs as illustrated bythe following example.a:(b:nil+ nil) + (a:nil+ a:b:nil) = a:b:nil + (a:nil+ a:b:nil) by (A3)= a:b:nil + (a:b:nil+ a:nil) by (A1)= (a:b:nil + a:b:nil) + a:nil by (A2)= a:b:nil + a:nil by (A4)This proof establishes that a:(b:nil + nil) + (a:nil + a:b:nil) = a:b:nil + a:nil in four steps,where each step represents the \application" of a rule to a subterm, yielding a new term.The development of such equational proofs typically relies on four rules of inference re
ectingthe fact that = is re
exive, symmetric, and transitive and that equal terms may be usedinterchangeably; these rules implicitly support the construction of proofs such as the oneabove. We will not say more about this matter.When a proof that terms t1 and t2 exists using axioms in set E, we write E ` t1 = t2.Thus, E1 ` a:(b:nil + nil) + (a:nil+ a:b:nil) = a:b:nil + a:nil;where E1 contains the four rules in Table 1.Returning to the rules in Table 1, Rules (A1) and (A2) assert that + is commutative andassociative, respectively. Rule (A3) indicates that nil is an identity element for +; these �rstthree rules are sometimes referred to as the monoid laws, a monoid being any mathematical16

Table 2: Axiomatizing � for Basic Parallel CCS: Rule Set E2.(A1){(A4) from Table 1(Exp) (Pi2I ai:xi) j (Pj2J bj:yj) =Pi2I ai:(xi j Pj2J bj:yj) + Pj2J bj:((Pi2I ai:xi) j yj) + Pf (i;j)jai=bj g �:(xi j yj)structure obeying these axioms. The �nal rule is often called the absorption law, as it allowsmultiple copies of the same summand to be \absorbed" into one.Metatheory. Given a proposed axiomatization for an equivalence relation, one may asktwo questions.1. Is the axiomatization sound? That is, are all proved equalities true?2. Is the axiomatization complete? That is, are all true equalities provable?Soundness is an absolute necessity; an unsound proof system is worse than useless, since itallows the derivation of untrue information. Completeness is highly desirable, since once aproof system is shown complete, one knows that there can be no \missing" axioms.The following results establish the soundness and completeness of the axioms in Table 1for � over Basic CCS.Theorem 4.1 (Soundness)Let t1 and t2 be terms in Basic CCS, and suppose that E1 ` t1 = t2. Then t1 � t2.Theorem 4.2 (Completeness)Let t1 and t2 be terms in Basic CCS such that t1 � t2. Then E1 ` t1 = t2.4.1.2 Axiomatizing Basic Parallel CCSThe next fragment of CCS we present an axiomatization for extends Basic CCS with theinclusion of the parallel composition operator, j. We call this fragment Basic Parallel CCS.As it turns out Rules (A1){(A4) remain sound for Basic Parallel CCS, but they areobviously not complete, since none of the rules mentions j. In order to devise a completeaxiomatization for this subset of CCS we therefore must add axioms for j. The new axiom-atization is presented in Table 2.The single new axiom, (Exp), is often referred to as the expansion law, as it showshow terms involving j at the top level may be \expanded" into ones involving pre�xingand summation. This axiom is the most complicated rule for CCS, and it deserves furthercommentary. Firstly, the P notation needs explanation. Rules (A1) and (A2) indicate that+ is commutative and associative. This means that expressions of the form t1 + � � � + tn,while not strictly speaking expressions since they are not fully parenthesized, nevertheless17

have a precise meaning, since all parenthesizations of such expressions are equivalent. Moregenerally, given a �nite index set I and an I-indexed set of terms of the form ti, we mayde�ne Pi2i ti as nil if I is empty and as the summation of all the ti's otherwise.The second feature of (Exp) is that it may only be applied to a term t1jt2 if both t1 and t2have a special form: namely, each must be a summation of terms whose outermost operatorinvolves pre�xing. Technically speaking, (Exp) is not a single axiom but an axiom schema,with each di�erent value of I and J yielding a di�erent axiom.Finally, the right-hand side of (Exp) consists of three summands, each corresponding to adi�erent SOS rule for j. The �rst summand allows the left subterm to \move" autonomously,and the second permits the same behavior from the right subterm. The third summandhandles possible synchronizations.To see how (Exp) is used in equation proofs, consider the following example showing thatE2 ` nil j b:nil = b:nil; recall that nil is the same as Pi2; ti.nil j b:nil = nil+ b:(nil j nil) + nil by (Exp)= b:(nil j nil) by (A3) twice= b:(nil + nil+ nil) by (Exp)= b:nil by (A3) twiceIndeed, for any term t in Basic Parallel CCS it follows that E2 ` nil j t = t. It may alsobe shown that for any terms t1; t2 and t3 E2 ` t1jt2 = t2jt1 and E2 ` t1j(t2jt3) = (t1jt2)jt3;consequently, j is commutative and associative. Finally, as the strict application of (Exp)results in many occurrences of nil as a summand, these nil's are suppressed in practice, sincethey may be removed by applying (A3) appropriately.It may be shown that E2 is a sound and complete axiomatization of � for Basic ParallelCCS.4.1.3 Axiomatizing � for Finite CCSThe next fragment of CCS we axiomatize includes all operators except for process variables;the literature refers to this fragment as Finite CCS. Finite CCS extends Basic Parallel CCSwith the restriction and relabeling operators; the axioms for this subset of CCS appear inTable 3.The axioms for nL and [f] only explain how these operators interact with nil, pre�xingand +. That no rules are needed de�ning the interaction between j and nL, or nL and [f], isa consequence of the fact that the innermost occurrences of these so-called static operators(with nil, pre�xing and + being the dynamic ones) can be eliminated by repeated use ofthe laws for the operator in conjunction with (A1){(A4). This argument may be formalizedand used to show that rule set E3 constitutes a sound and complete axiomatization of � forFinite CCS.4.1.4 Rules for Recursive ProcessesIn order to axiomatize full CCS, we need rules for reasoning about terms that include processvariables. Unfortunately, results from computability theory imply that no complete axiom-18

