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Abstract

The effectiveness of the software testing process is determined by several artifacts used

in testing, including the program, the set of tests, and the test oracle. However, when

evaluating software testing techniques, the influence of some testing artifacts is often

overlooked, with much of testing research focusing solely on the test inputs selected.

This oversight represents both a potential problem, and a potential opportunity.

If there exists interrelationships between these artifacts, a failure to consider these

relationships represents a threat to the validity of software testing studies. However,

by understanding these potential relationships, we may discover insights that allow

us to improve the testing process.

In this dissertation, we explore the interrelationship between three testing arti-

facts: the program, the test oracle, and the test inputs, establishing a foundation for

understanding how they interact. We provide two core contributions towards this

goal. First, we propose a theoretical framework for discussing testing based on pre-

vious work in the theory of testing. Second, we perform a rigorous empirical study

controlling for program structure, test coverage criteria, and oracle selection in the

domain of safety critical avionics software.

We find that these interactions are both theoretically and practically present, with

contributions including: an improved conceptual framework for discussing software

testing; a demonstration of errors in existing theoretical work on testing related to

test oracle assumptions; demonstration that program structure strongly impacts both

the cost and effectiveness of structural coverage criteria, with negative implications

for current testing practice; results indicating that considering the interactions and

tradeoffs between test oracles and test inputs may yield improvements in testing
ii



practice; demonstration of how program structure influences test oracle effectiveness,

thus indicating methods of improving observability may improve testing effectiveness.

These results thus highlight the importance of understanding the interaction between

testing artifacts, quantify how these interactions occur in avionics software, and point

towards future directions in testing research.
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Chapter 1

Introduction

Software testing is a key component of the validation and verification (V&V) phase

of software development. This phase of software development is a potentially costly

and time consuming process, often requiring significant manual effort on the part of

developers and testers. Consequently, determining how to effectively test software is

both a crucial and common task, and evaluating proposed testing techniques is an

active area of testing research.

Conceptually, the process of software testing is simple: we run the software using

some specified input, observe the software’s execution, and decide if the execution

appears to be correct. While the specific goal or focus of testing can vary, generally

speaking we are interested in detecting faults within the software. Several artifacts

are involved in the testing process, including the set of test inputs to be run (more

commonly referred to as test data in the testing literature), the test oracle, or method

of determining the correctness of the software, the software or program to be tested,

and the specification the software is intended to implement.

Testing research, however, is predominately focused on determining what test

data to use, e.g., creation and evaluation of test coverage criteria or automatic test

generation tools. Evaluations of these techniques often only explicitly vary a single

factor—the test data used—while simultaneously using a small number of software

systems and a single, often implicit, test oracle. The influence of the software system

and the nature of the test oracle are often unexplored, with the reader left to infer

what, if any, effect these artifacts may have on the results.

1
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The research objective of this dissertation is to provide an impetus for testing

researchers to consider how the various testing artifacts may jointly influence the

effectiveness of the testing process. Two primary reasons motivate this objective.

First, as with all empirical research, effective empirical testing research requires us

to be aware of the factors influencing our results. If we do not control for, or at least

understand, the factors underlying our results, our conclusions will be at best limited

in their generalizability and at worst incorrect. Second, the research community

may derive new testing techniques or improve existing techniques through a better

understanding of the artifacts influencing the effectiveness of testing.

Of course, this is a broad goal, not a problem that can be “solved” in a definitive

fashion. In our dissertation, we work towards a solid scientific foundation for thor-

oughly understanding the interrelationship between four required testing artifacts:

tests, programs, oracles, and specifications. We provide two primary contributions

towards this foundation: (1) a theoretical framework for discussing testing, and (2) a

rigorous multifactor empirical study on test effectiveness examining several potential

interactions between testing artifacts in the context of safety critical avionics systems.

1.1 A Holistic View of Testing Effectiveness

Early work on the testing process focused on test selection, leading to the definition

of test data adequacy criteria by Goodenough and others [26, 27, 73]. Subsequent

work in testing has reinforced this test-data-selection-centric view of testing, with

one author even observing that the problem of testing is to “find a graph and cover

it” [5]. Unsurprisingly, a large quantity of work explores which test coverage criteria

to use, how to generate tests satisfying various criteria, etc., while mostly ignoring

the influence of other testing artifacts such as test oracles.

Nevertheless, some work does explore the influence of other artifacts on testing
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P

S

TO

Syntactic structure may guide test selection

Semantics determines propagation of errors for each test

Combination of O and T determines efficacy of testing process
Tests suggest variables worth observing

Tests designed to distinguish incorrect P from S

S may guide test selection

P attempts to 
implement S

O approximates S

Observability
 of P lim

its inform
atio

n available to
 O

Figure 1.1: Example Relationships Between Testing Artifacts

P = Programs, S = Specification, T = Test Data, O = Oracles

research. In Figure 1.1, we illustrate potential interrelationships between the four

testing artifacts: programs, specifications, tests, and oracles. These interrelationships

are drawn from our own observations and those of other authors, which we detail

in Chapter 2. Some of these relationships are straightforward and intuitive. For

example, the relationship between the specification and the program is fairly obvious:

the program is intended to implement the specification. The relationship between

programs and tests can be explicit, as is the case when using structural coverage

criteria, where the adequacy of a test suite is based on how well it covers syntactic

aspects of the program structure [83]. Other relationships are less obvious. Examples

include using testability information to identify program locations where faults are

difficult to detect, thus indicating locations where assertions may be placed to improve

the quality of the oracle [67] (program structure used to inform oracle construction),

and the joint influence of test sets and oracles on fault finding effectiveness [47, 10].

However, studies exploring these relationships are relatively uncommon in the

body of testing research. This leads to a generally one-dimensional view of testing

effectiveness centred on test inputs. We believe that by adopting a more holistic
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view of testing that explicitly considers multiple factors, we can (1) improve our

understanding of existing testing techniques through better constructed evaluations

and subsequently (2) improve the effectiveness of the testing process through a better

overall understanding of testing. Several surveys exploring existing testing research

support this belief, with two main points emerging.

First, several authors call for a stronger empirical foundation in testing research [33,

8, 42]. Such a foundation is needed to evaluate the effectiveness of existing and pro-

posed techniques and to further evolve the state of the art. Of particular relevance to

this dissertation are calls for work beyond test selection, with a specific call for work

on test oracles [8].

Second, the quality of empirical studies in testing research is perhaps not as high

as we would like [9]. While several problems are highlighted, of particular relevance

to this dissertation is the existence of several potential confounding factors in testing

research, and their ability to negatively impact the internal validity of studies. These

confounding factors include the test oracle selected, the system under test, the type

of faults used, and the training and skill of testers (when performing experiments

with human subjects) [9].

1.2 Methods of Evaluating Testing Techniques

In testing research, we often wish to evaluate a testing technique, generally to de-

termine the cost of applying the technique and the effectiveness of the technique in

terms of fault detection ability. We divide approaches for discussing and evaluat-

ing testing techniques into two basic approaches: the theoretical approach and the

empirical approach.

In the theoretical approach, testing techniques are formalized using some model

of testing. Often, this framework is then used to show properties of interest hold
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or do not hold. Potential properties of interest include proving a testing technique

can or cannot demonstrate complete correctness of a program [73], proving a test-

ing technique can or cannot distinguish between a correct program and a specific

set of “almost” correct programs [11], or proving a testing technique is always or

probabilistically “better” than some other testing technique [74].

In the empirical approach, traditional scientific methods of experimentation and

observation are applied to testing techniques. In these studies, the test subjects are

collections of software engineering artifacts (including programs), and the experiments

consist of applying one or more testing techniques to the selected artifacts. The

results, which may consist of fault finding measurements, test coverage measurements,

etc., are then analyzed and conclusions are drawn concerning the effectiveness of the

examined testing techniques.

Both approaches have benefits and disadvantages, and we therefore employ both in

this work. The formal descriptions of testing inherent in theoretical work can be useful

for discussing the problems of software testing in a rigorous and unambiguous fashion.

Furthermore, the theoretical approach excels at highlighting the limitations of testing,

e.g., the inability of testing to (in general) prove the correctness of software [11, 73, 27].

However, such results may not apply to actual systems developed by programmers,

and therefore may not be practically applicable.

The empirical approach allows us to examine questions relevant to effectively ap-

plying testing techniques. Specifically, the results of controlled experiments allow

us to precisely quantify questions of interest using actual systems, e.g., measure the

relative fault finding of testing techniques. Unlike the theoretical approach, however,

no consistent conceptual framework needs to exist in empirical studies; the experi-

menters can describe the problem studied in whatever way they wish. Consequently,

important relevant information may be omitted from the description of empirical
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studies. This makes interpreting the results and comparing across studies difficult,

and prevents, for example, the conduction of rigorous meta-studies in software engi-

neering. However, demonstrating that some conclusion holds in general is difficult or

impossible, and therefore generalizability suffers relative to theoretical approaches.

1.2.1 Relationship Between Theoretical and Empirical Approaches

In principle, both approaches exist independent of one another. Indeed, the ap-

proaches often address different questions and can thus be thought of as complemen-

tary tools in testing research.

Nevertheless, theoretical work should influence empirical work in at least two ways.

First, theoretical work often includes concise, clear descriptions of testing techniques.

When used to frame our discussion, these descriptions provide a rigorous conceptual

framework for discourse, helping to describe the problem of interest, why the problem

is relevant, and how the empirical study is conducted.

Second, theoretical work often highlights problems worthy of study. Clearly, em-

pirical testing research, like empirical research in any field, frequently highlights in-

teresting problems for study. However, the problems highlighted in theoretical testing

research, being derived from formal descriptions of testing, tend to be concise, clear

and general—in other words, they tend to be key high-level problems.

Furthermore, theoretical work often describes the characteristics of an ideal solu-

tion. For example, early work in testing research by Gourlay defines a test method

as a function mapping a program and a specification to a set of tests [27]. This

is a concise, clear, and general description of a problem common in testing, that

of determining the test data used. Gourlay then continues on to define the power

comparison for test methods, stating that test method M is more powerful than test

method N if, when N finds a fault, M finds a fault. Unfortunately, this comparison is
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limited in practical application. These limitations are demonstrated by Weyuker [74],

who shows that few test methods are usefully comparable under Gourlay’s definition.

Thus, Gourlay’s original work clearly defines a problem and a method of compar-

ing solutions, while subsequent work highlights the practical limitations of possible

solutions.

This example demonstrates how theoretical work can help define the problems

and ideal solutions of testing research. We therefore revisit this work, extend it to

better account for certain overlooked aspects of testing (such as test oracles), and

highlight how artifacts may potentially interact.

1.3 Objective and Contributions

Our long-term research objective is to improve the quality of testing by improving our

understanding of how testing artifacts may interact to influence the effectiveness of the

testing process. This objective is motivated by three factors discussed above: (1) the

need for a solid foundation for testing research, (2) shortcomings in existing empirical

studies, and (3) a lack of work exploring how multiple artifacts can influence testing

effectiveness, despite evidence that this interaction exists. By better understanding

how testing artifacts interact, we may be able to improve the effectiveness of the

testing process, both through better understanding of testing and through better

evaluations of proposed testing techniques.

Of course, we recognize that much work needs to be done to improve our under-

standing of how testing artifacts influence testing effectiveness, and that this disser-

tation can only form a small part of this work. Accordingly, the objective of this

dissertation is to improve our understanding of how testing artifacts interact to in-

fluence testing effectiveness specifically within the domain of safety critical avionics

systems. As outlined in the previous section, in pursuing our goal we employ two



8

approaches: (1) the development of a theoretical framework for discussing testing,

defining relevant testing concepts and highlighting problems in existing frameworks,

and (2) the conduction of a large-scale empirical study exploring several practically

relevant interactions between testing artifacts.

In this dissertation we make the following specific contributions to towards un-

derstanding how multiple artifacts influence the effectiveness of the testing process:

Theoretical Testing Framework: We develop a theoretical functional framework

for discussing testing. This framework improves upon the conceptual frame-

work laid down by previous work in the area, notably that of Gourlay [27]. We

apply this functional framework to discuss and define new, useful and relevant

testing concepts, particularly related to properties of test oracles and the selec-

tion of test oracles. We also apply this functional framework to demonstrate

how test oracles can impact the testing process; notably, we demonstrate that

previous theoretical results rely on an implicit assumption of a fixed oracle,

and that varying this test oracle can sometimes result in different conclusions.

(Chapter 3.)

Impact of Program Structure on Structural Coverage Criteria: We empiri-

cally demonstrate how program structure impacts the effectiveness of the testing

process when using structural coverage criteria (e.g., branch coverage). We find

that by varying the complexity of expressions in the system under test, we can

impact both the size and effectiveness of test suites satisfying structural cover-

age criteria. Unfortunately, we also find that these two potential impacts are

correlated—a reduction in test suite size corresponds to a reduction in effec-

tiveness. In the context of avionics systems, these results are disconcerting, as

the use of structural coverage criteria is required when testing certain avionics

systems. We demonstrate that financial rewards through decreased test suite
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size may be possible when restructuring systems, but that this restructuring

may also cause significant decreases in effectiveness. (Chapter 5.)

Influence of Test Oracles and Test Inputs on Effectiveness: We empirically demon-

strate how test oracle selection can impact the effectiveness of the testing pro-

cess when using a variety of test inputs. Notably, we demonstrate tradeoffs are

often present in testing: depending on the costs associated with testing arti-

facts and the system under test, the most cost effective results may be achieved

using relatively powerful test suites with relatively weak test oracles, or rela-

tively weak test suites with relatively strong test oracles, or some combination

in between. These results provide an impetus for exploring methods of ora-

cle selection, particularly methods of oracle selection which pair test input with

test oracles. These results also hint at possible methods of selecting oracle data.

(Chapter 6.)

Impact of Program Structure on the Influence of Test Oracles: We empiri-

cally demonstrate how program structure can negatively impact the influence of

test oracles. These results provide an additional example demonstrating the im-

portance of considering factors in empirical studies, as well as provide evidence

supporting the (non-trivial) development of tools for increasing observability in

software systems. (Chapter 7.)

These results provide strong evidence that program structure, test oracles, and

test data may interact to influence the effectiveness of the testing process. With

respect to our research objective, this dissertation provides both a theoretical frame-

work improving our ability to discuss interesting problems in software testing, and

an empirical foundation quantifying how several key artifacts interact. This pro-

vides sufficient motivation for testing researchers to consider in future studies how
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interactions between artifacts may impact their results. Furthermore, this disserta-

tion identifies several questions that may lead to improvements in software testing.

Notable questions include:

• For each structural coverage criterion explored, can we develop a canonical

method (or methods) of structuring programs such that tests generated to sat-

isfy these criterion will be effective?

• Can we develop new coverage criteria that allow us to construct small, but

highly effective test sets (relative to existing methods of test input generation)?

• For a given test suite, how can we efficiently determine the most effective oracle

for a given system?

• For a given system under test, how can we efficiently determine the most effec-

tive combination of test suite and oracle for a given system?

• How can we structure programs such that the test oracle will be very effective

without unnecessarily increasing the cost of software testing?

1.4 Organization

This dissertation is organized as follows. In Chapter 2, we outline related work. In

Chapter 3, we present our formal framework, and use it to provide a discussion of

testing concepts, definitions, and the impact of previously ignored artifacts (notably

test oracles) on existing theoretical testing work. In Chapter 4, we outline how our

studies were conducted; results are discussed in subsequent chapters. We explore

the impact of program structure on structural coverage criteria in Chapter 5. In

Chapter 6, we explore the impact of oracle selection on testing effectiveness, in par-

ticular focusing on how oracle selection and test input selection interact. In our final
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empirical chapter— Chapter 7—we explore how the program structure impacts the

influence of test oracles. We conclude our dissertation in Chapter 8.



Chapter 2

Related Work

Testing research in general is a vast area of research that has been ongoing for several

decades, producing voluminous work. Thus, while our research objective is aimed at

improving the quality of testing research in general, a complete survey of all poten-

tially affected or related work is well beyond the scope of our research. Instead, we

will focus on two core areas of related work: the theory of testing, and empirical work

on the effectiveness of testing.

2.1 Theory of Testing

It is difficult to precisely determine what work contributes to the “theory of testing”—

work ranges from mathematical frameworks for describing testing, complete with

proofs illustrating the implications of the framework, to formally defined, but intu-

itively based, “axioms” of test coverage criteria. We consider work on testing to be

part of the theory of testing if it (1) describes the process of testing using a formalism,

(2) defines concepts or definitions related to testing using a formalism, or (3) explores

the effectiveness or limitations of testing techniques mathematically, without exper-

imentation. This is a broad definition, but it captures work with descriptive power;

that is, work that can be used to aid discussions of testing, or work that is often used

as motivation in empirical work.

Of specific interest to us is work falling under (1) and (2). Exploring frame-

12
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works for describing testing is thus the focus of the survey in this section, though

work concerned with test set selection provides relevant background and is thus also

explored.

We begin our discussion by exploring early work in the theory of testing, as this

work provided the original ideas and definitions used in much of the later work. We

then continue on to explore subfields of the theory of testing.

2.1.1 Beginnings of the Theory of Testing

The earliest work in the theory of testing was performed by Goodenough and Ger-

hart [26]. The theory proposed by the authors is based on test data selection and

defines two properties a test data selection criterion should have. These properties

are reliability, which states that a test satisfying the criterion will always produce the

same results (either declaring the program correct or incorrect), and validity, which

states that for every error in the program, there exists test data satisfying the crite-

rion which will detect the error. Thus every test satisfying a reliable and valid test

data selection criterion will detect all errors in a program.

Weyuker and Ostrand notes several flaws in Goodenough and Gerhart’s work [73].

In particular, they show (1) that reliability and validity of a test data selection crite-

rion depends on the program under test, (2) for any given program, every test data

selection criterion is necessarily either reliable or valid, and (3) determining if a test

data selection criterion is both reliable and valid requires knowledge of the errors in

the program under test, information generally unavailable (and whose existence would

make testing for the purpose of fault detection unnecessary). (Note with respect to

point (2), the authors assume determinism.) Furthermore, Howden shows no com-

putable methods can establish correctness in general [37], while Budd and Angluin

show that for two notions of adequate test data, where the success of adequate test
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data implies program correctness, generating or even recognizing adequate test data

is not always possible [11]. Nevertheless, the general goal put forth by Goodenough

and Gerhart—finding a test data selection criterion such that any test satisfying the

criterion is guaranteed to detect faults—underlies much of the work in the theory of

testing. In particular, this goal is often used in testing research to characterize what

an “ideal” test set should accomplish.

Gourlay presents an influential mathematical framework for testing [27], and uses

it to re-interpret previous work by Goodenough and Gerhart [26], Howden [37].

The core of this framework is Gourlay’s definition of a testing system: a collection

< P ,S, T ,corr ,ok> where P , S, and T are arbitrary collections of programs, spec-

ifications and tests, respectively, and where the predicates corr and ok are defined

as corr ⊆ P × S and ok ⊆ T × P × S, where ∀p ∈ P ,∀s ∈ S,∀t ∈ T (corr(p, s) ⇒

ok(t, p, s)). The predicate corr represents the correctness of a program p with re-

spect to a specification s, while the predicate ok represents the test t performed on

a program P is judged successful with respect to a specification s. As correctness

of the program under test is generally not known during testing, corr is theoretical

and used in discussions by Gourlay to relate testing to correctness. The predicate ok

effectively acts as a test oracle, determining if an executed test is successful. A test

set is a set of tests, i.e., T ⊆ 2T .

Gourlay then defines a test method as a function M : P × S → T . This function

represents a test coverage criterion (as a generator) in Gourlay’s framework. Gourlay

then explores how test methods can be evaluated with respect to their ability to

detect faults and compared theoretically. He defines the power comparison for test

methods, where a test method M is at least as powerful as a test method N (M ≥ N)

if any test set satisfying N finds a fault, any test set satisfying M will also find a fault.

Gourlay then demonstrates that reliability and power are related (as well as other
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formulations of test method effectiveness). Weiss transforms Gourlay’s functional

test method into a equivalently defined predicate: TC : P × S × 2T (this states that

every program, specification and set of tests maps to true if the coverage criterion is

satisfied or false if not satisfied). [68]. This definition more closely matches how test

coverage criteria are defined in practice and thus most subsequent work is based on

this definition rather than Gourlay’s generator version.

Gourlay’s definition of a testing system is rarely explicitly used to describe testing

techniques; nevertheless, his formalizations of the test set selection problem and the

theoretical power of a testing method often are used in subsequent work in the theory

of testing, as we will see in the remainder of this section.

2.1.2 Test Data Adequacy

As noted in the introduction, the effectiveness of testing techniques is often viewed

as being determined by the test data used. Unsurprisingly, significant research effort

has focused on how to select tests to meet testing objectives, a problem we term

the test set selection problem. Many research efforts, both theoretical and empirical,

have focused on formulating and evaluating objective metrics of test suite quality.

These metrics are known by many names, including test data adequacy criteria, test

coverage metrics, test methods, etc., and can be formulated equivalently as predicates

or generators [83]. In the remainder of this work, we will refer to these metrics as

test coverage criteria.