Table 3: Axiomatizing � for Finite CCS: Rule Set E3.(A1){(A4) from Table 1; (Exp) from Table 2(Res1) nilnL = nil(Res2) (a:x)nL = (nil if a; a 2 La:(xnL) otherwise(Res3) (x+ y)nL = xnL + ynL(Rel1) nil[f] = nil(Rel2) (a:x)[f] = f(a):(x[f])(Rel3) (x+ y)[f] = x[f] + y[f]atization can exist for � for full CCS.1 However, two useful heuristics have been developedfor handling process variables, and we review these here.Both techniques take the form of inference rules and are therefore similar in form to theSOS rules used to de�ne the operational semantics of CCS. The �rst rule, called the unrollingrule, states that a process invocation is equivalent to the body of the invocation.(Unr) C �= pC = pThe second inference rule is often called the unique �xpoint induction principle, andstating it relies on introducing the notion of equation and solution. Given a variable X anda CCS term t potentially containing X, such that at most X appears \free" in t,2 we callthe expression X = t an equation. A CCS process p is a solution to X = t if and only ifp � t[p=X], where t[p=X] is the CCS term obtained by replacing all occurrences of variableX by p. An equation has a unique solution up to � if for any two solutions p and q to theequation, p � q. We may now formulate the unique �xpoint induction rule as follows.(UFI) p = t[p=X] q = t[q=X]p = q (X = t has a unique solution)This rule allows one to conclude that two terms are equal, provided one can prove that theyare both solutions to the same equation and the equation has a unique solution.A couple of comments about (UFI) are in order. Firstly, every equation X = t has asolution: given de�nition X �= t, it is easy to see that process X is a solution of X = t.Secondly, (UFI) is only useful insofar as one may readily identify when equations have aunique solution. One such class of equations, and a large one at that, can be de�ned asfollows.1The set of equalities one can prove using any axiomatization can only be recursively enumerable; however,� for full CCS is known not to be recursively enumerable.2For the present discussion, variables only occur free; i.e. they are not bounded by a �xed-point operator.See [36] for further details. 19

Table 4: Axiomatizing �C for Finite CCS: Rule Set E4.(A1){(A4) from Table 1; (Exp) from Table 2; (Res1){(Res3), (Rel1){(Rel3) from Table 3(�1) a:�:x = a:x(�2) x+ �:x = �:x(�3) a:(x + �:y) = a:(x + �:y) + a:yDe�nition 4.3 Let X be a variable, and t be a CCS term involving X. Then X is guardedin t if every occurrence of X in t falls within the scope of a pre�x operator.For example, X is guarded in a:X and a:Xj(b:(X + c:nil)), but it is not guarded in X + b:X.We now have the following result.Theorem 4.4 Let X be guarded in t. Then equation X = t has a unique solution up to �.As an application of (Unr) and (UFI), suppose we wish to prove that A and B arebisimilar, where A �= a:A and B �= a:a:B. Consider the equation X = a:a:X. We can showthat both A and B are solutions to this equation:A = a:A by (Unr)= a:a:A by (Unr)B = a:B by (Unr)Since X is guarded in a:a:X, X = a:a:X has a unique solution, and consequently using(UFI) one may conclude that A = B.4.2 Axiomatizing �CThis section presents an axiomatization for �C and CCS. Following the development in theprevious subsection, we �rst consider the Finite CCS fragment and then full CCS.4.2.1 Axiomatizing Finite CCSTo begin with, it should be noted that the axioms in rule set E3 of Table 3 are also soundfor �C , since whenever p � q it immediately follows that p �C q. In order to obtain a fullaxiomatization for �C , then, we need only add axioms re
ecting the special status of theaction � in this congruence.One tempting axiom to add would be x = �:x; however, this is not sound for �C , since itwould allow one to prove that �:a:nil = a:nil, which is not valid. The correct rules are listedin Table 4 and are often called the � laws.Rule (�1) allows for the \absorption" of � actions that immediately follows pre�xingoperations. Rule (�2) is more subtle, and may be understood as follows. First, note that20