Coverage Criteria Axioms

Weyuker et al. propose eight axioms for test coverage criteria [70], later revising this

set and extending it to eleven axioms [71]. The objective of these axioms is to identify

a set of essential properties for test coverage criteria. Such a set of axioms can then be
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used to check the adequacy of test coverage criteria. Weyuker then applies her axioms

against common coverage criteria such as branch and statement coverage, and finds

them lacking. While many of these axioms are fairly obvious, e.g., empty test sets

should not satisfy a coverage criterion, some of the axioms provide definitions useful

for discussion, including monotonic coverage criteria, which are coverage criteria such

that if test set T satisfies coverage criterion C for program P , and T ⊆ T ′, then T ′

does as well.

Parrish and Zweben further refine and analyze these axioms, noting several de-

pendencies among the eleven properties and demonstrating the axioms can be refor-

mulated to not depend on program structure [51]. The authors then note how the

axioms can be reduced to seven axioms that are conceptually simpler. The authors

continue this work [52], defending their choice of axioms (specifically one which con-

tradicts monotonicity) arguing that different axioms may be used in different testing

environments. The definition of a test coverage criterion is borrowed from Gourlay.

Zhu and Hall formally explore axioms of test coverage criteria, providing addi-

tional axioms, such as the axiom of diminishing returns, which states the contribution

of a single test to satisfying a coverage criterion diminishes as the number of selected

tests increases (a property common to most test coverage criterion) [82]. The au-

thors also explore the implications of the existing axioms, proving the consistency of

the general axioms proposed. Zhu later extends the axiom system to handle control

flow graphs [80]. The definition of a test coverage criterion is again borrowed from

Gourlay.

Work on axiom systems for test coverage criteria has not seen widespread adop-

tion in that axioms of coverage criteria are not explicitly cited at motivations when

developing new coverage criteria. The terms defined, however such as monotonic, do

appear in current discussions of testing; such appearances demonstrate how theoreti-
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cal work can be used to improve discussion concerning testing, even when such work

is not directly referenced.

Partition Testing

Most test coverage criteria operate by defining a set of obligations a test suite must

satisfy. Each obligation can be satisfied by zero or more test inputs; to satisfy the

criteria, we must select at least one test input satisfying each obligation. The mo-

tivation behind such coverage criteria varied, but generally an intuitive argument is

made that by satisfying each obligation, we will be less likely to fail to detect some

class of faults. For example, in statement testing, we must execute every program

statement, with the argument being that any statement left unexecuted may contain

a fault.

This concept was first formalized by Weyuker and Ostrand [73] as partition testing.

In partition testing, the input domain is divided into subdomains, and a test from

each subdomain is selected. Once developed, the concept was used to demonstrate

flaws in Goodenough and Gerhart’s work discussed above.

Hamlet and Taylor theoretically explore the effectiveness of partition testing meth-

ods, and determine that partition testing can be comparable to random testing unless

the partitions are chosen such that faults are concentrated in a partition [32]. The

authors highlight the goal of constructing a test coverage criterion based on parti-

tion testing should be to construct homogeneous partitions in which all tests in the

partition detect the same faults. Weyuker and Jeng, and Chen and Yu theoreti-

cally demonstrate similar results [72, 13, 14]. Later theoretical work by Gutjahr [29],

however, provides a stronger case for partition testing.

While the theoretical contributions are interesting, the work on partition testing

highlights how in the pursuit of one problem—in this case a method of demonstrating
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flaws in existing work—theoretical work in testing can provide concise descriptions of

testing practice and lead to interesting avenues of research. In this case, the concept

of partition testing distils the intuition underlying virtually all test coverage criteria

and led other researchers to highlight flaws in that intuition.

Comparing Test Coverage Criteria

Given two coverage criteria, an obvious question of practical interest is: which cover-

age criterion is better? This has led to a fairly large body of work, both theoretical

and empirical, exploring the problem of comparing coverage criteria.

Perhaps the earliest method of theoretically comparing two coverage criteria is

the subsumes relation, which states that a coverage criterion C1 subsumes a coverage

criterion C2 if any test set satisfying C1 also satisfies C2. (We cannot determine the

origin of this relation; even in very early work, it seems to be assumed as common

knowledge.)

This relation says nothing of the effectiveness of the coverage criterion, however.

Gourlay’s power relation, outlined above in Section 2.1.1, is a relation for comparing

coverage criteria based on their fault finding effectiveness [27]. A detailed analy-

sis of the power relation, and other theoretical methods of comparing test coverage,

by Weyuker, Weiss and Hamlet [74] note several desirable properties of comparison

methods. The authors demonstrate that for coverage criteria C1 and C2, if C1 sub-

sumes C2, then C1 is at least as powerful as C2 (C1 ≥ C2). They also demonstrate

the relation is one way, that is, power does not imply subsumption.

Having done this, the authors conclude both relations impart little certainty that

one criterion is better than another because the comparisons tend to be vacuous—if

C1 ≥ C2, it generally means neither coverage criterion is guaranteed to find faults,

not that C1 is guaranteed to find additional faults. The authors then define the
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PROBBETTER relation to probabilistically compare coverage criteria, stating C1 is

PROBBETTER than C2 for some program P and specification S if test sets C1 will

on average find faults more often than test sets satisfying C2. The probabilistic com-

parison better matches our intuition of what it means for a criterion to be “better”,

and does not fall into the trap of vacuous satisfaction.

Frankl and Weyuker propose several more comparison methods using the parti-

tion testing approach discussed previously [21]. Each of the relations is examined

using several different measures of fault detection ability. The comparison methods

are designed to provide increasingly better guarantees on fault detection improve-

ment. Whereas subsumption provides few guarantees as to fault detection ability, as

noted by Weyuker et al. previously, the most rigorous comparison method proposed—

properly partitions—guarantees that a metric C1 is more effective than C2 for two

different measures of fault finding effectiveness.

Zhu notes that if a tester generates tests in a posterior testing scenario—in which

tests are generated using some deterministic method, and the coverage criterion is

merely a stopping signal for generation—that subsumption does imply better fault

finding [81].

Hierons explores how explicitly defining test hypotheses can improve the rigor of

comparisons between coverage criteria [36]. Test hypotheses are properties believed

to be true by the tester, i.e., assumptions made about the software under test. Using

test hypotheses, we can introduce additional information into our comparisons of

coverage criteria for a given program, or a class of program for which the property

holds. Hierons notes that such hypotheses are often used in practice, as they are the

intuitions that underly test selection (e.g., all faults can be found within 4 steps of

execution).

The body of work again highlights the utility of theoretical testing research. In
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each study the authors begin with a practical problem, define precise terminology to

discuss it, formalize both current practice (e.g., subsumes) as well as ideal solutions

(e.g., power), and proceed to explore the implications. Their results indicate that

the existing comparisons—subsumption and power—do not yield useful, practical

methods of comparing test coverage criteria. The authors then explore alternatives,

with perhaps the most promising being probabilistic comparisons of coverage criteria.

Given the difficultly of rigorously measuring the probability of detecting a fault with

a given coverage criterion, this implies that empirical studies must be undertaken to

compare test coverage criteria. Indeed, most work subsequent to these theoretical

studies focuses on empirical comparisons.

2.1.3 Gaudel-Bernot Theory of Testing

Most of the work outlined above is based on Gourlay’s formal framework, either im-

plicitly (in that it is based on a functional view of testing) or explicitly. Nevertheless,

other frameworks exist.

Gaudel and Bernot have developed a theory of testing based on formal specifica-

tions [24, 6, 7]. In this work, they define a testing context as a triple (H,T,O) where

H is a set of testing hypotheses (i.e., assumptions) about the program and specifi-

cation, T is a set of tests, and O is a test oracle. This body of work uses algebraic

specifications as the basis of testing; tests are created based on the axioms of the

algebra that define the program interface.

This body of work is notable in that (1) the intuitions that are often used to

guide the testing process are made explicit as test hypotheses and (2) the problem of

selecting an oracle is a core part of the framework and discussion, unlike work based

on Gourlay’s framework in which the test oracle is generally assumed.

The authors argue the use of testing hypotheses are beneficial in two ways. First,
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the authors note these assumptions often underly the definition of test coverage crite-

ria. By making these assumptions explicit, we make clear the intuitions that underly

our testing processes. Second, if the testing hypotheses can be proved, then the test-

ing can act in a manner similar to an inductive proof—we begin by proving that some

finite set of tests is sufficient to show correctness (e.g., all tests of length up to three),

and then demonstrate our tests do not detect any faults. This draws a connection

between formal methods and testing.

The authors also discuss the difficulty of defining test oracles. The concept of or-

acle hypotheses, similar to the concept of testing hypotheses is defined and explored.

The authors note that certain parts of the program necessary to ascertain correct-

ness are not always observable, e.g., “opaque” type equality and internal component

state [24].

This work presents a number of interesting ideas, one of which—the explicit dis-

cussion of test oracles—addresses an issue we have with Gourlay’s framework. How-

ever, the use of formal specifications based on algebraic sorts leads to a cumbersome

formalization. (The use of algebraic sorts also limits the applicability.) Such a for-

malization is not a good candidate for improving testing discourse; while more precise

than natural language, it is also difficult to understand and to relate to testing in

practice.

2.1.4 Behavior Observation Schemes

Zhu and He have proposed a testing theory based on behavior observation schemes [84].

In this theory, a scheme denotes a systematic method of observing dynamic behav-

iors, e.g., statements covered, states explored, etc. This theory is notable in that

it allows for non-determinism, i.e., tests whose outcome can change between execu-

tions. Zhu and He have redefined several existing coverage criteria in the theory [85]
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and have also defined a theory of testing Petri nets [86]. The theory encompasses a

number of existing contributions in the theory of testing, including test axioms, and

test coverage criteria. Thus, it can be viewed as method of defining and comparing

coverage metrics.

This body of work is aimed at defining coverage criteria; it is not as general

a theory as Gourlay’s or Gaudel/Bernot’s and, thus, is not suited for facilitating

discussion of testing in general.

2.1.5 Other Theories of Testing

There exist a handful of other theories of testing, none of which have received signifi-

cant attention. Howden introduces a theory of functional testing in [39], which views

programs as the synthesis of functions. This work is (by its own admission) fairly

informal. Hamlet presents an outline of a theory of software dependability in [31], ar-

guing that the foundations of software testing should be statistical in nature. Morell

introduces a theory of fault-based testing in [48], in which the goal of testing is to

show the absence of a certain set of faults. None of the above theories appear to

provide anything that might improve our discussion of testing beyond what appears

in Gourlay’s more commonly used framework.

2.1.6 Theory of Testing Conclusions

As discussed, work in the theory of testing has provided a conceptual framework for

testing research, and has produced or at least formalized influential ideas such as test

coverage criteria, partition testing, and axioms of testing. However, this work has

largely neglected to explore concepts unrelated to selecting test inputs. We believe

this has led to a mental model of testing in which test inputs are considered almost

exclusively, with very little work being done on other factors—notably test oracles—
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that can impact the effectiveness of testing. Indeed, while there is a rich vocabulary

in which to discuss selecting test inputs, properties of test suites, etc., basic properties

and concepts have yet to be defined for test oracles. In Chapter 3, we begin address

these oversights chiefly by extending Gourlay’s concept of a testing system to more

accurately capture testing in practice.

2.2 Empirical Studies on the Effectiveness of Testing

Empirical work on the effectiveness of testing is an extensive area, and it is beyond the

scope of this report to survey it all. We are primarily interested work that considers

how testing artifacts interact, and how this interaction may be used to improve the

testing process, as our proposed study will explore the same general problem. Given

that the motivation for our work stems from a desire to improve the quality of testing

research, we are also interested in influential empirical work that does not consider

how testing artifacts interact, as the conclusions of such work may be impacted by

the results of our proposed study.

In some sense, all testing research necessarily explores the relationship between

testing artifacts, as testing cannot be accomplished using a single artifact. However,

little work explicitly explores how testing artifacts interact, e.g., how does one testing

artifact influence another?, how do combinations of testing artifacts affect testing

effectiveness?.

2.2.1 Test Coverage Criteria

As noted previously, work on test coverage criteria is a popular topic of study, encom-

passing dozens of criteria and hundreds of papers. As noted by Zhu in his extensive

survey of the area [83], test coverage criteria are often specified in terms of some

other testing artifact. Notably, Zhu identifies two broad areas of coverage criteria,
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specification-based coverage criteria, and program-based coverage criteria.

In specification-based coverage criteria, test adequacy is judged using the program

specification or requirements. These coverage criteria tend to be tuned to a specific

form of requirements, and thus can vary significantly in their details. For example, in

our own work we have defined requirements coverage metrics over Linear Temporal

Logic (LTL) properties [75], while Amla and Ammann have demonstrated how the

input space can be partitioned using Z specifications [1].

In program-based coverage criteria, test adequacy is judged using the the program

under test. A common form of program-based coverage criteria are structural cover-

age criteria, in which the coverage criterion specifies that certain syntactic constructs

must be exercised by the test set, e.g., all branches covered or all statements executed.

Another common class of program-based coverage criteria is mutation coverage crite-

ria, in which single faults are intentionally seeded into the original program to create

multiple faulty versions of the program (i.e., mutants) and a test sets is constructed

to differentiate the mutants from the original program.

The common thread between program-based and specification-based coverage cri-

teria is that both judge the adequacy of tests based on another testing artifact, either

the specification or the program. Clearly, one artifact influences another. However,

while this is clear from the construction of these criteria, it is not widely discussed,

and most evaluations of coverage criteria do not consider it. In such evaluations the

reader is left with only an intuitive notion of how the coverage criterion is influenced

by the construction of the specification or program.

However, Rajan et al. do explore the effect of program structure on the Modified

Condition/Decision Coverage (MCDC) criterion [55, 16]. In this study, for each pro-

gram studied, an “inlined” version containing complex conditions and a “noninlined”

version containing simpler conditions are used in conjunction with the MCDC cover-
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age criteria. The authors find that the inlined version requires more tests to satisfy

MCDC as compared to the noninlined version.

2.2.2 Test Oracles

As noted by Baresi and Young, test oracles represent a relatively small portion of

software testing research [4]. The authors outline a number of approaches for deriving

automated test oracles, almost all of which are based on deriving the test oracle from a

formal specification. Such approaches explicitly link the oracle and the specifications.

This link is fairly obvious—a test oracle determines if the software under test is

correct. Given a formal notion of correctness in the form of a specification, it makes

sense to define the oracle using the specification. As with test coverage criteria based

on specifications, the specification clearly influences the test oracle. Unfortunately,

it does not appear that this impact is explored in the existing work.

Test oracles can also be influenced by other testing artifacts, including test cases

and the program (specifically the structure). Memon et al. have performed an em-

pirical study using GUI applications in which both the test set and test oracle are

varied [47]. The authors demonstrate that when testing GUI applications, test ora-

cles considering more information can significantly improve the effectiveness of testing

when using short tests or a small number of tests. The authors also conclude that

when using longer tests or a larger number of tests, it may be that sophisticated test

oracles are not cost-effective, and that simpler, cheaper test oracles may be used with

little loss in testing effectiveness.

Fraser and Zeller [22] use mutation testing to generate both test inputs and test

oracles. The test inputs are generated first and then assertions capable of distin-

guishing the mutants from the program, with respect to the test inputs, are created.

However, little discussion exists concerning the impact of the test oracles with most
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of the work focusing on how test oracles can created.

The observability of the program is the degree to which we can observe the pro-

gram’s state. The degree of observability present in a program places restrictions on

the construction of test oracles—if some variable is not observable, we cannot use

it to determine the correctness of the system during testing. This is discussed by

Gaudel [24] (outlined in Section 2.1.3) and in general this seems to be a recurring

issue in test oracles based on formal specification [4]. The issue is that when using

formal specifications as an oracle, abstractions may be defined such that relating the

specification to the program under test is a non-trivial task.

Testability is the ease with which software can be tested. (Note multiple def-

initions of testability exist; in some definitions testability includes observability as

a property [77].) It has been proposed to use testability information to direct test

oracle generation, observing internal program variables/locations that are difficult to

test otherwise. We are not aware of any rigorous studies exploring this idea.

2.2.3 The PIE Technique

Voas, Miller, and other collaborators have produced an extensive body of work based

on the Propagation, Infection, and Execution (PIE) analysis technique [65, 64]. This

technique is designed to determine the probability of faults at each program location

propagating to the output, termed the testability information for the program. It is

suggested that this testability information can be used (among other things) to direct

testing efforts, thus using the characteristics of the system under test to guide both

what tests are selected [66] and the construction of assertions [67] ( a form of test

oracles). The general intuition is the less likely a location is to reveal faults, the more

effort should be focused on the location, either through additional testing, or direct

observation (through assertions) of the location.
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Although the intuition seems reasonable—use the characteristics of the program

to inform testing decisions—empirical evaluation is sparse. Chen et al. [15] evaluate

the effectiveness of using fault-exposure-potential estimates (metrics similar to those

defined by the PIE method) to improve the statement coverage criterion. Results were

mixed, as statistically significant improvements were found, but these improvements

were quite small.

2.2.4 Example of Potential Issues Empirical Studies

We noted in the introduction that existing empirical studies often do not consider

how testing artifacts can interact, and that this may lead to conclusions that are

misleading or possibly incorrect. Here, we illustrate this problem using two studies

on test suite reduction, and discuss the potential implications of failing to consider

these interactions. We view these studies as influential, as they are both viewed

positively by the research community (being landmark papers within the area) and

widely cited. We also view these studies to be, for the most part, well conducted.

They are merely used to highlight general and systemic problems that exist in testing

research.

Wong et al. explore the effect of test suite reduction on fault finding effective-

ness [76]. 1,000 random tests are generated and test sets are minimized to meet

varying levels of block coverage. Ten Unix programs are used. Faults are seeded into

each program to produce a set of faulty programs, with the original program serving

as a test oracle. Tests are run to distinguish the original program from the faulty pro-

grams. Faults are classified according to difficulty, with the difficulty determined by

the number of tests catching the fault. The authors conclude that test suite reduction

does not significantly impact the fault finding effectiveness of the testing process.

In this study, the authors have varied only the program. The same oracle is used
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in each case example, and the same coverage metric is used to reduce the test suites.

This presents two questions: how does the use of the oracle influence the results?, and

how does the use of block coverage influence the results? The authors address neither

question, though they do acknowledge their results apply only to the single coverage

criterion used. The former question, however, is not acknowledged at all—the reader

is left to infer how test suite reduction would, for example, influence the effectiveness

of a testing process using assertion-based oracles.

Rothermel et al. revisit the problem of test suite reduction, again studying its

influence on the fault finding effectiveness of the process [59]. The authors are aware

of the previous study by Wong et al., and cite several open questions. The authors

then perform a similar study, using seven programs differing from the Wong study (the

commonly used Siemens programs [40]), edge coverage for reducing the test suite, tests

provided with the Siemens programs, and faults provided with the Siemens programs.

A large number of test suites of varying size are constructed for each program. The

test suites are then reduced according to edge coverage 1,000 times per program.

Each test suite is run against each fault version, using the original program as an

oracle, and the number of faults detected are measured. The authors conclude (in

contrast to the Wong study) that test suite reduction negatively impacts the fault

finding effectiveness of the testing process.

In this study, the authors have varied the program and the original (unreduced)

test suite size. The same oracle is used in each example and the same coverage metric

is used to reduce each test suite. This presents the same two questions from the Wong

study: how does the use of the oracle influence the results, and how does the use of

edge coverage influence the results? The authors clearly acknowledge the latter issue

in their threats to validity, but again fail to acknowledge the former question.

This presents a problem: in two influential empirical studies in the area of test
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suite reduction, the authors entirely omit discussion of how one testing artifact, the

oracle, influences the results. By selecting a single metric and acknowledging the

limitations in the discussion of the results, one can argue the test coverage metric

used is controlled. However, by not acknowledging the oracle used, it is left to the

reader to infer the influence of the oracle on test suite reduction, which can lead to

misleading results.

2.2.5 Empirical Study Conclusions

Work exploring how testing artifacts can interact is clearly sparse, with only a handful

of studies addressing the issues. Few of these studies use case examples from our

domain of interest, critical systems; consequently, we have very little understanding

of even basic issues related to artifact interaction within this domain. Potential issues

relevant to critical systems that are currently unexplored include: the impact of test

oracles on the testing process, particularly interactions with test coverage criteria; the

impact of program structure on the effectiveness of test suites satisfying structural

coverage criteria; and the impact of program structure on test oracle construction.

As demonstrated in the previous section, this lack of knowledge represents a poten-

tial problem in our empirical studies: without an understanding of how these artifacts

interact, we may produce misleading conclusions. Furthermore, by not studying how

these interactions influence testing effectiveness, we deny ourselves some of the poten-

tial benefits of other (non-test input selection related) avenues of improving testing

effectiveness, such as test oracle selection (as performed for Java programs by Fraser

and Zeller [22]).



Chapter 3

Theory of Testing Revisited

In this chapter, we outline our work on the theory of testing. We begin by revisiting

our motivations for expanding the theory of testing, briefly outlined in Chapter 1.

We then present two formalisms for describing testing, one extending the functional

framework of Gourlay [27], and one based on Kripke structures [44], defining test-

ing concepts using both formalisms. We then explore the theoretical implications

of our extension of Gourlay’s work. Finally, we conclude by highlighting how our

results demonstrate the need to consider how various testing artifacts influence the

effectiveness of testing.

Most of the work here has already been published in [61]. This work differs

primarily in the presentation of the Kripke structure-based formalism. It has also

been expanded for clarity.

3.1 Motivation

In the previous chapter, we considered several foundational works on the theory of

testing. While these early contributions are valuable and have helped shape our un-

derstanding of testing practice, this body of work has unfortunately not established

itself as a foundation for continued testing research; new testing approaches are typ-

ically informally described and, in general, poorly evaluated. This lack of a formal

foundation and rigorous evaluation of proposed new approaches has been a persistent

30
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problem in the research community [8].

Consider as examples the generally well conducted and highly influential studies of

Rothermel et al. [58], and Wong et al. [76], previously discussed in [?]. Although these

studies provide insight into test suite reduction, crucial aspects of the experimental

setup such as what test oracle was used and the nature and structure of the programs

under test are omitted or left implicit, leaving the reader to infer these properties of

the artifacts. These implicit artifacts may explain the conflicting conclusions reached

in the studies. We believe these problems can be traced to the lack of a common

foundation for empirical testing research, making it difficult—if not impossible—to

conduct, for example, meta-analysis to synthesize the empirical results from several

independent investigations.

In this chapter, we attempt to remedy this situation and provide a common frame-

work for empirical testing research by revisiting work on the formal foundations of

testing. We have identified two issues with the existing formalizations that we be-

lieve should be addressed. First, the existing formalizations overlook certain factors

influencing testing—notably test oracles—leading to implicit assumptions about test-

ing that may not be true in practice. These assumptions make it straightforward to

prove properties about different aspects of testing, for example, properties about test

coverage criteria, but also lead to research results that may be misleading or may not

be generally applicable. In addition, such implicit assumptions makes comparisons of

research efforts difficult. We therefore extend the existing formalisms to account for

one testing artifact that is commonly overlooked, the test oracle, and define several

concepts related to test oracles.

Second, most foundational research has focused on narrow aspects of the testing

problem, for example, criteria for selecting tests or techniques to generate tests from

programs. As noted in Chapter 1, we believe a holistic view of the testing problem
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is essential to move the field forward and yield practically useful results in testing

research, both in terms of theoretical and empirical results. We therefore explore

how the interaction of artifacts can in theory influence the effectiveness of the testing

process.

3.2 Functional Model of Testing

Beginning with Goodenough and Gerhart’s seminal work [26], a significant portion of

the research in the theory of testing has used a functional model for testing, a con-

vention we follow here. We define our functional model of testing based on Gourlay’s

framework [27], extending and modifying it for our discussion. We have selected

Gourlay’s framework as a basis for two reasons. First, a significant quantity of rele-

vant theoretical work is based on this formalization; by extending his framework, we

can easily reexamine this previous work. Second, the framework is easy to understand

and mostly matches our intuitive sense of the testing process.

In Gourlay’s approach, a testing system is defined as a collection< P ,S, T , corr, ok >

where:

• S is a set of specifications

• P is a set of programs

• T is a set of tests

• corr ⊆ P × S

• ok ⊆ T × P × S

Each specification s ∈ S represents an abstract, perfect notion of correctness. The

predicate corr is defined such that for p ∈ P , s ∈ S, corr(p, s) implies p is correct
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with respect to s. Of course, the value of corr(p, s) is generally not known; this

predicate is thus theoretical and used to explore how testing relates to correctness.

The predicate ok is defined such that for p ∈ P , s ∈ S, t ∈ T ok(t, p, s) implies

that p is judged as correct with respect to specification s for test t. Furthermore,

ok is defined such that ∀p ∈ P , ∀s ∈ S,∀t ∈ T corr(p, s) ⇒ ok(t, p, s), i.e., if p is

correct with respect to s then ok is true for all tests. The predicate ok approximately

corresponds to what is now called a test oracle or simply oracle.

While intuitively appealing, there are problems with this framework. First, each

testing system has only one possible oracle (ok). Just as there exist many possible

tests and programs, however, there exist many possible oracles for determining if test

executions are successful [57]. Selecting an oracle is the oracle selection problem, and

we cannot easily discuss or even formulate this problem using Gourlay’s framework.

Second, the notion of correctness and how it relates to test oracles is—in our

opinion—too coarse. If for p ∈ P and s ∈ S, if corr(p, s) then we know that

∀t ∈ T , ok(t, p, s). However, there are no requirements on oracles in terms of their

effectiveness in finding faults. For example, the oracle that universally returns true

for all programs and specifications satisfies this relationship. Furthermore, it will gen-

erally be the case that the program p does not satisfy the specification s (otherwise,

why test?), i.e., ¬corr(p, s), in which case the framework places no constraints on ok.

Both the inability to discuss oracle selection, and the loosely specified relationship

between program correctness and oracle behavior create difficulties and ambiguities

when discussing the effectiveness of test selection techniques and test oracles. We

therefore make two major changes to Gourlay’s definition of a testing system. First,

we remove the predicate ok, replacing it with the set O of test oracles. We state that

an oracle o ∈ O is a predicate:

o ⊆ T × P
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An oracle determines, for a given program and test if the test passes. Second, we add

a predicate defining correctness with respect to a test t ∈ T . This predicate is:

corrt ⊆ T × P × S

(Note that the t subscript in corrt is used to differentiate the predicate from

Gourlay’s corr predicate.) The predicate corrt(t, p, s) holds if and only if the specifi-

cation s holds for program p when it runs test t. Thus

∀p ∈ P ,∀s ∈ S, corr(p, s)⇒ ∀t ∈ T corrt(t, p, s)

In summation, we define a testing system to be a collection

(P ,S, T ,O, corr, corrt) where:

• S is a set of specifications

• P is a set of programs

• T is a set of tests

• O is a set of oracles

• corr ⊆ P × S

• corrt ⊆ T × P × S

To keep things general, we make no attempt to define what exactly constitutes

a test, oracle, specification, or program. We state that a test (sometimes called test

data) is a sequence of inputs accepted by some program. As in Gourlay’s frame-

work, we consider a specification s ∈ S to be the true (idealized) specification of

the desired functionality of program P , possibly including internal state behavior. It

is quite likely that the stated software requirements or formal specifications used in

the development of a program differ from s. Finally, we note that the predicates are

partially defined: not all tests can be executed on all programs, and not all oracles

can be used to determine if a test t is successful when run against a program p.
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These modifications to the framework allows us to have a more realistic discussion

of the testing problem and explore the interrelationships between programs, tests, and

oracles.

3.2.1 Test Oracles

A test oracle determines if the result of executing a program p using a test t is correct.

There are many methods of creating an oracle, including manually specifying expected

outputs for each test, monitoring user-defined assertions during test execution, and

verifying if the outputs match those produced by some reference implementation

such as an executable model. A uniform method of describing the numerous types of

oracles is outside the scope of this work.

Nevertheless, we can define general oracle properties. We begin by defining oracle

properties related to correctness of the program being tested, borrowing terms com-

monly used in software verification. An oracle is complete with respect to program p

and specification s for a test case t if:

corrt(t, p, s) =⇒ o(t, p)

Complete oracles relate to correctness as we intuitively expect: if the result of

running t over p is correct with respect to s, the oracle o will state the test passes.

Most oracles discussed in testing research and used in practice are designed to be

complete, though like all software engineering artifacts, oracles are imperfect and

may contain flaws. For example, a common problem is an oracle that is too precise.

The oracle may have been defined to expect an output of 11
3

but the program generates

1.3334. In the application domain, this accuracy in the computation is perfectly fine

and the program is thus correct, but the oracle will reject the test. Nevertheless,

in order to discuss the efficacy of the testing process, researchers often assume the
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oracle used is complete. Note that Gourlay’s ok predicate is by definition complete

if corr(p, s).

An oracle is sound with respect to p and s for a test case t if:

o(t, p) =⇒ corrt(t, p, s)

Sound oracles represent the conventional wisdom in testing that “testing may be

imperfect, but at least we know that the program is correct for the tests we have run.”

For this statement to hold, we must use a sound oracle. Unfortunately, in practice,

oracles are rarely sound. For example, an oracle might only observe a subset of the

program outputs (and/or the program’s persistent state) and would naturally miss

any faults manifested in the variables (or state) not observed by the oracle. For this

reason, we do not assume sound oracles in our discussion.

We say that an oracle is perfect with respect to p, s, and t if it is both sound and

complete. We can now generalize the definitions of complete, sound and perfect to

test suites and again to the entire set of tests. For example, an oracle is perfect for p

and s if:

∀t, o(t, p)⇔ corrt(t, p, s).

As mentioned above, oracles need not be sound nor complete; oracles may both

fail to detect faults and may report faults that do not exist. Heuristic oracles may be

neither sound nor complete, and may be used in domains like image processing where

precisely defining correctness is difficult or time consuming [46]. Relating this type of

oracles to correctness would require probabilistic arguments and is beyond the scope

of this work. Weyuker informally discusses these oracle characteristics in [69], noting

several practical challenges concerning test oracle construction; we are unaware of

any formulation of these oracle properties however.

In this work, we will often consider oracles which base correctness partly on the

internal state of the program. Such oracles may be constructed if the specification
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defines behaviors internal to the program (e.g., state invariants or class invariants).

In some situations, these oracles will detect faults that do not propagate to the output

(at least not immediately). We use Avizienis and Laprie’s terminology [3], in which

a fault is defined as a system state where a design error manifests. Thus, detecting a

fault is not synonymous with detecting a failure.

Highly related to our discussions in this section, Richardson et al. discuss the or-

acle problem—the need for testers to provide a test oracle for the testing process [57].

This work has served as the standard for oracle terminology; the authors define the

oracle information and the oracle procedure. The oracle information specifies the

correct behavior, and the oracle procedure verifies the test execution with respect to

the oracle information.

We consider the issues of oracle information and oracle procedure to be specific

to the method of oracle construction. Defining precisely what constitutes oracle

information and what constitutes oracle procedure is difficult, and we therefore make

no attempt to incorporate them into our framework. We instead opt to use definitions

that are useful in discussing all oracles (such as complete).

3.2.2 Adequacy of the Testing Process

One common task in software testing is determining when we have tested enough.

Methods of determining the adequacy of the testing process are termed test adequacy

criteria. Exploring the effectiveness of these criteria is a key task in testing research,

and forms the basis of much of the later work in Chapter 4. Furthermore, formalizing

the concept of test adequacy is a common goal in the theory of testing. We therefore

formalize these concepts here, beginning with test adequacy.

Gourlay defines a test method M as a function:

M : P × S → T
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Thus, a test method takes a program and a specification and generates a test.

Gourlay appears to also consider test methods

M : P × S → 2T ;

that is, test methods producing sets of tests. Nevertheless, the use of test coverage

criteria (also called test data adequacy criteria [70] or test selection criteria [26])

where zero or more of the test sets are acceptable for a given program and specification

is much more common in both the testing literature and in practice. We thus adopt

it here, using the predicate definition originally presented by Weiss [68]:

TC ⊆ P × S × 2T .

However, in this work, we also explore how test oracles influence the testing pro-

cess. We therefore propose an analogous concept for oracles, termed an oracle ade-

quacy criterion. An oracle adequacy criterion OC is a predicate:

OC ⊆ P × S ×O.

This predicate reflects how oracle selection is usually done in practice: a single oracle

is used to evaluate the result of every test. Most testing approaches used in practice

or described in the testing literature can be described using TC and OC . However, it

is possible to define adequacy of the testing process in terms of both the test set and

the test oracle used, i.e., define adequacy as a pairing of a test set and an oracle. We

define a complete adequacy criterion as the following predicate:

TOC ⊆ P × S × 2T ×O

For example, a stateful program responsible for mode switching in an avionics

systems may be best combined with a test suite providing MCDC coverage and an

oracle observing a majority of the internal state variables in addition to all outputs.

In Section 3.5, we will explore an existing example of a complete adequacy criterion.



39

3.3 Computational Model of Testing

The extension outlined in Section 3.2 provides a simple abstract framework in which

to discuss testing. It captures the core problem facing testers – the need to select, from

very large or infinite sets of tests and oracles, a subset of tests and an oracle. However,

it abstracts away the factors underlying that decision, including the nature of the

system under test and the observability of the system’s states. By considering such

factors in our formalisms, we can sometimes more precisely define testing concepts.

In this section, we use Kripke structures [18], a well known formalism for describing

computation, to formalize several testing concepts in terms of the system under test.

3.3.1 Altitude Switch Example

To examine how our computational framework can be used to explore testing prob-

lems, we present a small case example in Figure 3.1; an Altitude Switch. This system

turns power on to a Device Of Interest (DOI) when the aircraft descends below 1,000

meters. If the altitude cannot be determined for more than three seconds, the ASW

turns an alarm on. The user can manually inhibit the device, disabling the alarm

functionality and preventing the ASW from controlling the DOI.

3.3.2 Kripke Structures in Testing

Let AP be a set of atomic propositions. A Kripke structure is a 4-tuple M =

(S, I, R, L) where:

• S is a set of states

• I ⊆ S is a set of initial states

• R ⊆ S × S is transition relation between states

• L : S → 2AP is a labeling function for states
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0 input: alt: int

1 input: altQuality: bool

2 input: inhibit: bool

3 var: badTime : int = 0

4 var: prevAlt : int = -1

5 var: alarm : bool = false

6 var: doiOn : bool = false

7 while (true):

8 input(alt, altQuality, inhibit)

9 if !inhibit:

10 if altQuality:

11 if prevAlt > 1000 && alt < 1000:

12 doiOn = true

13 elif prevAlt < 1000 && alt > 1000:

14 doiOn = false

15 alarm = false

16 if !altQuality && !alarm:

17 badTime += 1

18 if badTime > 3:

19 alarm = true

20 badTime = 0

21 if altQuality:

22 prevAlt = alt

23 else:

24 badTime = 0

25 alarm = false

26 output(alarm, doiOn)

Figure 3.1: ASW Case Example

Kripke structures are commonly used in model checking to represent system be-

havior [18]. In this context, a Kripke structure is effectively a labelled graph where
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each state corresponds to a reachable system state, and each edge represents a state

transition. Note while each system state corresponds to a state in the corresponding

Kripke structure, the labels contain the usable information about the state.

For the purposes of our discussion, we define the atomic predicates AP in terms

of a function mapping from variable labels L to values V . We therefore extend the

basic Kripke structure to a 6-tuple: M = (S, I, R,L,V , L) where

• S is a set of states

• I ⊆ S is a set of initial states

• R ⊆ S × S is transition relation between states

• L is a set of variable identifiers

• V is a set of variable values

• L : S → (L → V) is a labelling function for states

This extended Kripke structure is isomorphic to a standard Kripke structure (for

finite types) through an encoding function to map between assignments to variables to

Boolean propositions [18]. However, it is much more straightforward for our discussion

to think in terms of assignments to variables rather than atomic propositions.

3.3.3 Tests and Oracles

Recall from Section 3.2 that a testing system is a collection:

< P, S, T,O, corr, corrt >

In this computational model of testing, every program p ∈ P defines a Kripke struc-

ture. For a program p, each test t ∈ T that can be run over p corresponds to a finite

path beginning at the initial state. Each oracle o ∈ O is thus a decision procedure

relating a Kripke structure to a finite path through the Kripke structure.
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The problem of test selection is then effectively the problem of selecting a finite

number of finite paths starting from initial states within a Kripke structure. The

problem of oracle selection is partitioning the set of finite paths into True and False

test outcomes.

Test Selection

We have described Kripke structures in terms of the the values of variables within

a program—the semantics of the program—rather than the program’s syntactic in-

formation. Many test coverage criteria, however, are defined in terms of the syntax

of the program, which is not represented within the Kripke structure. We can easily

remedy this by extending L to include the information necessary to determine cover-

age. Let C = {c1, c2, . . . , cn} be a set of Boolean variables representing the syntactic

obligations of the criteria, and let LV be the set of atomic propositions containing

predicates representing the system state. Then L = LV ∪ C, and we assign each

variable in C True in the state(s) in which the obligation is satisfied.

Consider the problem of test selection for the ASW. We make two observations

concerning the ASW’s corresponding Kripke structure. First, even if we assume the

range of integers is finite but large, e.g., 264, the number of system states is too large

to reasonably explore them all. Second, the while(true) loop implies that infinite (or

at least unbounded) paths are possible. Thus the tester must select a small number

of tests from an infinite set of possibilities.

Suppose we wish to discuss branch coverage. We can extend AP with a set of

coverage predicates representing each branch evaluating to True and False, C =

{B9,¬B9, B10,¬B10, . . .}, where Bx represents the branch on line X in the ASW

program. Consider the snippet of Kripke structure in Figure 3.2 (a) representing

execution of line 9. The top two states differ in the value of inhibit, and thus lead to
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alt = 3500
altQuality = true

inhibit = false
…

PC = 9

alt = 3500
altQuality = true

inhibit = true
…

PC = 9

alt = 3500
altQuality = true

inhibit = false
…

PC = 10

alt = 3500
altQuality = true

inhibit = true
…

PC = 23

... ...

...

... ...

(a) ASW Kripke Structure

alt = 3500
altQuality = true

inhibit = false
…

PC = 9
B9 = false

¬B9 = false
...

alt = 3500
altQuality = true

inhibit = true
…

PC = 9
B9 = false

¬B9 = false
...

alt = 3500
altQuality = true

inhibit = false
…

PC = 10
B9 = true

¬B9 = false
...

alt = 3500
altQuality = true

inhibit = true
…

PC = 23
B9 = false
¬B9 = true

...

... ...

...

... ...

(b) ASW Kripke Structure w/ Branch Metrics

Figure 3.2: Snippet of Kripke Structure Representing ASW Example

different states after executing line 9. Extending L with C, we can then label states

where each branch is taken, yielding Figure 3.2 (b). To satisfy branch coverage, we

must select a set of paths P such that each c ∈ C is assigned to a state in at least

one p ∈ P .

Oracle Selection

While in principle simply partitioning the set of finite paths into True and False

test outcomes, the problem of oracle selection is much more complex in practice, as

noted in Section 3.2.1. Many factors in oracle selection are dependent on the method

underlying the construction of the oracle. For example, several sources may be used

to determine correctness, including formal specifications, informal design documents
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or even human inputs. These factors cannot be described using Kripke structures (or

our functional framework).

One factor present in all oracles, however, is the portion of the system state

considered by the oracle, which we term the oracle data [57]. Formally, the oracle

data is OD ⊆ L, i.e., the subset of variables considered by the oracle. This can range

from oracles which consider a single variable to oracles which consider every variable

(i.e., consider the entire system state).

In both our theoretical and empirical work, we will primarily consider oracles

that operate by comparing values produced by the program for some test against

expected values described in the test case. We will refer to such oracles as expected

value oracles. When presenting or evaluating several oracles for the same system,

these oracles will typically differ in their oracle data.

To illustrate the concept of oracle data, assume we are testing the example system

and plan to use an expected value oracle. Now suppose we have narrowed our oracle

data choices down to two possible sets, OO and IV . The oracle using the OO oracle

data considers only the output variables, while the oracle using the IV oracle data

considers both outputs and internal variables. Formally, the oracle data for OO

would be OO = {alarm, doiOn} and for IV would be IV = OO ∪ { badTime,

prevAlt }. Both oracles will, for a given test (path), examine each state in the path

and determine if the predicates in the state match the predicates expected by the

oracle, ignoring predicates not in the oracle data.

The decision as to which oracle data to use depends on several factors, including

the observability of the internal variables, the cost of considering more of the system

state, and the expected fault finding gains in the testing process. We explore these

issues in Section 3.5.3, and empirically study the influence of varying the oracle data

in later chapters.
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3.4 Oracle Comparisons

By extending Gourlay’s framework with a set O of oracles, we have introduced the

problem of oracle selection: the problem of selecting an oracle o from a set of pos-

sible oracles. Just as with the problem of test selection, we desire some method of

estimating the relative usefulness of oracles. Unfortunately, we are unaware of any

comparison relations specific to oracles (though mutation testing represents a method

of comparing combinations of test inputs and test oracles; see Section 3.5.2). To facil-

itate such comparisons, we present several possible oracle comparison relations, based

on the test coverage criteria comparison relations explored by several authors [27, 74]

and discussed in the following section.

Our oracle comparisons, like test coverage criteria comparisons, are based on the

ability of the oracles to detect faults. Recall that an oracle is complete with respect

to p and s if for all tests t:

corrt(t, p, s) =⇒ o(t, p)

In other words, when a fault is detected by o, the fault is real, and therefore represents

an error in the program. As most oracles discussed in testing research are designed

to be complete, the oracle comparisons we present assume complete oracles. Com-

parisons between non-complete oracles would require a different approach accounting

for oracles signaling faults when none have occurred.

3.4.1 Power Comparison

Our first relation is based on Gourlay’s definition of power [27]. We state an oracle o1

has a power greater than or equal to oracle o2 with respect to a test set TS (written

o1 ≥TS o2) for program p and specification s if:

∀t ∈ TS, o1(t, p)⇒ o2(t, p)
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In other words, if o1 fails to detect a fault for some test, then so does o2. If o1 ≥TS o2,

it is possible that o1 and o2 are equally powerful, i.e.,

∀t ∈ TS, o1(t, p)⇔ o2(t, p).

We may wish to state that some oracle o1 is strictly better than an oracle o2. We

state that o1 is more powerful than o2 for test set TS (o1 >TS o2) if:

∀t ∈ TS, o1(t, p) ⇒ o2(t, p) ∧

∃t′ ∈ TS,¬o1(t′, p) ∧ o2(t
′, p)

In other words, o1 ≥TS o2 and for some test t ∈ TS, o1 detects a fault where o2 fails

to detect a fault.