any strong transition of �:x is also a strong transition of x + �:x. Secondly, any strongtransition of x + �:x, including any � -transition, may be matched by an appropriate weaktransition in �:x. The �nal rule, (�3) is perhaps the most di�cult to interpret; note that thestrong transition a:(x+ �:y) + a:y a�! yof the right-hand side may however be matched by the weak transitiona:(x + �:y) a=) yof the left-hand side.Somewhat surprisingly, these rules su�ce; the axiomatization E4 is sound and completefor �C and Finite CCS.4.2.2 Axiomatizing Full CCSThe same observations for � also hold for �C vis �a vis sound and complete axiomatizations:none can exist. The (Unr) and (UFI) rules nevertheless still hold, although the characteriza-tion of which equations have unique �xpoints becomes somewhat more complex; guardednessno longer su�ces. To see this, consider the equation X = �:X. X is guarded in �:X, andyet any process capable of an initial � action is a solution to this equation up to �C . Inparticular, �:a:nil �C �:�:a:nil and �:b:nil �C �:�:b:nil, and yet �:a:nil 6�C �:b:nil.One potential solution to this problem is to require a stronger condition than guardednessin equations.De�nition 4.5 Let X be a variable and t a CCS term involving X. Then X is stronglyguarded in t if every occurrence of X falls within the scope of a pre�xing operator a wherea 6= � .That is, X is strongly guarded in t if a pre�x operator involving a visible action \guards"each occurrence of X in t. Note that X is not strongly guarded in �:X. However, even if Xis strongly guarded in t it does not follow that X = t has a unique solution up to �C . Tosee this, consider the equation X = (a:X j a:nil)nfag:X is strongly guarded in the right-hand side of the equation, and yet it can be shown thate.g. �:b:nil and �:c:nil are both solutions. We may nevertheless �x this problem by requiringthe following.De�nition 4.6 Let X be a variable and t a CCS term involving X. Then X is sequentialin t if no occurrence of X in t falls within the scope of a parallel composition operator.As examples, X is sequential in a:X and �:X+(b:nil j c:nil) but not sequential in a:X j b:nil.The following can now be proved.Theorem 4.7 Let X = t be an equation with X strongly guarded and sequential in t. ThenX = t has a unique solution up to �C . 21

We conclude this section with an extended example illustrating the use of the axioms. Recallthe simple communications protocol P given in Section 2.1 and the speci�cation Svc inSection 3.3. We may establish that E4 [f(Unr); (UFI)g ` P = Svc as follows. First notethat X is strongly guarded and sequential in send:recv:X and consequently has a uniquesolution up to �C . Therefore, we need only show that both P and Svc are solutions to thisequation; then, by (UFI), P = Svc. Now,Svc = send:recv:Svc by (Unr)so Svc is a solution. As for P, we can prove thatP = (S[put=msg; get ack=ack] jM jR[get=msg; put ack=ack])nfget; put; get ack; put ackgusing (Unr), so it su�ces to prove that the right-hand side is a solution to the given equation.The proof of this may be found in Figure 3.5 Re�nement Orderings for CCSThis chapter has so far concentrated on the role of behavioral equivalences in process algebrain general, and CCS in particular. We now shift our attention to re�nement orderings, andto a particular class of re�nement orderings that are often referred to as the failures/testingorderings. This section presents a de�nition of these orderings and gives axiomatizations forthem for CCS.5.1 The Failures/Testing OrderingsThe motivation for the failures/testing orderings arises from two sources. On the one hand,equivalences sometimes impose overly severe restrictions on a designer de�ning a lower-level design that is intended to implement a higher-level one. In particular, equivalencesrequire that the behaviors of the designs be identical; this precludes a higher-level designo�ering several possibilities for behavior or including \don't-care points". This suggeststhat an ordering in which a \more deterministic" system is larger, or \better", than a lessdeterministic one would be desirable. On the other hand, while � and �C abstract frominternal computation and are sensitive to deadlock, it can be argued that they are overlysensitive to unobservable di�erences in the branching structure of systems. As an example,consider the two CCS de�nitions P �= a:b:c:nil+ a:b:d:nil and Q �= a:(b:c:nil+ b:d:nil). Thesetwo systems are not related by �; the formula [[a]]hhbiihhciitt is satis�ed by the latter andnot the former. However, a user ought not to be able to distinguish them, since to a user itdoes not matter when the nondeterministic choice that ultimately eliminates the possibilityof c or d is made.The failures [12, 27] and testing [19, 25] orderings di�er substantially in their approachesto addressing these issues, and yet the resulting orderings turn out to coincide. In this sectionwe follow the failures presentation given in [32] because it requires the introduction of lessnotation given the machinery we have already developed. We need the following de�nitions.22

(S[put=ack; get ack=ack] jM jR[get=msg; put ack=ack])nfget; put; get ack; put ackg= send:((msg:ack:S)[put=ack; get ack=ack] jM jR[get=msg; put ack=ack])nfget; put; get ack; put ackg)by (Exp), (Rel1){(Rel3), (Res1){(Res3)= send:�:((ack:S)[put=ack; get ack=ack] j (get:M) jR[get=msg; put ack=ack])nfget; put; get ack; put ackg)by (Exp), (Rel1){(Rel3), (Res1){(Res3)= send:((ack:S)[put=ack; get ack=ack] j (get:M) jR[get=msg; put ack=ack])nfget; put; get ack; put ackg)by (�1)= send:�:((ack:S)[put=ack; get ack=ack] jM j (recv:ack:R)[get=msg; put ack=ack])nfget; put; get ack; put ackg)by (Exp), (Rel1){(Rel3), (Res1){(Res3)= send:((ack:S)[put=ack; get ack=ack] jM j (recv:ack:R)[get=msg; put ack=ack])nfget; put; get ack; put ackg)by (�1)= send:recv:((ack:S)[put=ack; get ack=ack] jM j (ack:R)[get=msg; put ack=ack])nfget; put; get ack; put ackg)by (Exp), (Rel1){(Rel3), (Res1){(Res3)= send:recv:�:((ack:S)[put=ack; get ack=ack] j get ack:M jR[get=msg; put ack=ack])nfget; put; get ack; put ackg)by (Exp), (Rel1){(Rel3), (Res1){(Res3)= send:recv:((ack:S)[put=ack; get ack=ack] j get ack:M jR[get=msg; put ack=ack])nfget; put; get ack; put ackg)by (�1)= send:recv:�(S[put=ack; get ack=ack] jM jR[get=msg; put ack=ack])nfget; put; get ack; put ackg)by (Exp), (Rel1){(Rel3), (Res1){(Res3)= send:recv:(S[put=ack; get ack=ack] jM jR[get=msg; put ack=ack])nfget; put; get ack; put ackg)by (�1) Figure 3: Proving that P = Svc.
23

De�nition 5.1 Let hQ;A;�!i be an LTS with � 2 A, let q 2 Q, and let s 2 (A� f�g)� bea sequence of visible actions.1. q s=) holds if there exists q0 such that q s=) q0. In this case we say s is a trace of q.L(q) denotes the set of all traces of q.2. q refuses B � A � f�g if jBj < 1 and for all b 2 B; there exists no q0 such thatq b=) q0.3. q is divergent, written q *, if and only if there exists an in�nite sequence q0; q1; : : : suchthat q = q0 and qi ��! qi+1 for all i � 0. q * s if and only if there exists a (possiblyempty) pre�x s0 of s and state q0 such that q s0=) q0 and q0 *. When this is the case wesay q diverges on s. We write q + s if q * s is not true and say that q converges on sin this case.4. A state q is totally convergent if q + s holds for all sequences s.5. Let s be a sequence of visible actions and B � A be �nite. Then hs; Bi is a failure forq if either q * s or there is a q0 such that q s=) q0 and q0 refuses B. We use F (q) torepresent the set of all failures of q.The failures/testing ordering rely on the notions of trace, refusal, divergence and failure.Intuitively, a trace of a state consists of a sequence of visible actions the state can perform,with arbitrary amounts of internal computation allowed in between. A refusal consistsof a �nite set of visible actions that a state is incapable of engaging in, no matter howmuch internal computation is performed. A state is divergent if it can engage in an in�nitesequence of internal transitions, thereby ignoring its environment; q * s holds if, in the courseof \executing" s, q could enter a divergent state. Finally, a failure consists of a sequence ofactions and a set of \o�ered actions" that a state can fail to complete, either by divergingin the course of performing the sequence or completing the sequence and arriving at a statethat is incapable of responding to the o�ered actions. As examples, consider the following.� The pair ha; fbgi is a failure of a:b:nil + a:c:nil and of a:(�:b:nil + �:c:nil) but not ofa:(b:nil+c:nil). Both of the former processes have a=) transitions to c:nil, which refusesfbg; the last process has no such transition.� Consider D �= �:D; D * s for any sequence s of visible actions, and consequently hs; Biis a failure for any D for any sequence s and �nite set of actions B.The sets L(q) and F (q) satisfy a number of properties. For example, the empty sequence� is in L(q) for any q. In addition, if q + s then s 2 L(q) if and only if there is a B such thaths; Bi 2 F (q). It should also be noted that if hs; Bi 2 F (q) and B0 � B then hs; B0i 2 F (q).Readers are referred to [32] for other such properties.We now introduce the following orderings and equivalences.De�nition 5.2 Let hQ;A;�!i be an LTS, with p; q 2 Q.24

1. p vL q if L(p) � L(q); p �L q if p vL q and q vL p.2. p vF q if F (p) � F (q); p �F q if p vF q and q vF p.The orderings vL and vF capture di�erent aspects of system behavior. The former relatessystems on the basis of their execution sequences; a \lesser" system has fewer executionpossibilities. The latter identi�es failure as undesirable; consequently, a \lesser process" hasmore possibilities for failure than a \greater one." In this case failure can either be the resultof nondeterminism or of divergence; the more nondeterministic or divergent a system is, themore failures it has.Both orderings are preorders on Q; that is, they are re
exive and transitive relations. Therelation vL is also referred to as the may preorder in [19, 25], while vF is called the mustpreorder. This terminology derives from connections with process testing: p vL q holds ifand only if every test that p may pass may also be passed by q, in a precisely de�ned sense,while p vF q holds if and only if every test that p must pass must also be passed by q. Inaddition, if q is totally convergent, then p vF q implies that q vL p. This follows becausefor any failure hs; Bi of q, s 2 L(q).Finally, it should be noted that in CCS, the system Div given by Div �= �:Div is a leastelement for both vL and vF . That is, Div vL p and Div vF p for any p.For many process algebras vL and vF are precongruences: \larger" systems may besubstituted for \smaller" ones inside any context, with the resulting over-all system beinglarger after the substitution. For CCS, vL is a precongruence, but vF is not, owing to theimpact that initial internal computation can have on the + operator. As was the case with�, one may identify the largest precongruence vCF contained within vF for CCS; it turnsout that for CCS systems p and q, p vCF q if and only if the following hold: p vF q, andp 6 ��! implies q 6 ��!.The relations vF and vCF have attracted much more attention in the literature than vLbecause of certain full-abstractness results that have been established for the former. Inparticular, for a number of languages it turns out that vF and vCF are the coarsest (i.e.most permissive) preorders that preserve deadlock information, in a precisely de�ned sense.Accordingly, the remainder of this section is devoted to a study of vCF .5.2 Axiomatizing vCF for CCSAs was the case for � and �C , vCF has been axiomatized for (fragments of) CCS. We presentthe axiomatization for Finite CCS below and talk brie
y about mechanisms for handlingrecursive processes.5.2.1 Finite CCSThe axiomatization for Finite CCS appears in Table 5. Unlike the other axiomatizations wehave seen, it is an inequational axiomatization: it is used to prove statements of the formp � q rather than p = q. The axioms therefore include inequalities; equalities such as Rule(F1) should be interpreted as short-hand for two inequalities, one in each direction.25