0: var: x : int = 0

1: var: y : int = 0

2: if input() = true:

3: x = 1

4: else:

5: y = 1

Figure 3.3: Oracle Comparison Example Program

Note that power is relative to a fixed test set TS. Given different test sets, the

relative power of oracles may vary. Consider the sample program p in Figure 3.3.

Consider two oracles, ox and oy, with both oracles being simple input/output oracles,

and with ox having oracle data x and oy having oracle data y. Consider two test sets

Tt and Tf , each with exactly one test, such that Tt sets input() to true and Tf sets

input() to false. Assume both lines 3 and 5 are incorrect (e.g., wrong constant is

assigned). Then:

ox >Tt oy

oy >Tf ox
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For some pairs of of oracles, it may be the case that:

∀TS ⊆ 2T , o1 ≥TS o2

In other words, o1 has power greater than or equal to o2 for all possible test sets TS.

In such a case we state that oracle o1 has power universally greater than or equal to

oracle o2 (written o1 ≥ o2). For example, consider an oracle oa defined in terms of a

set of assertions A, where ¬oa(t, p) indicates that test t violates an assertion a ∈ A.

Let A′ be an additional set of assertions, and let oracle oa2 be an oracle defined in

terms of a set of assertions A ∪ A′. As the set of assertions used by oa2 is a superset

of the set of assertions used by oa, for any test set TS, oa2 ≥TS oa and thus oa2 ≥ oa.

A similar situation occurs when an oracle o1 is observing a superset of the oracle

data observed by an oracle o2, for example, o2 observes the outputs from the program

and o1 observes additional internal state information. Given that both o1 and o2 are

complete, o1 ≥ o2.

3.4.2 Probabilistic Comparison

The power relation is a fairly restrictive relation between oracles: if o1 ≥TS o2, then

not only does o1 detect more faults, it must detect every fault detected by o2. While

this relationship will often hold for oracles constructed using the same basic principle

(e.g., sets of assertions), we desire a method of comparing the effectiveness of all

oracles, i.e., a total comparison relation. This includes oracles constructed using

different principles, e.g., assertion-based oracles versus expected value oracles.

Weyuker et al. recognized this problem with respect to test coverage criteria and

defined a more useful probabilistic comparison between test criteria called PROB-

BETTER [74]. (We will hereafter refer to PROBBETTER as PB.) A criterion C1

is PB than C2 with respect to program p and specification s if a randomly selected

test set satisfying C1 is probabilistically more likely to detect a failure in p than a
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randomly selected test set satisfying C2 (written as C1 PB C2). A ‘randomly selected

test set’ refers to a test set drawn from the set of all possible test sets satisfying a

criterion C. As most criteria are monotonic, the number of test sets satisfying C is

often very large or infinite [70]. Consequently, it can be difficult to prove that C1 is

PB than C2; nevertheless, empirical studies of test coverage criteria effectiveness can

be used to approximate this relationship (indeed, this is arguably one of the primary

contributions of such studies), thus, rendering this criterion comparison and other

similar probabilistic comparisons useful.

We base our total oracle comparison on the Weyuker et al. PB relation. We state

an oracle o1 is PB than oracle o2 with respect to a test set TS

o1 PBTS o2

for program p if for a randomly selected test t ∈ TS, o1 is more likely to detect a

fault than o2. We state o1 is universally PB than o2 if o1 PBT o2, where T is the

entire set of tests that can be run against p. (This is conceptually different from the

definition of universally greater power outlined above.)

We can show power is a strictly stronger relation than PB when applied to oracles,

i.e., for test set TS and program p,

o1 >TS o2 ⇒ o1 PBTS o2.

Assume we have oracle o1 and o2 such that for test set TS and program p, o1 >TS

o2. For any test t ∈ TS, one of the following is true:

o1(t, p) ∧ o2(t, p) (3.1)

¬o1(t, p) ∧ ¬o2(t, p) (3.2)

¬o1(t, p) ∧ o2(t, p) (3.3)
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In other words, for all t ∈ TS it must be true that (1) neither oracle detects a

fault, (2) both oracles detect a fault or (3) o1 detects a fault while o2 does not. Based

on the definition of oracle power, it cannot be the case that o2 detects a fault if o1

does not detect a fault. Clearly, given an randomly selected t ∈ TS, o1 is at least as

likely to detect a fault as o2. Furthermore, we know there exists at least one t ∈ TS

such that ¬o1(t, p) ∧ o2(t, p) (note the use >TS) and thus for at least one t ∈ TS, o1

detects a fault that o2 does not. Therefore o1 PBTS o2.

3.4.3 Oracle Metrics

Arguably, one of the core contributions of testing research is evaluating how testing

approaches relate to one another. Unsurprisingly, then, a number of metrics have

been proposed for discussing the set of programs P and the set of tests T , including

software testability [64], various test coverage criteria, and the test coverage criteria

comparison relations of power, PROBBETTER, subsumes, etc. [74].

However, we are unaware of any metrics specific to test oracles. In this section,

we have proposed two basic oracle comparison metrics, and have shown that the

more restrictive (but non-total) comparison, power, implies the less powerful, but

total comparison, PB. These metrics allow us to compare oracles in terms of fault

finding ability, and highlight a potential (albeit in retrospect rather obvious) avenue

for research into oracles—analytically and empirically comparing different oracles,

as is commonly done for test coverage criteria. Future work in oracles may yield

more metrics not explicitly based on fault finding ability, such as test oracle cost. In

the remainder of the chapter, we will explore how our extended framework explicitly

considering test oracles influences the testing process.
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3.5 Implication of Functional Model of Testing to Previous

Work

In this section, we revisit some earlier influential work in testing, exploring how

explicitly considering a test oracle affects the results. We also explore how existing

research can be used to discuss problems related to test oracles.

3.5.1 Comparing Coverage Criteria

A significant portion of the theoretical and empirical testing research is concerned

with methods of comparing coverage criteria. While several methods have been pro-

posed, they implicitly assume the presence of an oracle. This can lead to conclusions

relying on key assumptions that are either unstated or minimally discussed. If we in-

stead consider that the oracle may vary, we can arrive at conclusions that are different

from published results in subtle, but important ways.

Power Comparison

We first illustrate why oracles are relevant using the power relation, first proposed by

Gourlay for test methods and subsequently adjusted by Weiss [68] for use with test

coverage criteria. Weiss states a criterion C1 is at least as powerful as C2, written as

C1 ≥ C2, if for any program p and specification s, if all test sets satisfying C2 exposes

an error in p then so do all test sets satisfying C1. Note here that the definition

requires all test sets satisfying the criterion reveal the fault—an unlikely occurrence

in practice. Weiss’s discussion completely omits the notion of an oracle; we assume

a constant complete oracle o is used.

We restate the definition of the power of a test coverage criterion using our frame-

work. A criterion C1 is at least as powerful as a criterion C2 with respect to a complete
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oracle o (written C1 ≥o C2) if:

∀p ∈ P , s ∈ S, C1(p, s, T1), C2(p, s, T2) :

(∃t2 ∈ T2,¬o(p, t2)⇒ ∃t1 ∈ T1¬o(p, t1))

In other words, if all test sets satisfying C2 are guaranteed to find a fault for p when

using oracle o, then so are all test sets satisfying C1. This formulation makes the role

of the oracle explicit—the relative power of a test coverage criterion is defined with

respect to a constant oracle.

It is easy to show that the oracle is relevant in the power relation. Consider the

statement (ST ) and branch (BR) coverage criteria. As subsumption between criteria

implies power [74], we know that BR ≥ ST . Generally speaking, this is a vacuous

relationship, as neither coverage is guaranteed to find faults for most programs p.

Nevertheless, assume there exists a program p which has some fault f revealed by

every test set satisfying statement coverage (and thus every test set satisfying branch

coverage), but does not always propagate to the output (e.g., an incorrect constant

is used).

Let oout be an input/expected value oracle considering only the outputs, and let

oall be an input/expected value oracle considering both the outputs and the internal

variables. If a test set TBR satisfying branch coverage is paired with oout, and a test

set TST satisfying statement coverage is paired with oall, then TST , oall is guaranteed

to detect f , but TBR , oout is not. Thus, the power relation for test coverage criteria

requires the same oracle to be used with both coverage criteria.

Probabilistic Comparison

The power relation between test coverage criteria is known to be vacuous for most

criteria and is thus of limited value [74]. We extend the Weyuker et al. PB relation [74]
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to consider oracles explicitly using the same notation and terminology used for power

above.

0: var: temp : int = 0

1: var: out : int = 0

2: forever:

3: out = temp

4: temp = input() * 2

Figure 3.4: PROBBETTER Example Program

To demonstrate the effect of oracles on PB, consider the following example. Let

p be the program in Figure 3.4, and let the specification s state that out at iteration

i should be equal to the input at iteration i− 1, or 0 if i = 0. Assume the number of

possible inputs is bounded at 100, with a range of -49 to 50. Let TL1all and TL2sin be

coverage criteria such that for a test set TS, TL1all is satisfied if TS contains every

test of length 1 and no other tests, and TL2sin is satisfied if TS contains exactly

one test of length 2. (We define length as the number of loop iterations.) Let oout

be an oracle with oracle data out, and let oall be an oracle with oracle data out and

temp. Both oracles are input/expected value oracles, signaling a fault when the value

of a variable is incorrect. out is considered incorrect when s is violated and temp is

considered incorrect when the value is not equal to the prior input.

p contains a fault, as line 4 should not double the input. Consequently, the value

of out at iteration i is only equal to the input at iteration i−1 if the input at iteration

i − 1 was 0. We make two observations about detecting this fault. First, to detect

the fault we must use an input other than 0, as p satisfies s for 0. Second, the fault

requires at least least two inputs to reach the output, and thus out will be correct

for all tests of length one. Consequently, no test set satisfying TL1all will detect the

fault using oracle oout, while all test sets satisfying TL1all will detect the fault using

oall. Furthermore, most test sets satisfying TL2sin will detect the fault using either
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oracle; when using oout, only tests in which the first input is 0 will fail to detect the

fault, while when using oall only the test in which both inputs are 0 will fail to detect

the fault.

Let Prob(C,O) be the probability of detecting a fault when using oracle O and a

randomly selected test set satisfying criteria C. We can state:

Prob(TL1all, oout) = 0.0

Prob(TL1all, oall) = 1.0

Prob(TL2sin, oout) = 0.99

Prob(TL2sin, oall) = 0.9999

Thus, for program p and specification s:

TL2sin PBoout TL1all

TL1all PBoall TL2sin

Implications

These results highlight the relationship between oracles, tests, and programs on the

efficacy of the testing process. The relationship between oracles and tests can easily

be seen from these results. Both the power and PB relation were defined to compare

the efficacy of the test coverage criteria (with respect to a program and specification

in the case of PB). However, it is clear that oracles cannot be ignored when discussing

test selection; to do so may yield misleading or incorrect conclusions.

While less obvious, these results also highlight the relationship between oracles

and programs. The construction of the program in Figure 3.4 is such that the error

on line 4 produces incorrect internal state for 99% of the inputs, but cannot affect the
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output unless a test length of at least 2 is used. If instead the error had occurred on

line 3 (i.e., out was doubled and temp was not), the program would be semantically

equivalent in terms of input/output behavior, but PB would be unaffected by the

oracle used. That such a subtle change can completely negate the benefit of using

a more powerful oracle indicates that as with test selection and oracles, we cannot

ignore program characteristics when discussing oracle selection. We further explore

the relationship between programs and test oracles later in this section.

3.5.2 Mutation Testing

Mutation testing is a test selection method based on selecting a set of tests to detect

small (usually syntactic) changes in the program [19]. Briefly, to select a set of tests

satisfying mutation coverage for a program p, we first produce a set of mutants M

that differ from p in small ways (e.g., change arithmetic operators, swap variable

names, etc.). We then select a set of tests T such that each semantically different

mutant m ∈M is distinguished from p.

Several types of mutation testing have been proposed. In strong mutation test-

ing [19], we must find a set of tests T such that ∀m ∈ M,∃t ∈ T, p(t) 6= m(t), i.e.,

the output of each faulty program m differs from p’s output for some test t. In weak

mutation testing [38], we need only find a set of tests T such that for each m ∈M , the

internal state of the p and m differs for some test t. In [78], Woodward and Haywood

note that mutation testing exists on a spectrum, with strong and weak mutation on

opposite ends of the spectrum.

This spectrum of approaches is primarily differentiated by the method used to de-

termine if a mutant has been detected, i.e., the test oracle. Recall that in Section 3.2.2

we defined a complete adequacy criterion to be an adequacy criterion defined in terms

of both the test set and the oracle used. If we view the method used to distinguish
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the mutants M from the program p as an oracle, we can reformulate the spectrum of

mutation testing approaches as a single, complete adequacy criterion.

For the set of mutants M , mutation adequacy MutM is satisfied for program p,

specification s, test set TS, and oracle o if:

MutM(p× s× TS × o)⇒ ∀m ∈M, ∃t ∈ TS : ¬o(t,m)

In other words, for each mutant m ∈ M , there exists a test t such that the oracle o

signals a fault.

This formulation of mutation testing differs slightly from the usual approaches to

mutation testing, as the oracle is part of the actual testing process, whereas generally

the method used to distinguish M from p is only used to select tests. Nevertheless,

this formulation captures the core of mutation testing—constructing a testing process

that is guaranteed to detect a set of pre-specified faults—without focusing on how the

faults are detected. A very strong oracle can be used with a small number of simple

tests; conversely, a weak output-only oracle can be used with a tests that ensure the

mutant faults propagate to the output.

The relationship between the program being tested, the tests selected, and the

oracle used is clear in this formulation of mutation testing. From the program p, a set

of mutants M are generated. Using the set of mutants, an oracle o and a set of tests

TS are selected such that each mutant is detected. If we change one testing factor,

the other factors must also change accordingly to satisfy the criterion—a different

program yields different mutants, thus requiring different tests and/or a different

oracle; a weaker oracle may require more or different tests; simpler tests may require

a more powerful oracle. We believe the close relationship between factors in mutation

testing to be worth considering—mutation testing is based on detecting faults, and

detecting faults is the goal of any testing process. Insights related to mutation testing

seem likely to hold in many testing processes.



56

3.5.3 Testability

The testability of a software system, as defined by Voas et al., is the probability

that the system will fail if faulty [65]. Generally, methods of computing software

testability estimate the probability of a fault in a specific program location (e.g., a

statement) propagating to the output, usually with respect to an input distribution

or specific input. By computing the testability of each program location, it is argued,

we can focus testing resources on program locations that have low probabilities of

propagating errors. As a representative technique, we explore only work led by Voas

related to the PIE (Propagation, Infection, and Execution) method [64, 65, 67].

Voas et al. define several testability metrics [64]. Consider the propagation es-

timate metric, denoted ψl,a. The propagation estimate is the estimated probability

that a perturbed value of a at location l will affect the output. In practice, measur-

ing testability is about estimating failure probabilities, and ψl,a is therefore used to

estimate the probability that a, if incorrect, will cause the program to fail. Conse-

quently, ψl,a only makes sense if we assume the presence of an oracle defined in terms

of the outputs. If we instead consider that the oracle may not be defined in terms of

the outputs, the propagation estimate above becomes less informative—we are not

interested in the probability of a fault propagating to any output, we are interested

in the probability of a fault being detectable by the oracle used.

To account for the oracle, we redefine propagation estimate with respect to an

oracle o, denoting it ψl,a,o. This redefined propagation estimate is the estimated

probability that a perturbed value of a at location l will affect a variable in the

oracle data of o. This metric thus estimates the probability that a fault at a will

be detectable by oracle o. We can show that given an arbitrary o ∈ O, ψl,a,o is not

necessarily equal to ψl,a. Suppose we have a program p, a set of tests t, and three

oracles, oo and ov and oa. Let oo be an oracle with oracle data containing every
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output and no other variables (i.e., the oracle assumed by ψl,a), let ov be an oracle

considering the single internal variable v, and let oa be an oracle considering the single

variable a. Let 1.0 > ψl,a,oo > 0.0 and let a be some variable defined after the last

assignment of v (thus a cannot propagate to v). Therefore:

1.0 > ψl,a,oo > 0.0

ψl,a,ov = 0.0

ψl,a,oa = 1.0

ψl,a,oa > ψl,a,oo > ψl,a,ov

ψl,a,oa > ψl,a > ψl,a,ov

We can see that in order to accurately use testability information to guide software

testing, we must account for the oracle used. If we do not, we may select tests likely

to propagate errors to variables in which we are not interested, or we may direct

resources to increase testing of parts of the program unlikely to propagate errors to

the output, ignoring the fact that these parts of the program may already be covered

by the oracle data.

Effect on Oracle Selection

Software testability is often proposed as a method of directing test selection; by

determining which parts of the program are and are not likely to hide faults, we can

select tests proportionally. However, software testability can also be used to guide

oracle selection.

Consider the previous example, assume the variable a is unlikely to propagate to

the output. If we wish to improve fault finding, we can select tests aimed at improv-

ing the probability of a propagating to the output, or we can use a stronger oracle

with oracle data containing a variable to which an error in a is likely to propagate.
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This leads to the observation that variables with low propagation estimates represent

opportunities for increasing the oracle power. It then naturally follows that if all

variables in the program have high propagation estimates, increasing the oracle data

is unlikely to significantly improve the oracle power. Note here that the former ob-

servation has been alluded to by Voas and Miller, who proposed using testability to

guide the creation of assertions [67].

Implications

Like mutation testing, testability metrics highlight the close interrelationship between

programs, test sets, and oracles. Certain faults may be difficult to uncover in a

program p through testing. By computing the testability of p, we can determine

where these faults are likely to hide, and then direct testing resources—both in terms

of tests and oracles—to finding them. Voas suggests adding tests to better exercise

parts of the code likely to hide faults [64], thus using testability information to improve

the testing process. As noted above (and by Voas [67]) we can also use testability

information to select better oracles. Clearly, doing both may be unnecessary; if we

use testability information to select a better oracle and thus increase the testability,

we may no longer need additional tests. Similarly, given a large number of tests

compensating for a low propagation estimate, selecting a better oracle may provide

little improvement.

3.6 Chapter Conclusion

In this chapter, we have aimed to provide a foundation for software testing research—

in particular empirical testing research—that is better suited for the task than previ-

ous attempts. In particular, we have attempted to provide a foundation more capable

of exploring the interrelationship between tests, programs, and oracles. To accomplish
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this, we explored both functional and computational formalisms for describing test-

ing, with a focus on being able to describe both test inputs and test oracles. We then

formalized several previously undescribed or informally described testing concepts,

in particular concepts related to test oracles. Finally, we explored the implications

of our work on previous work in the theory of testing, demonstrating the influence of

test oracles on the effectiveness of the testing process.

Specific contributions of this chapter include:

• We extended Gourlay’s functional framework for describing testing to account

for test oracles

• We illustrated how Kripke structures can be used to discuss problems of testing

• We defined the following testing concepts, using either the functional or com-

putational formalisms:

– Properties relating test oracles to their ability to determine correctness:

complete, sound, and perfect

– Oracle data, the set of variables considered by a test oracle

– Oracle adequacy criterion, a method of selecting test oracle (similar to test

adequacy criterion), defined as OC ⊆ P × S ×O

– Complete adequacy criterion, a method of selecting both a test suite and

a test oracle together, defined as TOC ⊆ P × S × 2T ×O

– Several methods of comparing test oracle based on existing methods of

comparing test inputs

• Explored the implications of explicitly considering test oracles on existing work

in the theory of testing, demonstrating that, in theory, test oracles can influence

the effectiveness of the testing process
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The work in this chapter raises a key question—given that our results indicate

that test oracles and test inputs both influence the effectiveness of the testing process

in theory, how much can we expect these artifacts to influence the effectiveness of the

testing process in practice? In the next few chapters, we perform an empirical study

exploring this (and other) questions. We will use our work in this chapter to describe

several problems of interest, demonstrating that in practice the interaction between

artifacts exists and quantifying the impact of this relationship.



Chapter 4

Empirical Study Overview

In the previous chapter, we explored, theoretically, how testing artifacts can interact

to influence the effectiveness of the testing process, finding that previous conclusions

in testing research are sensitive to variations in testing artifacts used ; notably, varying

the test oracle selected may significantly alter conclusions on the effectiveness of test

input selection methods.

This work raises several questions. First, to what degree do the results shown to

hold in theory also hold in practice? Software engineering, and software verification

in particular, contains many examples of techniques whose theoretical and practical

efficacy vary. For example, formal verification methods such as model checking are

often undecidable or intractable in the worst case, but can (with clever heuristics)

yield good results for real systems in practice. Thus it is quite possible that our

theoretical results illustrating the interaction between testing artifacts may not hold

in practice, or may hold but not to any practically significant degree. We therefore

must both demonstrate and quantify the practical impact of these interactions.

Second, how do testing artifacts not considered in Chapter 3, or properties of test-

ing artifacts not considered, impact the effectiveness of the testing process? Specif-

ically, how do practically relevant considerations such as the program structure, test

coverage criterion, or percentage of system state considered by the test oracle—each

an aspect of the testing process difficult to formally reason about—interact to influ-

ence the effectiveness of the testing process?

61
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Finally, assuming these interactions between artifacts exist and that they are

practically relevant, what can be done to improve the effectiveness of the testing

process? In particular, do there exist unexplored avenues of research in software

testing that might be used improve software testing in the future?