Table 5: Axiomatizing vCF for Finite CCS: Rule Set E5(A1){(A4) from Table 1; (Exp) from Table 2(F1) a:x+ a:y = a:(�:x + �:y)(F2) x + �:y � �:(x + y)(F3) a:x+ �:(a:y + z) = �:(a:x + a:y + z)(F4) �:x � x(F5) �:x + �:y � xTo see how these rules may be used to derive results, we give a sample proof of E5 `a:b:nil + a:c:nil � a:b:nil.a:b:nil + a:c:nil = a:(�:b:nil + �:c:nil) by (F1)� a:b:nil by (F5)The rules in Table 5 are sound and complete for vCF for Finite CCS.5.2.2 Reasoning about Recursive ProcessesTo handle recursive processes, one may use Rules (Unr) and (UFI) as given in Section 4.1.4.A su�cient condition for the existence of unique solutions to equations includes a requirementof divergence-freedom in addition to the strong-guardedness and sequentiality requirementsneeded for �C .Interpreting systems as sets of failures also permits the use of reasoning techniques from�xed-point theory in denotational semantics [25]. This is because the collection of sets offailures can be turned into a domain. We do not pursue this topic further, however.6 Computing Behavioral Relations for Finite-StateSystemsThe previous sections have developed several semantic equivalences and re�nement orderingsin the context of CCS, and (in)equational axiomatizations have been presented for deter-mining when two systems are related. However, the equational reasoning supported by theseaxiomatizations is tedious to undertake by hand. When the systems in question are �nite-state, meaning that the rooted labeled transitions systems for them contain only �nitelymany distinct states, these relations can be computed algorithmically. This section discussessome of the ideas underlying these decision procedures.6.1 Computing Behavioral EquivalencesMost behavioral equivalences can be computed by combining appropriate LTS transforma-tions with an algorithm for calculating bisimulation equivalence [17]. Accordingly, we �rst26

discuss techniques for deciding � and then show how these methods may be used in thecomputation of other equivalences as well.6.1.1 Calculating �Algorithms for � come in two basic varieties. Global algorithms require the a priori construc-tion of the state spaces of the systems in question before any analysis can be undertaken.On-the-
y approaches, on the other hand, combine analysis with state-space construction.The latter algorithms o�er obvious potential bene�ts: when systems are inequivalent, thismay be determined by examining only a subset of their states. These approaches are rel-atively new, however, and have not proven themselves in practice. Global approaches alsoenjoy better asymptotic e�ciency than existing on-the-
y methods. Consequently, we onlydiscuss the former.Global approaches to calculating � over a �nite-state LTS [20, 29, 38] compute the equiv-alence classes of � using approximation-re�nement techniques. Typically, these algorithmsbegin with a very coarse approximation to �: they assume that every state is related toevery other state, meaning that there is one equivalence class. Existing classes that arefound to contain inequivalent states are then split. The determination of inequivalence relieson examining the transitions emanating from states in a given equivalence class and theequivalence classes containing the targets of these transitions. When no more splitting ispossible, the �nal equivalence classes indeed represent the equivalence classes of � over thegiven LTS. These algorithms are sometimes called partition-re�nement algorithms, as thecollections of equivalence classes are maintained as partitions (i.e. lists of disjoint sets ofstates). The best algorithm has complexity O(m logn), where m represents the number oftransitions in the LTS and n the number of states [20, 38].In order to use a partition-re�nement algorithm to determine whether two CCS expres-sions are bisimilar, one would �rst construct the labeled transition system whose statesconsist of all CCS expressions reachable from the two in question. A partition-re�nementalgorithm may then be applied to this LTS, and if the two expressions in question everwind up in di�erent equivalence classes, they are inequivalent. Otherwise, if the re�nementprocedure terminates with them in the same class, then they are equivalent.Partition-re�nement algorithms may also be used to minimize LTS's with respect to �.This is done by replacing states by equivalence classes; the resulting LTS contains exactlyone state per equivalence class.6.1.2 Computing Other EquivalencesAs the introduction to this section indicates, a variety of other behavioral equivalences maybe computed by �rst applying a transformation to the underlying LTS and then using analgorithm for �. Here we present two examples of this approach.Calculating �. To calculate the �-equivalence classes of an LTS, one may alter the LTS byreplacing the a�!-transitions by â=)-transitions and then computing � over the transformedLTS. A similar approach works for �C , although one must �rst transform the LTS to ensure27

that the start state contains no incoming transitions and then replace a�!-transitions fromthe start state by a=)-transitions (and not â=)-transitions).Computing �S. To determine whether two states in a given �nite-state LTS are strongtrace equivalent, one may apply the well-known subset construction to determinize theLTS [28] and then compute the equivalence classes of �. The two states in question will havethe same strong traces if and only if the subsets containing only these states are bisimilar inthe transformed LTS.6.2 Computing Re�nement OrderingsThe calculation of re�nement orderings follows a similar pattern to that of equivalences: agiven ordering can be computed by combining an LTS transformation with a procedure fora certain generic ordering [15, 17]. The generic ordering is somewhat less standard than itsequivalence-relation counterpart, �, but in many cases the simulation ordering may be used.In the remainder of this section we de�ne this ordering and indicate very brie
y how it isused as a basis for computing other relations.The simulation ordering. Given an LTS hQ;A;�!i, a simulation is a relationR � Q�Qwith the property that when hp; qi 2 R, then the following holds for all a 2 A.p a�! p0 implies q a�! q0 for some q0 with hp0; q0i 2 R:So if p is related to q in a simulation, then q can \simulate" the behavior of p by \matching"its transitions. The simulation ordering then may be de�ned by: p v q if and only if thereexists a simulation R with hp; qi 2 R.Algorithms for computing v on �nite-state LTS's follow a similar strategy to that for �in that they use approximation re�nement. Initially, every state is assumed to be related toevery other state; then, as pairs of states are found not to be related because the �rst has atransition that can't be \simulated" by the second, they are removed. When no more pairscan be removed, the remaining pairs constitute v for this LTS.Since v is not an equivalence, partitions cannot be used as data structures, and theresulting algorithms exhibit somewhat worse worst-case performance: the best algorithmsuse O(mn) time, where m is the number of transitions and n the number of states [15].Computing other orderings. As an example of how an algorithm for v may be usedin the calculation of other relations consider the trace-containment relation: p vL q if andonly if L(p) � L(q). This relation may be computed by �rst replacing a�! transitions byâ=) ones, determinizing the resulting LTS using the subset construction, and then applyinga v algorithm to the result. Other relations, including the failures/testing ordering, may becomputed similarly [17].
28

6.3 Tool SupportSeveral tools have been implemented that include implementations of algorithms for dif-ferent behavioral relations. Noteworthy examples include Ald�ebaran [11], the ConcurrencyWorkbench [18] and FDR [40].7 Other Process AlgebrasThe presentation in this chapter has focused on a particular process algebra, CCS, and onsemantic relations for CCS. In this section we discuss other process algebras and process-algebra-oriented results. Since 1980 over 1000 journal and conference papers have beenpublished in the area; as a result, the discussion here will necessarily be incomplete. Inter-ested readers are referred to the forthcoming Handbook of Process Algebra, to be publishedby Elsevier, for a more complete account of the state of the art.Schools of process algebras. The discussion in this chapter has followed the approachadvocated by the Edinburgh school of process algebra, so named because CCS was inventedat the University of Edinburgh. The Edinburgh school places primacy on operational seman-tics, with equivalences and re�nement relations then de�ned on labeled transition systemsresulting from these operational de�nitions. The chief virtue of this approach lies in its insis-tence on understanding language constructs operationally; this emphasis accords well withintuitions about system behavior. The drawback of this approach arises from the fact thatsince operational equivalences and re�nement orderings are de�ned on language-independentstructures (i.e. labeled transition systems), determining which relations are congruences be-comes nontrivial.Two other schools of process algebra have also arisen. The Amsterdam school focuses onequational axioms as the basis for de�ning the semantics of languages [6]. In this approachone de�nes the syntax of an algebra and then provides a set of axioms that one uses to deduceequivalences. Traditional techniques from universal algebra may then be used to constructmodels of these equational theories. These constructions ensure that the model-theoreticnotions of equivalence are congruences for the language in question; the drawback is thatequations may, to a certain degree, obscure the operational intuitions underlying operatorsin the algebra.The Oxford school focuses on denotational semantics as the basis for de�ning processalgebras [27]. The Oxford approach relies on de�ning a mathematical space of system mean-ings and then interpreting algebraic operators as functions in this space. The space moststudied by Oxford adherents consists of failure sets as presented in Section 5; process con-structors then become functions mapping sets of failures to sets of failures. As with theAmsterdam approach, the virtue of this methodology is that the semantic equivalence inher-ited from the semantic space is guaranteed to be a congruence for the language; additionally,traditional techniques from denotation semantics may be used to de�ne the semantics of re-cursive processes in a mathematically elegant fashion. The drawback arises from the paucityof operational insight the semantics provides for the operators.29