These questions are broad and—as noted in the introduction—there is a large

amount of work that must be done to thoroughly answer them. Such work must

encompass many domains of software engineering and many aspects of the testing

process. Nevertheless, to begin to answer these broad questions, we have formulated

several research questions exploring specific interactions between testing artifacts

within the domain of critical avionics systems, and have conducted an empirical

study capable of answering these questions.

In this chapter, we will provide the details of how our study was conducted.

In Section 4.1, we discuss testing artifacts relevant to our study. In Section 4.2,

we describe how these artifacts are varied in our study, stating the dependent and

independent variables. Finally, in Section 4.3, we outline our experimental design,

detailing how each step is conducted in Sections 4.4 through 4.9.

In the following three chapters, we present the specific research questions explored,

along with motivation, analysis and discussion. The questions in each chapter explore

similar types of interactions, and were selected because we believe they are particu-

larly noteworthy or relevant in our domain of choice, critical avionics systems. The

specific research questions require motivation which is best left to subsequent chap-

ters; however, to better understand our study design, we list the high level interactions

each chapter explores:

Program Structure – Structural Coverage Criteria: How does the structure

of the system under test influence the cost and effectiveness of structural cov-

erage criteria?
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Test Oracles – Test Inputs: How do test oracles and test inputs interact to influ-

ence the effectiveness of software testing?

Program Structure – Test Oracles: How does the structure of the system under

test influence the ability to test oracles to improve the effectiveness of software

testing?

Final note: the research questions were proposed prior to designing the experi-

ment; we did not simply collect large amounts of data and mine it to discover these

interactions. The separation of the experimental design from the research questions

and analysis has been done only to simplify the organization of this work, and avoid

needless repetition of implementation details.

4.1 Overview of Testing Synchronous Reactive Systems

In Chapter 3, we discussed testing using a functional notation. This notation is

intentionally very high level, and does not capture all the details relevant to testing

systems in our domain of interest, critical avionics systems. Therefore, in this section,

we provide an overview of testing artifacts relevant to testing our case examples,

describing the format and relevant properties of each of the four artifacts shown in

Figure 4.1.

4.1.1 Program

Each case example in our study is expressed in a synchronous reactive language

called Lustre [12]. A synchronous reactive systems operates using the following steps:

(1) receives input from the environment, (2) recomputes the internal state, and (3)

produces output. These steps are performed sequentially, and repeated until the

system terminates.
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P

S

TO

Syntactic structure may guide test selection

Semantics determines propagation of errors for each test

Combination of O and T determines efficacy of testing process
Tests suggest variables worth observing

Tests designed to distinguish incorrect P from S

S may guide test selection

P attempts to 
implement S
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Figure 4.1: Example Relationships Between Testing Artifacts

The number of programming constructs available in Lustre is considerably smaller

than those available in more traditional imperative programming languages such as

C or Java. Notable constructs that are generally available in imperative languages

but do not exist in Lustre include:

• Loop constructs, e.g. the for-loop. Conditional branches exist, but jumps

backward cannot occur.

• Dynamic memory, i.e., a heap. All variables are predefined, with a type speci-

fied.

• Side effects. Each system is a effectively list of assignments of the form varName

= <equation>. Each element in an equation must be computed before it used

(i.e., cyclic dependencies in which the value of A depends on the value of B and

vice-versa are not allowed).

• Complex data types. This follows from the restriction on dynamic memory.

While records/tuples can be specified, these are merely syntactic sugar for sim-

ple data types such as integers, Booleans, and floating point numbers.
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node exampleProgramNode(input_1: bool;

input_2: bool;

input_3: int;

input_4: bool)

returns (output_1: bool);

var

internal_1: bool;

internal_2: bool;

internal_3: bool;

internal_4: bool;

let

internal_1 = (input_1 OR input_2) OR input_4;

internal_2 = input_3 <= 100;

internal_3 = input_3 > 100;

internal_4 = IF internal_1 THEN internal_2 ELSE internal_3;

output_1 = internal_4;

tel;

Figure 4.2: Example Lustre Program

We present a sample Lustre program in Figure 4.2

In this study, there are three aspects of these systems that are particularly rele-

vant: the potential for masking, the complexity of expressions, and the observability

of the system.

Masking occurs during execution when a value is computed, but cannot possibly

influence the system’s output. For example, in Figure 4.2, the value of internal 3

is only externally visible when internal 1 is false. If we were testing this system

with a test input where input 4 was always true, the computation of the value

of internal 3—even if wrong—would not be detectable when examining the output

variables. As we saw in the previous chapter, the presence of masking (or lack thereof)

has implications in the construction of test oracles. If masking exists, it may be

beneficial to our testing effectiveness to consider the internal state of the system; if

masking does not exist, considering internal state is likely less useful. Futhermore,
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the presence of masking is important when selecting test inputs. If we wish to both

detect faults and cause them to propagate to the output, our selection of test inputs

must be careful designed to avoid masking. Note that the presence of masking is also

sometimes referred to as a lack of fault propagation—erroneous values in the program

have not propagated to an observable output.

The expression complexity refers to the size of expressions in the source code.

Intuitively, an expression is more complex if has more operators and/or references

more variables. For example, in Figure 4.2, the expression assigned to internal 1

is more complex than the expression assigned to internal 3, as the former contains

more Boolean operators and references more variables. The practical implications of

expression complexity is chiefly its impact on structural coverage criteria—when using

such criteria, more complex expressions often require more tests to satisfy the criteria.

Given semantically equivalent formulations of the same program, the effectiveness of

such a criterion may varying depending on the complexity of expressions in each

program.

Observability simply refers to our ability to observe program state. In this study,

we will assume that only the values of variables (internal state and output) can

be observed. Thus given two semantically equivalent programs, one which defines

more variables than the other, we view the former as more observable. The prac-

tical implications of observability chiefly relate to test oracle construction—value or

computation which is not observable cannot be considered in the oracle data. For

example, the computation of internal 1 involves two OR expressions, but only the

final computation is assigned to internal 1; we cannot consider the value of input 1

OR input 2 in the oracle data.

We recognize that, given a sufficiently advanced test harness, we can observe any

computed value, even those not assigned to a variable. We will assume in this study,
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input_1 input_2 input_3 input_4

step 1: True True 42 False

step 2: False True 13 True

step 3: False False 9 True

Figure 4.3: Example Lustre Program Test Input (Length of Three)

however, that such a harness does not exist. In any case, the construction of such a

test harness would likely not occur unless evidence existed that it would be beneficial,

and this evidence does not appear to exist. (Though in Chapter 7 we provide it.)

4.1.2 Test Inputs

Due to the simple input → compute state → output nature of synchronous reactive

systems, as well as the lack of dynamic memory and the restriction to simple scalar

datatypes, the construction of test inputs is straightforward in our study. Each test

input (also termed a test case or simply test) consists of a list of one or more steps.

Each step defines a value for every input in the system; the number of steps is the

length of the test. A set of test inputs is called a test suite; the number of inputs is

equal to the size of the test suite. An example test input for the system in Figure 4.2

is given in Figure 4.3.

As discussed in the introduction, developing methods of selecting test inputs is

a longstanding research objective. In this study, the coverage criterion each test

suite satisfies, along with the size of the test suite, will be the primary properties

distinguishing test suites. We will explore the use of two broad types of test coverage

criteria: structural coverage criteria, and requirements coverage criteria. We will also

explore the use of random testing.

Structural coverage criteria define the adequacy of a test suite in terms of syntactic

program elements. An example of such a criterion would be statement coverage, in
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which all statements must execute. Such coverage criteria are also known as white

box coverage criteria, due to their use of source code information. In this study, we

explore the use of the following structural coverage criteria:

Branch: Every branch must evaluate to true and false. [83]

Condition: Every atomic Boolean element (e.g., variable, relational comparison) in

a branch condition must evaluate to true and false. Note that this does not

imply that every branch must evaluate to true and false [83].

MCDC (Modified Condition Decision Coverage): The independence of every

atomic Boolean element in every Boolean expression (e.g. branch conditions,

assignments of the form varName = a AND b, etc.) must be shown.

Demonstrating independence of an atomic Boolean element is surprisingly com-

plex; a good tutorial can be found in [34]. At a high level, to demonstrate inde-

pendence of an atomic Boolean element, we must show the value of the element

can cause the root Boolean expression evaluate to both true and false. Several

variations of MCDC exist—for this study, we use Masking MCDC, as it is the

method of computing MCDC used by the avionics community [17].

Requirements coverage criteria define the adequacy of a test suite in terms of

some set of requirements. For example, a requirements coverage criteria based on use

cases may require each use case be expressed as a test input. Such coverage criteria

are also known as black box coverage criteria, due to their lack of use of source code

information—they view testing as input/output only, treating the program internals

as an opaque black box. In this study, each of our case examples has an associated

set of Linear Temporal Logic (LTL) requirements [53]. In previous work, we have

defined several coverage criteria over such properties [75]. We use these requirements

coverage criteria in this study. They are:
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Naive Requirements: Each LTL requirement must evaluate to true.

Antecedent: Each LTL requirement must evaluate to true. For requirements of

the form A → B the antecedent A—the portion to the left of the implication

operator—must also evaluate to true, thus preventing vacuous satisfaction.

UFC (Unique First Cause): UFC is adopted from the MCDC criterion. However,

as LTL properties define paths, to satisfy UFC we must demonstrate for each

LTL formula the independence of each atomic Boolean element along a path.

In other words, each element must be shown to be the unique first cause of the

formula becoming true.

UFC defines independence in terms of the shortest satisfying path for the for-

mula. Thus, for a formula A and a path π, an atomic condition α in A is the

unique first cause if, in the first state along π in which A is satisfied, it is satis-

fied because of atomic condition α. Note that in the context of testing, a path

is represented by a test. A detailed description of UFC can be found in [75].

In random testing, we simply randomly select test inputs, a straightforward task

given the nature of our test inputs. Random testing is, like requirements coverage

criteria, considered to be a black box test method.

4.1.3 Test Oracles

As noted previously in Chapters 2 and 3, there exist many possible methods of con-

structing test oracles. In this study, we will focus on test oracles defined in terms of

concrete expected values. In other words, we are interested in test oracles that, for

each test input, specify concrete values the system is expected to produce for one or

more variables (internal state and/or output). During testing, such an oracle com-

pares the produced values against the expected values, failing the test if a difference
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occurs. We term such oracles expected value oracles. In our experience with indus-

trial parters, such test oracles are commonly used when testing synchronous reactive

systems.

In this study, we will only examine complete expected value oracles, i.e., oracles

such that when the program is executing correctly, the test will pass. (See Chap-

ter 3.2.1.) As each expected value oracles operates by comparing a subset of internal

state and output variables against concrete, expected values, any two complete ex-

pected value oracles for the same system must have, for a test input t, the same

expected value for any variable v in their oracle data.

Complete expected value oracles therefore differ only in the set of variables for

which expected values are defined, which we defined as the oracle data in Chapter 3.

We loosely classify expected value oracles based on the composition of their oracle

data as follows:

Unrestricted: Oracle data contains any combination of output variables internal

state variables.

Output-Base: Oracle data contains all the output variables, and one or more inter-

nal state variables.

We refer to these classifications as subtypes, and refer to oracles as being of

that subtype, e.g., oracles belonging to the unrestricted classification are unrestricted

oracles. Also of note are two specific test oracles:

Output-Only: Oracle data contains all the output variables, and no internal state

variables.

Maximum: Oracle data contains all output variables and all internal state variables.
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These represent two oracles of particular interest: the oracle monitoring every out-

put, and only the outputs, and the oracle monitoring all observable state information.

The former represents the current practice in industry, while the latter represents the

most effective test oracle for any system.

We will refer to the size of an oracle (e.g. “an oracle of size 25”, “a large oracle”),

where size refers to the number of variables used as oracle data. For discussions

where the distinction between internal state variables and outputs is irrelevant we

will simply refer to variables rather than internal variables and outputs. Finally, we

will refer to an oracle where the oracle data is a set V of variables or a superset of V

as containing or using V .

4.1.4 Specifications

In this study, we will not be making significant use of the system specification. Our

study, as we outline below, uses mutation testing to estimate fault finding effective-

ness, and thus no system specification is required to evaluate the correctness of test

runs.

As we described above, however, each system has an accompanying set of Linear

Temporal Logic (LTL) properties. Each set of LTL properties were judged to be

“good” by the system developers. These properties are used to measure coverage of

the requirements coverage metrics.

4.2 Independent and Dependent Variables

In this study we have three independent variables—each corresponding to either the

program, test, or oracle set from our revised testing system from Chapter 3 and

illustrated again in Figure 4.4—and one key dependent variable, the fault finding

effectiveness of the testing process. Our independent variables are:
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Figure 4.4: Example Relationships Between Testing Artifacts

Program Structure: For a given program, several syntactically different, but se-

mantically equivalent programs are often possible. By restructuring programs

we may influence other artifacts, such as test inputs derived based on the syn-

tactic structure. In this study, we explore the impact of two program structures:

inlined, in which the program has relatively complex expressions; and nonin-

lined, in which the program has relatively simple expressions. This is detailed

in Section 4.4.

Test Inputs: In this work, we explore six test coverage criteria—three structural

coverage criteria, and three requirements coverage criteria—as well as random

test suites of varying size. These criteria are described in Section 4.1.2.

Test Oracles: As mentioned in Chapter 2, methods of selecting test oracles, unlike

methods of selecting test inputs, are less common in testing literature. We

formulate two methods of selecting test oracles—which we term subtypes—

based on the composition of the test oracles (i.e., based on the usage of output

and internal state variables), varying the number of variables considered by the

test oracle between the minimum and maximum oracle sizes. We also consider

every oracle of size one.
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Dependent variables include:

Fault Finding Effectiveness: The fault finding effectiveness (often called simply

the effectiveness) of the testing process is the ability of our test inputs and test

oracle to detect faults in our program under test. To compute the fault finding

effectiveness of the testing process, we automatically generate a large number

of faulty systems (termed mutants) from our original system, and then measure

the number of mutants our testing process can detect.

Note that we use the definitions of Avizienis and Laprie [3], in which a fault is an

arbitrary defect in a program that can lead to an erroneous state and possibly

to a failure, which is an externally visible deviation from expected behavior.

In our case, a failure is evident when the output trace of the mutated model

deviates from the expected output trace.

This dependent variable is our primary dependent variable, and is the core of

most of our research questions and analyses.

(Reduced) Test Suite Size: When generating test suites to satisfy a coverage cri-

terion, we are chiefly interested in the effectiveness of the resulting test suite.

However, in some scenarios, we are also interested in the number of tests re-

quired to satisfy the coverage criterion.

Number of Variables: In addition to the complexity of the program expressions,

the inlined and noninlined programs differ in the number of (internal state)

variables they contain. This is relevant when considering issues of observability.
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4.3 Experimental Design

In this section, we outline the systems used in our study and described in detail the

steps taken to perform the study. We begin by outlining the basic steps taken. For

each case example, we performed the following:

Generated inlined and noninlined program versions. We transformed the pro-

gram structure, creating one version with a high degree of expression complex-

ity (inlined version) and one version with a low degree of expression complexity

(noninlined version). This is detailed in Section 4.4. Note that unless specified,

the remaining steps are applied to both the inlined and noninlined version sep-

arately (e.g., separate mutant sets are generated for the inlined and noninlined

versions).

Generated mutants. We randomly generated 250 mutants, each containing a single

fault, and then removed functionally equivalent mutants. (Section 4.8.)

Generated random test inputs. We generated random inputs for 1,000 tests of

test lengths between 2 and 10 steps. This set of random test inputs is used for

both the inlined and noninlined versions of each case example. (Section 4.5.)

Generated tests satisfying coverage criteria. For each coverage criterion con-

sidered in our experiment, we generated one set of tests satisfying said coverage

criterion. The following criteria are considered: branch, condition, Modified

Condition Decision Coverage (MCDC), naive requirements, antecedent, and

Unique First Cause (UFC). NuSMV was used to generate each set of tests,

resulting a test set with one test input for each obligation. (Section 4.6.)

Ran tests on mutants. We ran each mutant and the original case example using

every test generated, and collected the internal state and output variable values
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produced at every step. This yields raw data used for the remaining steps in

our study. (Section 4.9.)

Generated oracles. We randomly generated three sets of oracles—one set for both

the unrestricted and output-only oracle subtypes (50 oracles each) and one set

containing every oracle of size 1 (only observing one variable). We randomly

selected which variables were to be included in an oracle. (Section 4.7.)

Generated reduced test suites. For each coverage criterion, we generated 50 re-

duced test suites using a greedy reduction algorithm. Each reduced test suite

maintains the coverage provided by the full test suite. (Section 4.6.)

Generated subsets of random tests. We randomly generated 200 subsets of the

randomized test suite, with subsets containing 5 to 1,000 tests from the original

test suite. (Section 4.5.)

Assessed fault finding ability of each oracle and test suite combination. We

determined how many mutants were detected by every oracle and a reduced test

suite combination. (Section 4.9.)

These steps produce the necessary fault finding data required to evaluate our

questions of interest. In the remainder of this chapter, we explore the details of these

steps.

4.3.1 Case Examples

We used four industrial synchronous reactive systems developed by Rockwell Collins

Inc. in our experiment. All four systems were modeled using the Simulink notation

from Mathworks Inc. [45] and were translated to the Lustre synchronous program-

ming language [30] to take advantage of existing automation. Two systems, DWM 1
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and DWM 2, represent portions of a Display Window Manager (DWM) for a com-

mercial display system. Two systems represent various aspects of a Flight Guidance

System (FGS), which is a component of the overall Flight Control System (FCS) in

a commercial aircraft. The two FGS systems in this paper focus on the mode logic

of the FGS. The Vertmax Batch and Latctl Batch systems describe the vertical and

lateral mode logic for a flight guidance system. All four systems represent sizable,

operational systems intended for real-world use. Each system has a reasonably com-

plete (as judged by the developer) set of requirements expressed as Linear Temporal

Logic (LTL) properties associated with it. Information related to these systems is

provided in Table 4.1.

# Simulink Subsystems # Blocks # LTL Properties

DWM 1 3,109 11,439 170

DWM 2 128 429 41

Vertmax Batch 396 1,453 294

Latctl Batch 120 718 103

Table 4.1: Case Example Information

4.4 Program Structure

For each case example, we generate two versions that are semantically equivalent,

but syntactically different. We terms these the inlined and noninlined versions of

the program, described below. Examples of an inlined and noninlined version of the

program are given in Figures 4.5 and 4.6.

4.4.1 Noninlined Program Structure

In a noninlined program, the structure of the program is similar to the structure of the

original Simulink model. Each signal from the Simulink model has been preserved,
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node exampleProgramNode(input_1: bool;

input_2: bool;

input_3: int;

input_4: bool)

returns (output_1: bool);

var

internal_1: bool;

internal_2: bool;

internal_3: bool;

internal_4: bool;

internal_5: bool;

internal_6: bool;

let

internal_1 = input_1 AND input_2;

internal_2 = input_3 > 100;

internal_3 = internal_1 OR input_4

internal_4 = IF (internal_3) THEN internal_2 ELSE input_1;

internal_5 = input_3 > 50;

internal_6 = IF (internal_5) THEN internal_4 ELSE input_2;

output_1 = internal_6;

tel;

Figure 4.5: Example Noninlined Program

resulting in a very large number of internal state variables, with each internal state

variable corresponding to a relatively simple expression. A small example noninlined

program is given in Figure 4.5.

Note that unlike our previous study exploring program structure [55], in this study

the noninlined program hierarchy is flattened such that the implementation has only

one node (this facilitates our study of test oracles).

4.4.2 Inlined Program Structure

In an inlined program, the program is first flattened such that the implementation

(as with the noninlined program) has only one node. Once this has been completed,

we then inline most, but not all, of the intermediate variables into the model. When
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node exampleProgramNode(input_1: bool;

input_2: bool;

input_3: int;

input_4: bool)

returns (output_1: bool);

let

output_1 =

IF (input_3 > 50)

THEN

IF ((input_1 AND input_2) OR input_4)

THEN input_3 > 100

ELSE input_1 ELSE input_2;

tel;

Figure 4.6: Example Inlined Program

inlining a variable, we substitute the expression corresponding to the variable wher-

ever the variable is referenced, and then remove the variable from the program (as it

is no longer referenced). This has the effect of (1) reducing the number of internal

state variables, as inlined variables are removed from the model, (2) increasing the

complexity of expressions, as inlined variables are substituted wherever they are ref-

erences, and (3) increasing the number of nested if-then-else expressions, as such

expressions are often substituted into then and else branches.

Some of the structural coverage criteria used in our experiment are defined exclu-

sively over traditional imperative structures (such as those found in C, Java, etc.); we

therefore restrict our inlining to prevent syntactic constructs impossible in impera-

tive programs from arising. In particular, we do not place if-then-else expressions

inside if conditions—while this is valid in Lustre programs, it is impossible in im-

perative programs and would prevent us from accurately measuring coverage over

structural coverage criteria.

In Figure 4.6, we present an inlined version of the program from Figure 4.5. As

we can see, the inlined version has been reduced from five internal state variables
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to zero, with the set of expressions condensed to one, considerably more complex,

expression. This expression illustrates how inlining can increase complexity both in

terms of Boolean/relational expressions and nesting of if-then-else statements.

For example, we see that the condition formerly represented by internal 3 has been

inlined, and the if-then-else expression formerly represented by internal 4 has

been nested inside another if-then-else statement. As we will see shortly, while

these transformations result in semantically equivalent programs, their impact on

testing is significant.