Operators in traditional algebras. The di�erent schools just mentioned have also tra-ditionally focused on including somewhat di�erent operators in their algebras. CCS includesa parallel composition operator that supports binary synchronous communication. The Al-gebra of Communicating Processes (ACP) algebra developed by the Amsterdam school onthe other hand allows the speci�c communication mechanism to be parameterized; by in-cluding di�erent axioms one obtains di�erent synchronization behavior. ACP also includes atraditional sequential composition operator that generalizes the pre�xing construct of CCS.Theoretical CSP (TCSP), the process algebra studied by the Oxford school, features multi-way rendezvous as its model of interaction; a hiding operator allows actions to be convertedinto internal actions. Another novel feature of this language is its separation of choice (i.e.+) into two constructs, external and internal. The former can only be resolved by visi-ble actions, while the latter is always resolved autonomously, without interaction from theenvironment.These algebras have also inspired the development of LOTOS, a process algebra withexplicit data passing that is an ISO standard protocol speci�cation notation [9]. LOTOScombines CSP-like operators with a facility for user-de�ned data types; like CCS, actionsmay be categorized as inputs or outputs, with the former extended with a capability forbinding incoming values to variables and the latter including speci�c values to be output.Algebras for synchrony. Traditional process algebras, including those mentioned above,typically include a synchronous model of communication but an asynchronous model of ex-ecution. That is, processes interact by synchronizing, but not every process in a systemneed execute in order for a system transition to take place. This makes traditional algebrasuseful for modeling loosely coupled systems, but it renders them problematic as vehicles fordescribing synchronous, globally-clocked systems like traditional digital circuits. To over-come this di�culty, several researchers have proposed algebras whose parallel compositionoperator requires all subsystems to engage in transitions in order for the system to performan execution step. The best-known of these is Synchronous CCS [35], whose action set formsa commutative group whose product operator is interpreted as \simultaneous execution."Other synchronous process algebras of note include Meije [2] and CIRCAL [33]; the latterwas speci�cally developed for reasoning about circuits. All three algebras use equivalencesbased on strong bisimulation; weak equivalences such as observational equivalence will nec-essarily not be congruences for such languages, since the internal computation a subsystemmay engage in will directly a�ect the transitions available to the surrounding system.Meta-algebraic results. The algebras just described feature a variety of di�erent op-erators; in each case, the Edinburgh approach (which has become dominant) requires theproof of congruence results for bisimulation. Some researchers have addressed this problemby proving that, provided the SOS rules de�ning a language's operators satisfy a certainformat, bisimulation is guaranteed to be a congruence [7, 8, 23]. Other results show howequational axiomatizations for languages satisfying these requirements may be automaticallyderived [1].
30

Other semantic relations. Researchers have also investigated relations other than theones presented here. Branching bisimulation [41] aims to remedy a perceived defect ofobservational congruence that allows transitions in one process to be matched by weaktransitions in the other that permit inequivalent states to be \transitioned through". Thisequivalence is somewhat �ner (i.e. relates fewer systems) than observational equivalence, anda sound and complete axiomatization for �nite ACP terms, and algorithms for �nite-statesystems, have been developed. Ready simulation [7] represents a re�nement ordering thatis fully abstract for deadlock when the language considered includes all operators de�nableusing SOS rules of a certain format. A number of other relations have also been proposed;the interested reader is referred to [42] for a thorough survey and taxonomy.Capturing other features of system behavior. Traditional process algebras have fo-cused on nondeterminism and synchronization as the essential behavioral features distin-guishing concurrent systems from sequential ones. Inspired by the elegance of the resultingtheories, researchers have attempted to develop operational theories that allow other aspectsof system behavior to be captured (in)equationally. One strand of inquiry has focused on so-called true concurrency. One criticism of traditional process algebras is that they \reduce"concurrency to nondeterminism by interpreting parallelism as interleaving. Truly concurrentmodels instead attempt to capture \true" notions of simultaneity. A number of di�erent the-ories have been developed, and a full account is beyond the scope of this chapter. A goodstarting point, however, may be found in [10], which introduces the notion of location of atransition explicitly into the operational semantics of CCS and develops a bisimulation-basedtheory of equivalence based on this.Other work has focused on including notions of priority into the operational semantics ofprocess algebras. The �rst such work [4] extends ACP action with priority and and operatorfor \enforcing" priorities. In [16] CCS actions are enriched with a two-level priority struc-ture, with high-priority actions intuitively being thought of as \interrupts". Camilleri andWinskel [14] opt instead for a prioritized choice operator that gives precedence to one choiceover another when both are enabled. Also worthy of note is the resource-oriented processalgebra ACSR [21], which allows the modeling of resource contention in which di�erent re-source requests may be given di�erent priorities. In all of these cases, semantic equivalencesbased on strong bisimulation are de�ned and axiomatizations developed.Process algebras for real-time systems have also been developed. Generally speaking,these theories introduce special \time-passing" actions, with all other actions being viewedas instantaneous. The Algebra of Timed Processes [37] pioneered this approach, with usefulvariants being proposed in [30].Another area of ongoing research involves the incorporation of probabilistic behavior intosystems, with a view toward providing a theory in which quality-of-service statements canbe made. One strand of this research augments traditional process algebra with notions ofprobabilistic choice in which nondeterminism is resolved probabilistically [5, 31, 43]. Otherpieces of work incorporate notions of time and probability in order to model stochasticsystems, in which the time needed to perform a given action is drawn from a continuousprobability distribution. Noteworthy examples include [22, 24].31