4.5 Random Test Input Generation

We generated a single set of 1,000 random tests for each case example. Each individual

test in these sets contains between 2 and 10 steps with the number of tests of each

test length distributed evenly. We then generated test suites of various sizes for our

experiment by randomly selecting a subset of the full random test suite. For each

case example, we generated 200 test suites, with the size of each test suite evenly

distributed from size 5 to size 1,000. These reduced test suites are then used in our

evaluation.

4.6 Coverage Directed Test Input Generation

There exist several methods of generating tests to satisfy coverage criteria. We adopt

counterexample-based test generation approaches based on existing model checking

approaches to generate tests satisfying our coverage criteria of interest [23, 56]. We

used the NuSMV model checker in our experiments [50].

We performed the following steps for each coverage criterion:

1. We processed the Lustre source code to generate coverage obligations for our



80

coverage obligations of interest. Each coverage obligation represents a property

that should be satisfied by some test (e.g., some branch covered, some condition

evaluates to true). These obligations were inserted into the Lustre source code

as trap properties [23].

2. We translated the Lustre source code, with trap properties, to SMV syntax.

3. We ran the SMV model through NuSMV. This produces a list of counterexam-

ples, each of which corresponds to the satisfaction of some coverage obligation.

4. Each counterexample is translated into an executable test input.

Tests satisfying requirements coverage criteria are generated using the original

case example, as the LTL properties are formulated in terms of the original system.

These test inputs are therefore the same across the inlined and noninlined systems.

Tests satisfying structural coverage criteria are generated separately using the inlined

and noninlined case examples.

Note that some coverage obligations are unsatisfiable, i.e., there does not exist a

test which satisfies the coverage obligation. (This can occur, for example, if infeasible

combinations of conditions are required by some coverage obligation.) Nevertheless,

by using this approach, we ensure that the maximum number of satisfiable obligations

are satisfied.

This approach generates a separate test for each coverage obligation. While a

simple method of generating tests, in practice this results in a large amount of redun-

dancy in the tests generated, as each test likely covers several coverage obligations.

For example, in branch coverage, a test satisfying an obligation for a nested branch

will also satisfy obligations for outer branches. Consequently, the test suite gener-

ated for each coverage criterion is generally much larger than is required to satisfy

the coverage criterion. Given the correlation between test suite size and fault finding
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effectiveness [49], this has the potential to yield misleading results—unnecessarily

large test suites may lead us to conclude that a coverage criterion yields an effective

test suites, when in reality it is the size of the test suite that is responsible for the

effectiveness.

To avoid this, we reduce each naive test suite generated while maintaining the

coverage achieved. This reduction is done using a simple greedy algorithm following

these steps:

1. Each test is executed, and the coverage obligations satisfied by each test are

recorded. This provides the coverage information used in subsequent steps.

2. We initialize two empty sets: obs contains satisfied obligations and reduced

contains our reduced test suite. We initalize a set tests containing all tests

from our naive test suite.

3. We randomly select and remove a test t from tests. If the test satisfies an

obligation not currently in obs, we add it to reduced, and add the obligations

satisfied by t to obs. Otherwise we discard the test.

4. We repeat the previous step until tests is empty.

Due to the randomization, many reduced test suites can be generated using this

process. To prevent us from selecting a test suite that happens to be exceptionally

good or exceptionally poor relative to the possible reduced test suites, we produce 50

randomly reduced test suites using this process.

4.6.1 A Note on Counterexample-Based Test Generation

The use of counterexample-based test generation is one of several options for gen-

erating tests to satisfy coverage criteria. As the method of test generation selected
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can (and—as we will see in Chapter 5—does) impact our results, it is worth dis-

cussing why we have elected to use counterexample-based test generation and what

the implications of this decision are.

Consider the problem of evaluating the effectiveness of a test suite generated to

satisfy a coverage criterion. We wish to select, from (in this case) an infinite set

of test inputs T , a test suite satisfying our coverage criterion. For each coverage

obligation, there will generally be a very large number (possibly an infinite number)

of tests satisfying the coverage obligation. Accordingly, we must select a very small

fraction of tests from T to satisfy our coverage obligations.

One possible method of selecting this test suite is to randomly generate tests

until each coverage obligation has been satisfied, and then, as with counterexample-

based test generation, generate one or more reduced test suites. Indeed, the use of

undirected random test generation is also commonly used in empirical software engi-

neering studies, and was the primary altenative considered when selecting our method

of test generation. This approach has the benefit of being somewhat unbiased—each

test input is randomly drawn from T , and thus effectiveness cannot be linked to

the test input generation tool, the skill of tester (when manually generating tests),

etc. However, there are two potential problems with this approach: the unlikelihood

of satisfying complex coverage criteria by chance, and the inherent effectiveness of

random test input selection.

First, while for an arbitrary coverage obligation CO there often exists a large,

potentially unbounded number of test inputs satisfying the obligation, the percentage

of T satisfying CO can be very small. Thus, when randomly generating tests to satsify

CO, the number of test inputs we must generate to satisfy CO with reasonable odds is

potentially infeasibly high. In our own work, we have noticed that this is often true for

the complex coverage obligations required by the MCDC and UFC coverage criteria,
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with some satisfiable obligations remaining unsatisfied after hundreds of hours of

random test input generation. Given the large number of test suites we generate in

this study, we feel the resources required by this approach make it impractical.

Second, random test selection has been shown to be (somewhat surprisingly) a

very effective method of test input generation [49, 25, 72, 32]. Given that we are

measuring the effectiveness of test input selection methods, one fear when using

random test input selection to satisfy a coverage criterion is that the effectiveness of

the resulting test inputs will be largely unrelated to the coverage criterion—that is,

the test inputs will be effective because random test input selection is used.

The use of counterexample-based test generation, and the NuSMV model checker

in particular, avoids both of these issues. With respect to the former issue, NuSMV

is capable of generating test inputs satisfying all achievable coverage obligations in a

reasonable time frame. With respect to the latter issue, NuSMV—like most model

checkers—generates simple, straightforward test inputs. These test inputs are gener-

ated using heuristic search, manipulating only input variables required to satisfy the

obligation and leaving all other input variables set to “default” variables (0 or false

for integer/float or Boolean values, respectively). Test suites generated to satisfy a

coverage criterion using NuSMV thus tend to have short tests that do only enough

to satisfy the criterion. Concerns that a test suite is particularly good because it was

generated using NuSMV are, in our experience, rarely warranted.

4.7 Test Oracles

We create each oracle by selecting a subset of the internal state variables and/or

outputs for use as the oracle data for the oracle. We use an oracle procedure that

verifies the expected values exactly match the actual results.

For each case example, we generated 50 unrestricted oracles, 50 output-base ora-



84

cles, the output-only oracle, and the maximum oracle. For the output-base oracles, we

evenly distributed the number of internal state variables included from 1 to the maxi-

mum number of internal state variables. For examples where generating 50 oracles of

different sizes is impossible, some sizes were repeated (again evenly distributed). Fur-

thermore, we also generated every possible oracle of size 1 to explore the variability

in fault finding across individual variables (output and internal).

4.8 Mutant Generation

We created 250 mutants (or faulty implementations) for each case example by intro-

ducing a single fault into the correct implementation. Each fault was introduced by

either inserting a new operator into the system or by replacing an operator or variable

with a different operator or variable. Note these mutation operators are similar to

the mutation operators used in [2], in which the authors conclude mutation testing

is an adequate proxy for real faults.

We seed the following class of faults:

Arithmetic: Changes an arithmetic operator (+, -, /, *, mod, exp).

Relational: Changes a relational operator (=, 6=, <,>,≤,≥).

Boolean: Changes a boolean operator (∨,∧, XOR).

Negation: Introduces the boolean ¬ operator.

Delay: Introduces the delay operator on a variable reference (that is, use the stored

value of the variable from the previous computational cycle rather than the

newly computed value).

Constant: Changes a constant expression by adding or subtracting 1 from int and

real constants, or by negating boolean constants.
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Variable Replacement: Substitutes a variable occurring in an equation with an-

other variable of the same type.

We generated mutants so that the fault ratio for each fault class was approximately

uniform. The term fault ratio refers to the number of mutants generated for a specific

fault class versus the total number of mutants possible for that fault class. For

example, assume for some example there are R possible Relational faults and B

possible Boolean faults. For a uniform fault ratio, we would seed x relational faults

and y boolean faults in the implementation so that x/R = y/B.

One risk of mutation testing is functionally equivalent mutants, in which faults

exist but these faults cannot cause a failure, which is an externally visible deviation

from correct behavior. For our study, we used model checking to detect and remove

functionally equivalent mutants. This is made possible due to our use of synchronous

reactive systems as case examples—each system is finite, and thus determining equiv-

alence is decidable. (Equivalence checking is fairly routine in the hardware side of the

synchronous reactive system community; a good introduction can be found in [63].)

Thus for every mutant used in our study, there exists at least one trace that can lead

to a user-visible failure, and all fault finding measurements indeed measure actual

faults detected.

4.9 Data Collection

After generating the full test suites and mutant set for a given case example, we

ran each tests suite against every mutant and the original case example. For each

run of the test suite, we recorded the value of every internal variable and output at

each step of every test using a Lustre simulator developed in a joint University of

Minnesota/Rockwell Collins project. This process yielded a complete set of values
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produced by running the test suite against every mutant and the correct implemen-

tation for each case example.

To determine the fault finding of a test suite t and oracle o for a case example

we simply compare the values produced by the original case example against every

mutant using (1) the subset of the full test suite corresponding to the test suite t

and (2) the subset of variables corresponding to the oracle data for oracle o. The

fault finding effectiveness of the test suite and oracle pair is computed as the number

of mutants detected (or “killed”) divided by the total number of non-equivalent mu-

tants created. We perform this analysis for each oracle and test suite for every case

example yielding a very large number of measurements per case example. We use

the information produced by this analysis in later chapters to explore our research

questions.

4.10 Threats to Validity

Note that some of the threats discussed in this section apply only to specific to chap-

ters; nevertheless, most of these threats are common to all chapters and conclusions.

4.10.1 External Validity

We have conducted our study on four synchronous reactive critical systems. Never-

theless, we believe these systems are representative of the class of systems in which we

are interested, and our results are thus generalizable to other systems in the domain.

We have used programs written in Lustre as our implementation language rather

than a more common language such as C or C++. Nevertheless, systems written

in the Lustre language are similar in style to traditional imperative code produced

by code generators used in embedded systems development. We therefore believe

that testing Lustre code is sufficiently similar to testing reactive systems written in
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traditional imperative languages.

For each case example, we used a single set of LTL properties. It is possible

these sets are unique in some sense, for example particularly good, particularly bad,

constructed in an unusual property, etc. However, these sets of properties were judged

to be “good” by Rockwell Collins engineers and are written in a style typical for these

types of systems. We therefore believe our results related to requirements coverage

criteria are generalizable.

When using tests generated to satisfy a coverage criterion, we have generated

these tests using a model checker. Other possible options would be to use tests man-

ually created by testers or randomly generated tests. It is possible these other options

would yield results that are significantly different. However, in our experience, tests

generated using a model checker are relatively less effective than other options; we

therefore are effectively studying worst-case (or at least not exceptionally positive)

behavior of these coverage criterion. Given that we are often evaluating the effective-

ness of these coverage criterion and/or attempting to demonstrate that an interaction

can occur, this worst-case behavior is desirable in our study.

For all coverage criteria, we have examined 50 test suites reduced using a simple

greedy algorithm. It is possible that larger sample sizes may yield different results.

However, in previous studies, smaller numbers of reduced test suites have been seen

to produce consistent results [55, 62].

For random tests, we have examined 200 test suites of sizes between 5 and 1,000

tests, using test lengths of 2 to 10 steps. It is possible that test suites of differing

sizes, or tests of different lengths, may yield different results. However, tests of longer

length yield little difference in our pilot studies [60]. Furthermore, in our analysis,

we find that beyond roughly 250 tests, the test suites all perform roughly the same.

We have varied program structure using an in-house tool for transforming pro-
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grams. It is possible that one or both structures used do not correspond to a program

structure we are likely to see in actual programs. Nevertheless, the noninlined pro-

gram structure is very similar to the original structure of the system before it is

translated from Simulink, and we thus believe it is representative of systems likely to

be considered. The inlined program structure is similar to the code generated from

tools such as Real-Time workbench. It is designed to highlight the potential impact

of varying program structure, and (as shown in subsequent chapters) does so very

well.

When selecting test oracles, we have used expected-value test oracles. We have

adopted two approaches, the unrestricted and output-base approaches, both of which

rely on random selection of oracle data. It is possible that neither approach accurately

captures how oracles are constructed; however, based on our knowledge of industrial

practice, we believe our method of oracle construction is similar to how oracles are

varied in practice.

4.10.2 Internal Validity

This study, being a study of software engineering artifacts, is highly controlled. Typi-

cal internal threats to validity such as selection biases between control and experimen-

tal groups, or a lack of a controlled environment (e.g., studies of natural phenomenon,

studies conducted while under the influence of external physical forces) do not exist.

One potential threat is the extensive use of automation in our experiment. It is

possible that some effects observed are due to errors in the automation of the experi-

ment. However, much of this automation is part of an industrial framework (courtesy

of Rockwell-Collins), particularly the more complex automation for program trans-

formation, and thus been extensively verified. Other automation for running tests,

producing oracles, etc., developed at the University of Minnesota has also undergone
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verification, and is relatively simple. We therefore believe it is very unlikely that

errors which could lead to erroneous conclusions exist in the automation.

4.10.3 Construct Validity

In our study, we measure fault finding over seeded faults, rather than real faults

encountered during development of the software. It is possible using real faults would

lead to different results. However, Andrews et al. have shown the use of seeded

faults leads to conclusions similar to those obtained using real faults in fault finding

experiments [2].

In our study, we often discuss the cost of testing, with cost being linked to test

suite size and oracle size. In practice, running tests does appear to be expensive, with

cost correlating with test suite size [41, 35, 59, 20] (this observation is the foundation

of test suite reduction and prioritization work). In practice, oracle size also appears to

be related to the cost of testing, with larger oracles requiring more runtime [79] (due

to instrumentation) and requiring more effort on the part of the tester (as expected

values must be defined).

4.10.4 Conclusion Validity

In our study, we perform both quantitative statistical analyses and more qualitative

interpretation of patterns. In the case of statistical analyses, we have attempted

to ensure the base assumptions for these analyses are met, and thus have favored

non-parametric methods. In cases in which the base assumptions are clearly not

met, we have avoided using statistical methods. (Notably, we have avoided statistical

inference across case examples, as we have not randomly sampled these examples

from the larger population.) Furthermore, we have avoided “fishing” for results,

i.e., we have not conducted any type of data mining. We have instead designed our
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experiment around a handful of questions, opting to verify that key observations are

statistically significant.

In the case of qualitative interpretation, we have focused on broad, easily visible

patterns, and have attempted to back up our observations with discussions of why

they occur, i.e., the mechanism causing each observation. We have chosen to not

highlight subtle patterns whose mechanism is unclear, as such patterns may be chance

observations or not meaningful.



Chapter 5

Impact of Program Structure on the Effectiveness

of Structural Coverage Criteria

In this chapter, we explore interactions between the program structure and the ef-

fectiveness of structural test coverage criteria, with a specific focus on the MCDC

criterion. We begin by outlining the motivations behind our interest. We then state

specific research questions, and address these questions using several analyses. We

conclude with a discussion of the practical implications of this work, and how it may

be used to inform the testing process in the future.

Note that the work here is a direct extension of previous work [55]. The work

discussed here differs in (1) the use of coverage criteria other than MCDC, and (2)

the use of fault finding effectiveness numbers.

5.1 Motivation

In Chapter 3, we presented the definition of test coverage criteria:

TC ⊆ P × S × 2T

Of interest in this chapter are structural coverage criteria, such as branch cover-

age, condition coverage, and MCDC. These criteria are often used to determine the

adequacy of test inputs used in the testing process. When using such criteria, we

measure how well our test inputs exercise syntactic elements in the code, in an at-

91
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tempt to give us confidence that, should errors in the program exist, our test inputs

are capable of detecting them. However, for a given program p, there often exist

many syntactically different, but semantically equivalent programs p′, p′′, etc.. Such

programs contain different syntactic elements, and thus satisfying a structural cover-

age criterion may require a different set of test inputs, despite that each program is

functionally equivalent. In other words, for semantically equivalent programs p and

p′, structural coverage criteria SCC, and test suite TS, it is possible that:

SCC ⊆ p× S × TS
∧

SCC 6⊆ p′ × S × TS

This presents a potential problem—depending on the structure of the program,

the effectiveness of structural coverage criteria may vary significantly. In this case,

the confidence obtained in program correctness from using such criteria to judge the

adequacy of test inputs would be low. If we understood how the structure of the

program influences the effectiveness of the criteria—knowledge which is not currently

available—we could determine a priori if the structure of a program was acceptable

for use with the criteria. Barring that knowledge, however, we would have no way of

knowing if the structure of the program was suitable for use with the criteria.

This is particularly a concern in the domain of avionics systems, as the use of the

MCDC criterion is required by regulation DO-178B when certifying the most critical

flight software [34]. If this criterion is sensitive to the structure of the program, the

effectiveness of this certification would be questionable, as software developers are free

to choose whatever structure they like when developing avionics software. Given the

potentially very high costs of satisfying the MCDC coverage criterion, of particular

concern is the possibility that “cheating” MCDC by structuring the program to reduce

costs may be desirable, but negatively impact the effectiveness of the resulting test

suites.
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5.2 Research Questions

We ask the following questions about each of the three structural coverage criteria

(branch, condition, and MCDC):

Question 1 (Q1): How does the program structure impact the cost, as measured

by the number of test inputs required, of satisfying the coverage criteria?

Question 2 (Q2): How does the program structure impact the effectiveness, as mea-

sured by the number of faults detected, of test suites satisfying the coverage

criteria?

We explore the following factors in this chapter:

Program Structure: We examine programs which are inlined and noninlined.

Test Inputs: We examine test inputs derived to satisfy the branch, condition, and

MCDC coverage criteria. Random test inputs and test inputs derived to satisfy

requirements coverage metrics are not explored, as they are not derived from

program structure and thus cannot be affected by it.

Test Oracle: We use only the output-only oracle.

We have fixed the test oracle because of the different internal structures of the

inlined and noninlined programs—the inlined program has only a few internal

state variables, while the noninlined program has many such variables. Thus

the output-base and maximum test oracles for the noninlined program observe

a far greater percentage of the internal state than those of the inlined program.

Consequently, comparisons made with oracles other than the output-only oracle

are difficult to interpret in the context of Q1 and Q2.
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5.3 Experimental Results

Recall that for each test coverage criterion, we began with a large test suite that

achieved the maximum achievable fault finding for the criterion. We then subse-

quently used a randomized test suite reduction algorithm to generate 50 randomly

reduced test suites. Thus, within each case example, for each combination of coverage

criterion and program structure we have a set of fault finding effectiveness numbers.

Using these numbers, for each case example, program structure, and coverage

criterion, we measured the following:

Average Fault Finding: Mean fault finding across reduced test suites.

Average Test Suite Size: Mean test suite size across reduced test suites.

For each case example and coverage criterion, we also computed:

Relative Change in Average Test Suite Size: We measure the relative change

(as a percentage) in average test suite size when generating tests using inlined

program as compared to when generating tests using the noninlined program.

Positive percentages indicate average test suite size is larger for the inlined

program.

Relative Change in Average Fault Finding: We measure the relative change (as

a percentage) in average test suite fault finding effectiveness when generating

tests using the inlined program as compared to when generating tests using

the noninlined program. Positive percentages indicate average effectiveness is

larger when generating test suites using the inlined program.

These measurements are given in Table 5.1.
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DWM 1 System
NI µ Size I µ Size % Size Cng NI µ FF I µ FF % FF Chg

Branch 13.7 18.48 34.89% 54.27% 48.53% -15.36%
Condition 21.36 25.62 19.94% 75.01% 84.71% 6.89%

MCDC 32.72 56.58 72.92% 80.74% 90.2% 5.73%

DWM 2 System
NI µ Size I µ Size % Size Cng NI µ FF I µ FF % FF Chg

Branch 19.12 420.46 2099.05% 13.58% 92.74% 556.70%
Condition 13.5 403.66 2890.07% 19.34% 87.73% 336.18%

MCDC 23.86 423.24 1673.84% 18.89% 93.33% 375.02%

Latctl Batch System
NI µ Size I µ Size % Size Cng NI µ FF I µ FF % FF Chg

Branch 5.62 19.78 251.95% 33.81% 55.41% 61.83%
Condition 25.1 17.34 -30.91% 48.65% 53.99% 9.59%

MCDC 56.02 75.5 34.77% 79.84% 78.33% -3.10%

Vertmax Batch System
NI µ Size I µ Size % Size Cng NI µ FF I µ FF % FF Chg

Branch 12.24 35.48 189.86% 31.09% 48.0% 55.60%
Condition 193.2 62.24 -67.78% 45.58% 50.24% 11.12%

MCDC 237.38 259.8 9.44% 59.27% 90.68% 54.21%

Table 5.1: Measurements Across Structural Coverage Criteria
µ = Mean, FF = Fault Finding

5.3.1 Demonstration of Statistical Significance

To answer Q1 and Q2, we began by proposing and evaluating the following hypothe-

ses:

Hypothesis (H1) : A test suite generated to satisfy a structural coverage criterion

C over the noninlined program will require a different number of tests relative

to a test suite generated to satisfy C over the inlined program.