8 ConclusionThis chapter has surveyed results in the area of process algebra. It has presented severalbehavioral equivalences and re�nement orderings, and it has shown how they may be axiom-atized in the setting of CCS [36]. Decision procedures for �nite-state systems have also beentouched on. The treatment has necessarily been sketchy, and much interesting material hasbeen omitted, including a variety of case studies illustrating di�erent applications of processalgebra. Interested readers may turn to [3, 13, 40] as a starting point for investigating thistopic.References[1] L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS rules into equations. Informationand Computation, 111(1):1{52, May 1994.[2] D. Austry and G. Boudol. Alg�ebre de processus et synchronisation. Theoretical Com-puter Science, 30:91{131, 1984.[3] J.C.M. Baeten, editor. Applications of Process Algebra, volume 17 of Cambridge Tractsin Theoretical Computer Science. Cambridge University Press, Cambridge, England,1990.[4] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and de�ning equations for aninterrupt mechanism in process algebra. Fundamenta Informatica, 9:127{168, 1986.[5] J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing probabilistic processes:ACP with generative probabilities. Information and Computation, 121(2):234{255,September 1995.[6] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts inTheoretical Computer Science. Cambridge University Press, Cambridge, England, 1990.[7] . Bloom, S. Istrail, and A. Meyer. Bisimulation can't be traced. Journal of the Associ-ation for Computing Machinery, 42(1):232{268, January 1995.[8] R.N. Bol and J.F. Groote. The meaning of negative premises in transition systemspeci�cations. Journal of the Association for Computing Machinery, 43(5):863{914,September 1996.[9] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation language LOTOS.Computer Networks and ISDN Systems, 14:25{59, 1987.[10] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. TheoreticalComputer Science, 114(1):31{61, June 1993.[11] A. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier. Protocol veri�cation with theAld�ebaran toolset. Software Tools for Technology Transfer, 1(1+2):166{183, December1997. 32

[12] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequentialprocesses. Journal of the Association for Computing Machinery, 31(3):560{599, July1984.[13] G. Bruns. Distributed Systems Analysis with CCS. Prentice-Hall, London, 1997.[14] J. Camilleri and G. Winskel. CCS with priority choice. Information and Computation,116(1):26{37, January 1995.[15] U. Celikkan and R. Cleaveland. Generating diagnostic information for behavioral pre-orders. Distributed Computing, 9:61{75, 1995.[16] R. Cleaveland and M.C.B. Hennessy. Priorities in process algebra. Information andComputation, 87(1/2):58{77, July/August 1990.[17] R. Cleaveland and M.C.B. Hennessy. Testing equivalence as a bisimulation equivalence.Formal Aspects of Computing, 5:1{20, 1993.[18] R. Cleaveland, J. Parrow, and B. Ste�en. The Concurrency Workbench: A semantics-based tool for the veri�cation of �nite-state systems. ACM Transactions on Program-ming Languages and Systems, 15(1):36{72, January 1993.[19] R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. TheoreticalComputer Science, 34:83{133, 1983.[20] J.-C. Fernandez. An implementation of an e�cient algorithm for bisimulation equiva-lence. Science of Computer Programming, 13:219{236, 1989/1990.[21] R. Gerber and I. Lee. A resource-based prioritized bisimulation for real-time systems.Information and Computation, 113(1):102{142, August 1994.[22] R. Gorrieri, M. Roccetti, and E. Stancampiano. A theory of processes with durationalactions. Theoretical Computer Science, 140(1):73{94, March 1995.[23] J.F. Groote and F. Vaandrage. Structured operational semantics and bisimulation as acongruence. Information and Computation, 100(2):202{260, October 1992.[24] P. Harrison and J. Hillston. Process algebras and their application to performancemodelling. The Computer Journal, 38(7):489{491, 1995.[25] M.C.B. Hennessy. Algebraic Theory of Processes. MIT Press, Boston, 1988.[26] M.C.B. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.Journal of the Association for Computing Machinery, 32(1):137{161, January 1985.[27] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.[28] J. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-putation. Addison-Wesley, Reading, Massachusetts, 1979.33

[29] P. Kanellakis and S.A. Smolka. CCS expressions, �nite state processes, and three prob-lems of equivalence. Information and Computation, 86(1):43{68, May 1990.[30] K. Larsen and W. Yi. Time-abstracted bisimulation: Implicit speci�cations and decid-ability. Information and Computation, 134(2):75{101, May 1997.[31] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information andComputation, 94(1):1{28, September 1991.[32] M. Main. Trace, failure and testing equivalences for communicating processes. Inter-national Journal of Parallel Programming, 16(5):383{400, 1987.[33] G. Milne. CIRCAL and the representation of communication, concurrency and time.ACM Transactions on Programming Languages and Systems, 7(2):270{298, April 1985.[34] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-puter Science. Springer-Verlag, Berlin, 1980.[35] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267{310, 1983.[36] R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.[37] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application.Information and Computation, 114(1):131{178, October 1994.[38] R. Paige and R.E. Tarjan. Three partition re�nement algorithms. SIAM Journal ofComputing, 16(6):973{989, December 1987.[39] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI-FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark, 1981.[40] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.[41] R. van Glabbeek and P. Weijland. Branching time and abstraction in bisimulationsemantics. Journal of the Association for Computing Machinery, 43(3):555{600, March1996.[42] R.J. van Glabbeek. Comparative Concurrency Semantics, with Re�nement of Actions.PhD thesis, Free University, Amsterdam, 1990.[43] R.J. van Glabbeek, S.A. Smolka, and B. Ste�en. Reactive, generative and strati�edmodels of probabilistic processes. Information and Computation, 121(1):59{80, August1995.
34