Hypothesis (H2) : A test suite generated to satisfy a structural coverage criterion

C over the noninlined program will achieve a different level of fault finding

relative to a test suite generated to satisfy C over the inlined program.
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To evaluate our hypotheses, we first formed null hypotheses as follows:

H01 : A test suite generated to satisfy a structural coverage criterion C over the non-

inlined program will contain the same number of tests as a test suite generated

to satisfy C over the inlined program.

H02 : A test suite generated to satisfy a structural coverage criterion C over the

noninlined program will achieve the same level of fault finding relative to a test

suite generated to satisfy C over the inlined program.

To accept H1 and H2, we must reject H01 and H02. To evaluate these hypoth-

esis, we use the two-tailed bootstrap permutation test, a non-parametric statistical

test with no distributional assumptions [43]. 250,000 samples were made using the

bootstrap permutation test. Note the use of a non-parametric test—we have little

knowledge of the underlying distribution of fault finding effectiveness numbers, and

therefore make as few assumptions as possible (e.g., no assumption of normality is

given).

We perform this statistical test using every combination of case example and test

coverage criteria. Our resulting p-values are each very small, less than 0.0001. Given

a traditional α = 0.05 (or even much smaller), we reject our null hypotheses and

accept H1 and H2.

Note that we have avoided statistically generalizing across case examples and

coverage criterion; rather, we have evaluated H for each pairing of coverage crite-

rion and case example. This avoidance is due the fact that both the case examples

and coverage criteria are not randomly selected from their respective populations.

Statistical generalization is therefore inappropriate, as the base assumption of all sta-

tistical hypothesis testing methods—random sampling from a larger population—is
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clearly violated. Nevertheless, in the remainder of this chapter we will argue several

conclusions based on this data.

5.4 Discussion

As we can see in Table 5.1 and as demonstrated in the previous section, for every case

example and coverage criteria, the structure of the program has a significant impact

on the effectiveness of our test coverage criteria. In this section, we discuss theses

results, highlighting trends observed and discussing their causes and implications.

5.4.1 Cost of Satisfying Structural Coverage Criteria

For each of the three structural coverage criteria, the structure of the program can

be manipulated to alter the cost of satisfying the coverage criterion. As seen in

Table 5.1, the number of tests required to satisfy each of the coverage criteria changes

when varying the program structure, sometime dramatically. For nearly every case

example and criterion pairing, more tests are required when using an inlined program

structure versus a noninlined program structure. An extreme example of this is the

DWM 2 system: when using condition coverage, 29.7 times more tests are required

on average when satisfying said criterion on the inlined system versus the noninlined

system (403.6 versus 13.5 tests).

This increase in tests can be attributed to the increased complexity of the coverage

obligations generated when using the inlined program as opposed to the noninlined

program. Recall that when transforming the noninlined program into the inlined

program, two important changes occur: (1) the number of branches in the code in-

creases, as if-then-else expressions are substituted for intermediate values, and (2)

the complexity of conditional expressions increases, as intermediate variables formerly

used as atomic variables are instead replaced with more complex subexpressions. We
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[1] internal42 = IF (cond1) THEN x ELSE y

[2]

[3] output1 = IF (cond2) THEN internal42 ELSE z

[4] output2 = IF (cond3) THEN z ELSE internal42

Noninlined Program

[1] output1 = IF (cond2) THEN (IF (cond1) THEN x ELSE y) ELSE z

[2] output2 = IF (cond3) THEN z ELSE (IF (cond1) THEN x ELSE y)

Inlined Program

Figure 5.1: Nesting of Branches During Inlining Transformation

illustrate examples of (1) and (2) in Figures 5.1 and 5.2, respectively.

These two changes account for the increase in test suite size. In the case of branch

coverage, the inlining transformation increases the number of branches. This, coupled

with the increased nesting of branches, contributes to the need for more tests. As seen

in Figure 5.1, the branch on line 1 in the noninlined program has been substituted to

become branches on line 1 and 2 in the inlined program, thus increasing the number of

coverage obligations we must satisfy. Furthermore, these two branches are now nested

in another branch, and therefore each coverage obligation is more rigorous—when

exercising the inner branches, the outer branch must evaluate specifically to true and

false (for line 1 and 2, respectively) to allow us to reach these branches. The presence

of these additional constraints—depending on the relationship between cond2 and

cond3—may prevent the coverage obligations related to these inner branches from

being covered by the same test. This increase in the number of coverage obligations,

along with the likelihood that these new coverage obligations will be covered by

different test inputs, results in a larger number of tests being required to satisfy

branch coverage over the inlined program as compared to the noninlined program.

In the case of MCDC coverage, the increase in the complexity of each expression
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has a strong influence of the number of tests required. This is illustrated in Figure 5.2,

in which we can see the number of atomic conditions on line 4 grows from 2 to 4 when

line 1 and 2 are inlined. As the number of tests required to satisfy MCDC is correlated

with the complexity of the expressions [55], inlining the program structure results in a

significantly larger number of required tests as compared to the noninlined structure.

Coupled with the effect of nesting and replication outlined in our discussion of branch

coverage, the number of tests required to satisfy MCDC will likely increase.

In the case of condition coverage, our results are less consistent. The Latctl Batch

and Vertmax Batch systems exhibit a reduction in the number of tests required to

satisfy said criterion when moving from a noninlined to an inlined program structure,

while the DWM 1 and DWM 2 systems exhibit an increase as observed for other

coverage criteria. This result was initially perplexing, given the consistent relative

changes shown by the other coverage criteria.

Recall, however, that both of the Latctl Batch and Vertmax Batch systems are

part of the mode logic for an avionics system. Upon examination, we found that

many atomic conditions (e.g., a, v == 0, etc.) in these systems relate to this mode

logic, and the number of these atomic conditions is relatively low. Consequently,

[1] internal42 = x AND y

[2] internal13 = z AND y

[3]

[4] output1 = IF (cond1) THEN (internal42 OR internal13) else z

Noninlined Program

[1] output1 = IF (cond1) THEN ((x AND y) OR (z AND y)) ELSE z

Inlined Program

Figure 5.2: Increasing Complexity of Boolean Decisions During Inlining Transforma-
tion
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across most of the expressions, the same small set of atomic conditions are used.

When inlining such a system, the complexity of expressions will increase, but the

number of basic atomic conditions within each expression may increase by very little.

Thus when inlining a variable v, we remove coverage obligations related to v as it

is removed, but—unlike, for example, branch coverage—we often do not increase

the number of coverage obligations when we substitute the expression for v into an

expression e, as the atomic conditions present in v’s expression and e are often the

same. Consequently, the number of coverage obligations for condition coverage can

actually decrease.

For example, consider Figure 5.2. When generating coverage obligations for condi-

tion coverage, obligations to cover x, y and z will be generated, along with obligations

for internal42 and internal13. In the inlined version, however, only obligations

for x, y and z are generated. This phenomenon occurs frequently when inlining the

Latctl Batch and Vertmax Batch systems, though the nesting of expressions does

somewhat counter-balance it, as we will see in Section 5.4.2.

A final note: the reader may recognize that for condition coverage, each coverage

obligation need not be satisfied by a different test. Depending on the structure of

the system, only two tests may be needed—one in which all conditions are true,

and one in which all conditions are false. Indeed, the ease with which condition

coverage can be satisfied is one of the motivating factors for the more robust MCDC

coverage criterion. However, recall that each test set satisfying a coverage criterion is

generated using the NuSMV model checker. As noted in Section 4.6, tests generated

using this method tend to be simple, leaving as many inputs to their default values

(i.e., 0 or false), and thus tests in which multiple condition obligations are satisfied

are not common.

In the context of condition coverage, this often results in tests that are only
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capable of satisfying a single obligation for a given expression—while NuSMV could

satisfy multiple obligations simultaneously, it processes each obligation separately,

producing inputs targeted for each obligation. This behavior results in a surprisingly

high number of test inputs in the reduced test suites, closer to the number of test

inputs required to satisfy MCDC than the number of test inputs required to satisfy

branch coverage.

5.4.2 Effectiveness of Test Suites Satisfying Structural Coverage Criteria

For each of the three structural coverage criteria, changing the structure of the pro-

gram impacts the effectiveness of tests satisfying the coverage criterion. As seen in

Table 5.1, this effect generally correlates with test suite size, with larger test sets—

generated over inlined program structures—usually finding more faults than smaller

test suites.

The improvements in fault finding appear to occur for two reasons. First, and

perhaps most obvious, is the increase in test suite size. Recent work on modeling the

effectiveness of testing has indicated that effectiveness is highly dependent on test

suite size [49]. Thus, simply by increasing the number of test inputs used, we can

improve the effectiveness of our testing process.

Second, by changing the program structure, we have increased the complexity of

the constraints on our coverage obligations. Recall again the example in Figure 5.1

in the context of branch coverage. The noninlined program has only two branches,

with no nesting, while the inlined program has three branches, two of which are

nested inside the then and else branches. Previously, we discussed how this nesting

increases the complexity of the constraints for branch coverage obligations. In this

case, two constraints must be satisfied to satisfy the coverage obligations for the

inner branches: the outer constraint (cond2 or NOT cond3) plus the inner branch
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constraints. These outer constraints make generating tests to satisfy both inner

if-then-else statements using the same test less likely, contributing to the increase

in test suite size.

However, these additional constraints also force specific paths to be explored dur-

ing testing. For errors that are more easily detected when exploring certain paths, this

can result in more effective tests. For example, assume that line 1 in the noninlined

version of the program should instead read:

[1] internal42 = IF (cond1) THEN x ELSE (NOT x)

For the else branch in line 1, the value of NOT x should be assigned when cond1

is false. To detect this error using an output-only oracle, we require a test in which

(1) cond1 is false and (2) cond2 is true or cond3 is false. Such a test will assign

(incorrectly) output1 or output2 the value of y.

In the noninlined version of the program, branch coverage does not require such

a test be selected—we will always have a test in which cond1 is false, but for this

test there is no constraint on cond2 or cond3. In the inlined program, however,

cond1 is nested, and thus the branch coverage obligations for cond1 place additional

constraints on cond2 and cond3. Of interest here is line 2, where cond3 must evaluate

to false while cond1 evaluated to true and false. Consequently, the error will be

detected given an output-only oracle. A similar phenomenon is exhibited with the

MCDC criterion, as more complex expressions in the inlined programs require more

specific combinations of Boolean expressions to be exercised.

As with test suite size, the results for condition coverage deviate from the trends

observed for branch and MCDC coverage, and require investigation. Again of note are

the results for the Vertmax Batch and Latctl Batch systems. Like branch and MCDC

coverage, tests satisfying condition coverage over the inlined programs outperform

tests satisfying condition coverage over the noninlined programs. However, recall that
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fewer tests are required to satisfy condition coverage over the inlined program. This

presents an unusual situation—in moving from a noninlined to an inlined program,

we have both reduced the test suite size and increased the fault finding effectiveness

of test suites satisfying condition coverage.

To understand why this occurs, recall that while the test suites are large, many of

the generated test inputs are very simple (due to the use of NuSMV). The size of the

test suite is therefore misleading—it consists of a large number of tests generated to

satisfy simple coverage obligations, and are thus very poor in terms of effectiveness.

This stands in contrast to the tests generated using the inlined program, which benefit

from the more complex coverage obligations resulting from the more deeply nested

expressions.

Two other observations deviate from the general trend: branch coverage for the

DWM 1 system and MCDC coverage for the Latctl Batch systems. Both of these

deviations appear to be chance occurrences. With respect to the former, the number

of tests satisfying branch coverage over either the inlined and noninlined program

differs little (approximately 5 on average), and the resulting fault finding is also low,

approximately 50% in both examples. It simply appears that NuSMV has gener-

ated a test from the noninlined version that is relatively effective compared to those

generated for the inlined version, improving the effectiveness of the small test suite.

With respect to the latter observation, note that the fault finding effectiveness of

tests sets satisfying MCDC for the Latctl Batch system is very close, roughly 79% for

both the inlined and noninlined version. It appears that the effectiveness of MCDC

tops out at about 79%, and inlining the program—despite the increase in test suite

size—does not significantly improve the effectiveness of the test suite. This may

occur if, for example, the 20% of faults both suites fail to detect are a specific type

of fault MCDC is not designed to detect (e.g., arithmetic, relational). In such a
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scenario, generating tests satisfying MCDC over the inlined program will only result

in additional tests targeted at the wrong type of faults (faults in Boolean expressions).

5.4.3 Implications

By varying the structure of the program, we can influence—positively or negatively—

the cost of satisfying structural coverage criteria. For two of these coverage criteria,

it is clear how to structure our code to minimize cost: limit the number of branches in

the code, in the case of branch coverage, and limit both the number of branches and

the complexity of program expressions in the case of MCDC coverage. In the context

of avionics systems, this observation is potentially useful, as satisfying MCDC during

testing is required for certain types of systems and can be extremely expensive. By

applying syntactic transformations similar to those used here to avionics systems,

developers can generate systems for which MCDC coverage is significantly cheaper

to achieve. For our examples, noninlined systems required test suites of size 91% to

a mere 3% of the size of the test suites generated over the semantically equivalent

inlined systems—a potentially dramatic saving in testing costs.

Unfortunately, for each case example and coverage criterion, test suites generated

to satisfy structural coverage criteria over the inlined program generally outperformed

those test suites generated to satisfy structural coverage criteria over the noninlined

program, with relative improvements of up to 556.7%. Thus we see a potential

tradeoff—we can restructure our program to reduce the cost of satisfying coverage

criteria, but we incur the risk of reducing the effectiveness of the testing process. In

the context of the avionics domain, the widespread adoption of model-based devel-

opment techniques has led to the recent suggestion that MCDC should be measured

over simpler artifacts. This proposal is worrisome, particularly when coupled with

the strong financial incentive to restructure the program.
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Both of these implications hint at a deeper issue: the sensitivity of these coverage

criteria, each of which represent well known, commonly employed methods of mea-

suring test adequacy, to the structure of the program. If we assume the role of a

coverage criterion is to determine if our test inputs are adequate—as is commonly

suggested, and indeed, implied in the synonymous term test adequacy metric—it is

worth questioning if these metrics are themselves adequate. Given that their effec-

tiveness can vary considerably depending on the structure, ranging from very high

to—in the case of the DWM 2 system—very low, when asking the question: is this

set of test inputs adequate? it is difficult to recommend the use of these criteria.

Accordingly, we believe that additional work must be done in this area to improve

upon existing criteria. We outline possible directions in the next section.

5.5 Chapter Conclusion and Future Work

In this chapter, we have explored how program structure influences the effectiveness

of three structural coverage criteria using inlined and noninlined versions of four real-

world avionics systems. Our results demonstrate that within this domain, program

structure has a potentially strong impact on both (1) the number of tests required to

satisfy a structural coverage criterion, with larger tests suites (sometimes dramatically

so) required when using inlined programs and (2) the fault finding effectiveness of

test suites satisfying structural coverage criteria, with more effective test suites being

generated when using inlined programs. Note that the latter result generally holds

true even when the results for test suite size do not.

These results point to serious questions concerning the adequacy of these struc-

tural coverage criteria—given the variability in fault finding present when using the

criteria, what level of confidence do we have that satisfying these criteria implies an

effective set of test inputs? This is particularly concerning in the context of avion-
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ics of systems,where the MCDC criterion is required when testing the most critical

systems.

From these results, it is clear that additional work needs to be done to either im-

prove or replace these structural coverage criteria. We therefore propose the following

questions for future work:

• For the structural coverage criteria explored, can we develop a canonical method

(or methods) of structuring programs such that tests generated to satisfy these

criterion will be effective?

• Alternatively, can we improve the existing structural coverage criterion to be

program structure-agnostic, i.e., can we reformulate these coverage criteria such

that their effectiveness does not depend on program structure?

• To what extent do these results generalize to other domains, e.g., desktop ap-

plications?

• To what extent do these results generalize to other structural coverage criteria,

e.g., data-flow criteria?



Chapter 6

Influence of Test Oracles and Test Input Selection

on Testing Effectiveness

In this chapter, we explore how test oracles and test inputs jointly influence the

effectiveness of software testing. We focus on how changing the size of the test oracle

impacts testing effectiveness, and how this varies across different methods of selecting

test inputs. As in the previous chapter, we begin by outlining our motivations behind

this, state several research questions, and present several analyses aimed at answering

these questions. We conclude with a discussion of the practical implications of this

work, and how it may be used to inform the testing process in the future.

Some of the work presented here has been published [60]. The work presented in

this chapter differs primarily in that (1) multiple coverage criteria are presented (only

random is explored in [60]) (2) the work is considerably more thorough, presenting

analyses in greater detail and also presenting analyses beyond those in [60].

6.1 Motivation

The test oracle, like the test inputs, is a necessary part of the testing process. In

Chapter 3, we presented the concept of an oracle adequacy criterion:

OC ⊆ P × S ×O.

This relates to the problem of oracle selection: from the many test oracles we can

107
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potentially create, which oracle should be used in the testing process? Previously,

we theoretically demonstrated the importance of this problem, noting, for example,

that the selection of the test oracle impacts the relative effectiveness of test suites.

This problem has also been empirically explored in a handful of recent works [10, 79],

with results indicating the selection of the test oracle can impact the efficacy of the

testing process. In our own previous work within the domain of avionics systems,

we have noted that the fault finding effectiveness of the output-only and maximum

test oracles sometimes varies dramatically (up to 2.5x) [54]. We therefore believe

the problem of oracle selection is, at least potentially, of similar importance as the

problem of test input selection.

Unfortunately, few techniques exist for selecting test oracles. Furthermore, there

exists little empirical data rigorously exploring how test oracles impact the effective-

ness of the testing process. Instead, we have mostly intuition to draw upon to select

test oracles, as we lack the necessary empirical foundation to understand the impact

of test oracles on the testing process. As an initial step towards understanding how

test oracles influence the effectiveness of testing, and, in the longer term, developing

methods of selecting test oracles, this foundation must be established.

In this chapter, we work towards establishing an empirical foundation in the do-

main of avionics systems. We explore how testing effectiveness is influenced by varying

two key aspects of the oracle data for complete expected value oracles: the type of

variables in the oracle data (internal or output variables), and the size of the oracle

data. We have focused on complete expected value test oracles as they are, in our

experience, commonly used within the avionics domain for testing software systems,

and their influence on the testing process is therefore of practical significance.

By better understanding how these two aspects impact testing effectiveness, we

intend to (1) quantify the influence of oracle selection on the testing process, thus
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moving away from intuition and towards empirical evidence, and (2) use this evidence

to formulate ideas for future work concerning oracle selection methods.

6.2 Research Questions

We ask the following questions:

Question 1 (Q1): How does oracle size influence the effectiveness of the testing

process given a fixed test suite?

Question 2 (Q2): How much do individual variables in the oracle data contribute

to the effectiveness of the testing process?

Question 3 (Q3): In the case of tests generated to satisfy a coverage criterion, how

does the coverage criterion used and oracle data chosen jointly influence the

effectiveness of the the testing process?

Question 4 (Q4): In the case of random testing, how does the size of the test

suite and oracle data chosen jointly influence the effectiveness of the the testing

process?

We explore the following factors in this chapter:

Program Structure: We examine only programs which are noninlined. Inlined

programs contain few variables, limiting our ability to vary the test oracle. The

impact of this is explored in Chapter 7.

Test Inputs: We examine test suites derived to satisfy every coverage criterion and

randomly generated test suites of various sizes.
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Test Oracle: We explore the effectiveness of many test oracles, varying both the

size and composition of the oracle data.

Recall from Chapter 4 the terms unrestricted, referring to oracle data contain-

ing any combination of outputs and internal state variables, and output-base,

referring to oracle data containing all outputs and one or more internal state

variables. When considering the impact of oracle size, our analysis will be

divided between unrestricted and output-base oracles.

Also recall the terms output-only oracle, referring to oracles containing all (and

only) the outputs, and maximum oracle, referring to oracles containing all the

outputs and all the internal state variables. When considering if internal state

is useful in the oracle data, our analysis will compare these two oracles.

We now perform several analyses relevant to the questions posed above. These

analyses include visualizations of the data, statistical hypothesis testing, and applica-

tion of regression models. Due to the differences between using randomly generated

tests versus tests generated to satisfy a coverage criterion—namely, our ability to

arbitrarily vary the number of randomly generated test inputs considered, something

not possible for tests generated to satisfy a coverage criterion—we divide our analyses

between test suites satisfying coverage criteria and randomly generated test suites. In

Section 6.3 we present analyses using test inputs generated to satisfy coverage crite-

ria, and in Section 6.4 we present analyses using randomly generated test inputs. In

Section 6.5 we explore how individual variables impact the effectiveness of the testing

process. When presenting our analyses, we focus on the observations made with each

analysis individually, deferring a broader discussion, including the implications of our

observations, to Section 6.6.
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Figure 6.1: Oracle Size vs Fault Finding, Unrestricted Subtype

6.3 Influence of Oracle Data for Test Suites Satisfying Cov-

erage Criteria

6.3.1 Influence of Oracle Size Given Fixed Test Data

We begin by visualizing the influence of oracle size via oracles generated using both

the unrestricted and output-base approaches. In Figures 6.1 and 6.2, we illustrate

the relationship between oracle size and fault finding using all six coverage criteria

and all four case examples. Recall that for each coverage criterion, we generated 50

reduced test suites satisfying each criteria. For each criterion, we plot the average



112

20 40 60 80 100
Oracle Size (% of Max)

60

70

80

90

100

Fa
u
lt

 F
in

d
in

g
 (

%
 o

f 
M

a
x
)

Antecedent
Ufc
Naivereqs
Branch
Condition
Mcdc

(a) DWM 1

0 20 40 60 80 100
Oracle Size (% of Max)

0

20

40

60

80

Fa
u
lt

 F
in

d
in

g
 (

%
 o

f 
M

a
x
)

Antecedent
Ufc
Naivereqs
Branch
Condition
Mcdc

(b) DWM 2

0 20 40 60 80 100
Oracle Size (% of Max)

30

40

50

60

70

80

90

100

Fa
u
lt

 F
in

d
in

g
 (

%
 o

f 
M

a
x
)

Antecedent
Ufc
Naivereqs
Branch
Condition
Mcdc

(c) Vertmax Batch

0 20 40 60 80 100
Oracle Size (% of Max)

40

50

60

70

80

90

100

Fa
u
lt

 F
in

d
in

g
 (

%
 o

f 
M

a
x
)

Antecedent
Ufc
Naivereqs
Branch
Condition
Mcdc

(d) Latctl Batch

Figure 6.2: Oracle Size vs Fault Finding, Output-base Subtype

fault finding across these reduced test suites for each test oracle. Presenting the

fault finding measurements for every criterion as a scatter-plot yields a figure that

is difficult to interpret; we therefore generate and draw a line for each case example

from the analysis data collected using locally weighted scatter-plot smoothing—or

LOESS [43]—with a bandwidth factor of 0.1. (Note we chose 0.1 as it effectively

highlights the general trends present.) Note that in both figures, the right hand side

of the figures always represents the maximum oracle (100% of the variables).

We draw two observations from these figures. First, the relationship between

fault finding and oracle size can often be characterized as logarithmic—as oracle size
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increases, fault finding initially increases rapidly, but the rate of increase tends to level

off as oracle size approaches the maximum. This indicates that in most scenarios,

there exists significant overlap in the faults detected by each variable within the

system. For example, consider the use of the MCDC coverage criterion with the

Vertmax Batch system in the context of output-base oracles (Figure 6.2). When

using the output-only oracle, reduced test suites satisfying MCDC detect on average

roughly 60% of the possible mutants. The effectiveness of the testing process rises

rapidly as internal state variables are added, until roughly 30% of the internal state

variables have been added, after which effectiveness grows slowly, peaking roughly

when 60% internal state variables have been added.

Note, however, that while this logarithmic relationship is generally present, there

are several instances where this relationship is subdued. This leads to our second

observation: test suites generated to satisfy requirements coverage metrics appear

to be, in some circumstances, less influenced by the selection of test oracles than

test suites generated to satisfy structural coverage criteria. In particular, test suites

satisfying requirements coverage criteria appear to be less influenced by the addition

of internal state variables to an output-only oracle.

As an example, consider the use of antecedent and condition coverage for the

Latctl Batch system in the context of unconstrained oracles (Figure 6.1). Initially,

test inputs satisfying antecedent coverage outperform test inputs satisfying condition

coverage, finding roughly 15% more faults. However, as test oracle size increases, this

gap narrows, with the difference becoming negligible once the maximum oracle is in

use. Similar examples can be found in each case example, though the degree differs.

Note that in several instances tests satisfying UFC are highly effective, even with

small oracles (e.g., a single randomly selected variable). The lack of logarithmic

behavior does not necessarily relate to the impact of test oracles; the test inputs,
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irrespective of the test oracle, find nearly all the faults, and thus any improvements

are necessarily small. This occurs in part because very large test suites required to

satisfy UFC coverage for some systems (over 1,000 in some cases), and in part due to

simple chance from random oracle data selection. For example, for the Latctl Batch

system, the unrestricted smallest oracle finds 5% more faults than the next few oracles,

yielding a figure in which small oracles appear to be exceptionally effective.

6.3.2 Relative Improvement using Maximum Oracle

The previous section demonstrated that the use of larger oracles generally leads to

improved fault finding, and illustrated roughly what form this relationship takes.

Of particular interest to us is the difference in effectiveness between an output-only

and a maximum oracle; given that the output-only oracle appears to be current

industrial practice, we are interested in how the use of internal state can impact

the effectiveness of the testing process. Accordingly, we would like to, for each case

example and coverage criterion, (1) quantify this relationship in terms of relative

improvement between an output-only and a maximum oracle, and (2) demonstrate

this improvement (when it exists) is statistically significant.

In Table 6.1, for each case example and coverage criterion, we list (1) the aver-

age fault finding using the output-only oracle and maximum oracles as a percent of

maximum fault finding for each case example, and (2) the relative improvement when

moving from an output-only oracle to a maximum oracle. In Table 6.2, for each case

example we list (1) the oracle sizes using the output-only and maximum oracles, and

(2) the relative increase in oracle size when moving from output-only to a maximum

oracle.

As shown, the improvement when moving from the output-only to the maximum

oracle is often quite substantial, particularly when using test suites which have rel-
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DWM 1 System
Branch Condition MCDC Naive Req Antecedent UFC

µ OO FF 54.27% 75.01% 80.74% 81.97% 85.76% 96.91%
µ MX FF 83.17% 94.52% 96.17% 90.35% 91.55% 99.17%
% FF Imp 53.26% 26.01% 19.11% 10.22% 6.74% 2.33%

DWM 2 System
µ OO FF 13.58% 19.34% 18.89% 0.0% 0.0% 20.33%
µ MX FF 82.65% 93.09% 88.99% 21.18% 21.18% 85.55%
% FF Imp 508.42% 381.16% 370.89% ∞ ∞ 320.66%

Latctl Batch System
µ OO FF 33.81% 48.65% 79.84% 34.77% 61.52% 98.73%
µ MX FF 89.30% 93.60% 96.70% 81.81% 94.41% 100.0%
% FF Imp 164.05% 92.37% 21.12% 135.26% 53.45% 1.28%

Vertmax Batch System
µ OO FF 31.09% 45.58% 59.27% 31.89% 32.46% 98.07%
µ MX FF 85.16% 100.0% 100.0% 70.19% 70.58% 100.0%
% FF Imp 173.88% 119.39% 68.70% 120.07% 117.41% 1.96%

Table 6.1: Fault Finding Effectiveness, Output-Only vs Maximum Oracle
µ = Mean, OO = Output-Only, MX = Maximum, FF = Fault Finding

atively low fault finding. In the most dramatic case, test suites that find no faults

when paired with the output-only oracle (as occurs for the DWM 2 system for an-

tecedent and naive requirements coverage), find 20% of the detectable faults when

instead paired with the maximum oracle.

We note three general trends from Table 6.1. First, when using test inputs sat-

isfying the strongest structural or requirements test coverage criteria (i.e., MCDC

or UFC), the use of the maximum oracle ensures that testing effectiveness is high

(85+%) for all case examples, even for systems where said test inputs perform poorly

with the output-only test oracle. For example, for the DWM 2 system, we see that

test inputs satisfying MCDC and UFC perform poorly when paired with the output-

only oracle, while performance improves over threefold when pairing said test inputs

with the maximum oracle. Indeed, for several systems, the fault finding effectiveness
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OO Oracle Size MX Oracle Size % Relative Increase

DMW 1 9 124 1277.8%

DMW2 7 576 8128.6%

Latctl Batch 1 129 12800%

Vertmax Batch 2 417 20750%

Table 6.2: Oracle Size, Output-Only vs Maximum Oracle
OO = Output-Only, MX = Maximum

when pairing MCDC or UFC coverage with the maximum oracle is very high, 95+%.

Second, we note that when using test inputs satisfying structural coverage criteria,

fault finding effectiveness tends to be relatively high when using the maximum oracle,

even for test suites that perform poorly (less than 20%) when paired with the output-

only oracle. This indicates that these test suites are effective at uncovering faults, as

erroneous states do occur when they are executed, but are ineffective at propagating

these faults to the outputs. Given this, the use of internal state in the test oracle

becomes an effective method of improving testing effectiveness when using said test

inputs.

Third, we note that when using the maximum oracle over the output-only oracle in

conjunction with test inputs generated to satisfy requirements coverage metrics, the

relative improvement is often slightly smaller than when using test inputs generated

to satisfy structural coverage criteria. For example, for the DWM 1 system, we

can see the relative improvements for the requirements coverage metrics are less

than those for the structural coverage metrics. Less obviously, for the Latctl Batch

and Vertmax Batch systems, we see that the progression of relative (and absolute)

improvement as we move from weaker to strong coverage criteria (i.e., from branch to

MCDC and from naive requirements coverage to UFC) indicates that the test suites

satisfying structural coverage criteria are more strongly influenced by the test oracle

than those satisfying requirements coverage criteria.
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Unfortunately, as shown in Table 6.2, we can also see the maximum oracle is

between 12 and 207 times larger than the output-only oracle. This is discouraging;

clearly, the fault finding improvements are desirable, particularly in the domain of

critical systems. However, using the maximum oracle is likely more expensive than

using the output-only oracle, as well as potentially infeasible given the likely unavail-

ability of an oracle with knowledge of all internal variables.

6.3.3 Statistical Significance of Maximum Oracle Improvement

Table 6.1, along with Figure 6.2, provide evidence that considering internal state in

test oracle may lead to improvements in testing effectiveness. We verify this evidence

by testing the following hypotheses:

(H1): The maximum oracle will have better fault finding than the output-

only oracle.

We evaluate H1 for each system and coverage criterion combination using the

paired permutation test, a non-parametric statistical test that calculates the proba-

bility p that two paired sets of data come from the same population [43]. We formulate

the null hypothesis H01 for H1 as follows:

H01 The maximum oracle will detect the same number of faults as the

output-only oracle.

To accept H1, we must reject H01. Note that the output-only oracle cannot out-

perform the maximum oracle,as the set of variables used by the output-only oracle is

always a subset of the variables used by the maximum oracle. We therefore equate re-

jecting H01 with accepting H1 and use a one-tailed bootstrapped paired permutation

test, exploring 250,000 permutations for each p-value [43].
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To perform the one-tailed bootstrapped paired permutation test for a given system

and coverage criterion, we pair the number of faults found by the output-only oracle

with the number of faults found by the maximum oracle for all 50 reduced test

suites, resulting in 50 pairs per coverage criterion and case example. We then run

the permutation test and find that for all combinations of coverage criterion and case

examples, the p-value is very small, less that 0.001. We therefore reject H01 with an

α < 0.001 and accept H1 for each case example and coverage criterion.

Note that as in Chapter 5, we have not statistically generalized across case exam-

ples and coverage criterion, due the fact that both the case examples and coverage

criteria are not randomly selected from their respective populations. This lack of

generalization holds throughout this chapter.

6.3.4 Correlation of Oracle Size with Fault Finding

We have established that the maximum oracle is more effective than the output only

oracle and quantified how test suite size influences the improvement, but the middle

ground—oracles containing some, but not all internal state variables—has thus far

been ignored. We begin by exploring the the strength of the correlation between

oracle size and fault finding. We suspected it was strong and therefore explored the

following hypothesis:

(H2): There exists a strong and positive correlation between oracle size

and fault finding.

We evaluate H2 by measuring the correlation between oracle size and fault find-

ing for each case example and coverage criteria using each of the 50 reduced test

suites. Correlation is measured using Spearman’s rank correlation coefficient [43], a

non-parametric measure of correlation. This yields 50 coefficients for each case exam-

ple and coverage criteria combination. We list the minimum, mean, and maximum
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DWM 1 System
Branch Condition MCDC Naive Req Antecedent UFC

Min Corr 0.96 0.96 0.95 0.94 0.94 0.93
Mean Corr 0.96 0.96 0.96 0.94 0.94 0.93
Max Corr 0.97 0.97 0.96 0.95 0.94 0.93

DWM 2 System
Min Corr 0.98 0.98 0.98 0.97 0.97 0.99
Mean Corr 0.99 0.99 0.99 0.97 0.97 0.99
Max Corr 0.99 0.99 0.99 0.97 0.97 0.99

Latctl Batch System
Min Corr 0.95 0.93 0.93 0.95 0.93 0.66
Mean Corr 0.95 0.94 0.94 0.96 0.95 0.67
Max Corr 0.95 0.94 0.94 0.97 0.96 0.70

Vertmax Batch System
Min Corr 0.98 0.93 0.93 0.97 0.97 0.82
Mean Corr 0.98 0.93 0.94 0.98 0.98 0.82
Max Corr 0.98 0.94 0.94 0.98 0.98 0.82

Table 6.3: Correlation of Oracle Size vs Fault Finding (Unrestricted Subtype)

observed coefficients for each combination, in Tables 6.3 and 6.4 for both the unre-

stricted and output-base subtypes, respectively. For every calculated coefficient, the

p-value was less than 0.001 and thus statistically significant.

As shown, the observed correlation is consistently high, using both the uncon-

strained and output-base oracles, for all coverage criteria. (Note 0.7 or above is

considered high correlation, with 0.9 or above being considered very high [28].) The

exception to this are the correlations observed when using test suites generated to

satisfy the UFC coverage criterion, which exhibit moderate to high correlations de-

pending on the set of oracles used and the case example. This observation is consistent

with the observations made in Sections 6.3.1 and 6.3.2—for these case examples, the

test oracle has only a small influence of the effectiveness of test inputs generated to

satisfy UFC coverage. Also note this is consistent with the overall high levels of fault

finding observed for UFC. Even at small oracle sizes, test inputs satisfying UFC cov-
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DWM 1 System
Branch Condition MCDC Naive Req Antecedent UFC

Min Corr 0.93 0.91 0.89 0.91 0.88 0.83
Mean Corr 0.94 0.92 0.91 0.92 0.91 0.83
Max Corr 0.95 0.93 0.94 0.93 0.92 0.83

DWM 2 System
Min Corr 0.98 0.98 0.98 0.96 0.96 0.98
Mean Corr 0.98 0.99 0.98 0.96 0.96 0.98
Max Corr 0.99 0.99 0.99 0.96 0.96 0.99

Latctl Batch System
Min Corr 0.97 0.97 0.96 0.96 0.97 0.79
Mean Corr 0.97 0.97 0.96 0.97 0.97 0.82
Max Corr 0.97 0.97 0.97 0.98 0.98 0.87

Vertmax Batch System
Min Corr 0.98 0.91 0.95 0.97 0.97 0.75
Mean Corr 0.98 0.93 0.95 0.98 0.98 0.75
Max Corr 0.98 0.93 0.95 0.98 0.98 0.75

Table 6.4: Correlation of Oracle Size vs Fault Finding (Output-Base Subtype)

erage achieve high levels of fault finding; consequently, less improvement is possible

when using larger oracle sizes, leading to large and small oracles achieving similar

levels of fault finding, and thus relatively lower correlations.

Nevertheless, given the high correlation observed for most case examples and

coverage criteria, and the statistical significance of our results, we accept H2 and

conclude that—as we suspected—oracle size is strongly correlated with fault finding

for expected value oracles.

6.3.5 Relationship of Coverage Criteria, Oracle Size, and Fault Finding

In the previous sections, we have explored how oracle size impacts the effectiveness

of the testing process given a fixed criterion, characterizing the shape of the the re-

lationship between test oracle size and fault finding, and quantifying the potential

improvements available when using internal state variables. In this section, we illus-
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Figure 6.3: Fault Finding Effectiveness Across All Oracle Sizes, Unrestricted Subtype

trate the potential interaction between the selection of a test coverage criteria and

the selection of a test oracle.

In Figures 6.3 and 6.4, for each case example we present a boxplot illustrating,

for each coverage criterion, the fault finding effectiveness of every combination of a

reduced test suite satisfying the criterion with every test oracle (for both the unre-

stricted and output-base subtypes, respectively). In other words, we present all the

fault finding numbers computed for each coverage criterion, across all test oracles.

In these plots, box represents the interquartile range, or the IQR, of the data set,

while the line within the box represents the median. The star represents the mean of
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Figure 6.4: Fault Finding Effectiveness Across All Oracle Sizes, Output-base Subtype

the data, and the “whiskers”, i.e. the lines extending from the box, capture all data

points either 1.5×IQR above the 75% quartile mark or below the 25% quartile mark.

Red + marks represent outliers, i.e., data values outside the whiskers Also note that,

in general, the data points comprising the top of the box plot, i.e., the data points

with high fault finding, are those achieved using large oracles, while those near the

bottom are those achieved using smaller oracles.

We know from previous analyses that the choice of test coverage criteria and test

oracle impacts the effectiveness of the testing process, with more rigorous criteria

and larger test oracles leading to improved fault finding effectiveness. These figures,



123

however, illustrate the interaction between these artifacts, as both the criteria and

oracle size are varied.

We draw two observations here. First, in many cases, there exists significant

overlap in terms of fault finding effectiveness between criteria. In other words, for a

given case example, there often several combinations of test coverage criteria and test

oracles capable of achieving similar levels of fault finding. For example, in Figure 6.4

we see that for the Latctl Batch system 80% fault finding can be achieved using five of

the six coverage criteria when considering output-base oracles. For stronger coverage

criteria, this can likely be achieved using weaker test oracles; for weaker coverage

criteria, this can be achieved using stronger test oracles. Similar observations can

be made for each case example when considering both unrestricted and output-base

test oracles. In particular, we note the structural coverage criteria tend to overlap

substantially, with branch coverage and MCDC coverage overlapping in every case

example and oracle subtype (albeit sometimes only with respect to the very best data

point in branch coverage and the very worst data points in MCDC coverage).

Second, more rigorous coverage criteria often exhibit a smaller range of fault

finding values across oracle sizes as measured by the inter-quartile range (IQR). For

example, for each of the case examples, as we progress from branch, to condition, to

MCDC coverage, the range of fault finding values generally drops, particularly when

considering the output-base subtype. For example, for the DWM 1 system using

output-base oracles, branch coverage has an IQR of roughly 10%, condition coverage

has an IQR of roughly 7%, and MCDC coverage has an IQR of roughly 5%. This

reduction in ranges occurs despite the fact that none of the structural coverage criteria

achieve 100% fault finding, and thus larger IQRs are possible. Similar observations

can be made concerning requirements coverage criteria, with the exception of naive

requirements and antecedent coverage for the DWM 2 system; these coverage criteria
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perform poorly with respect to this system, achieving less than 20% fault finding at

best.

These observations highlight the potential tradeoffs that can be made in software

testing. Depending on the resources available, and the nature of costs in our testing

process, we may wish to use a relatively weaker coverage criterion with a strong test

oracle, or a stronger coverage criterion with a weaker test oracle, or some combination

in-between. We discuss the implications of this in Section 6.6.

6.4 Influence of Oracle Data for Randomly Generated Test

Suites

In the previous section, we explored how the test oracle influences the effectiveness of

the testing process using a number of coverage criteria. However, we also interested

in how the number of tests and the size of the test oracle interact to influence the

effectiveness of testing (per Question 4). When using coverage criteria, our ability to

directly vary the test suite is limited—we can vary the criteria our test suite satisfies,

but we cannot, for example, directly vary the size of the test suite (assuming we use

nonreducible test suites). In this section, we explore the influence of test oracles in

the context of random testing, thus allowing us to directly explore how test suite size

and oracle size jointly influence the effectiveness of the testing process.

6.4.1 Influence of Oracle Size Given Fixed Test Data

In Figures 6.5 and 6.6, we illustrate the relationship between oracle size and fault

finding using randomly generated test suites and all four case examples. Recall that

we generated 200 random test suites of sizes varying between 5 and 1,000 random

tests. Rather than plot how every test suite is influenced by oracle size (which would
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Figure 6.5: Random Tests, Oracle Size vs Fault Finding, Unrestricted Subtype

require a prohibitive number of figures), we have selected a set of test suite sizes we

have found to be representative. Note that we focus on smaller test suite sizes as

larger test suite sizes (> 200 tests) tend to exhibit similar levels of fault finding in

our case examples. As in Subsection 6.4.1, we have smoothed the plots using LOESS

smoothing [43] with a bandwidth factor of 0.1.

We make two observations from these figures. First, as with test suites generated

to satisfy coverage criteria, the relationship between fault finding and oracle size is

generally logarithmic, with a rapid increase in fault finding for small oracle sizes cou-

pled with a gradual drop in the rate of increase for larger oracle sizes. Consequently,
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Figure 6.6: Random Tests, Oracle Size vs Fault Finding, Output-base Subtype

as before, there exists substantial overlap in the faults detected by variables within

the system.

Second, we note that the potential improvements available from using larger test

oracles diminishes as test suite size grows. This is perhaps best illustrated by the

DWM 2 system when using output-base oracles—every test suite generated is capable

of achieving close to the maximum level of fault finding, but while the largest test

suite achieves this with the output-only oracle, the smallest test suite achieves this

only when every variable in the system is part of the oracle data.
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Figure 6.7: Relative Improvement of Maximum Oracle Over Output-only Oracle vs

Test Suite Size

6.4.2 Relative Improvement using Maximum Oracle

Concerning Figure 6.6, we noted that test suite size and the potential improvements

available from using larger test oracles appear to be linked. Of particular interest is

how the relative improvement when using the maximum oracle over the output-only

oracle varies with test suite size—we would like to know how the effectiveness of

considering internal state changes as test suite size varies. Accordingly, in Figure 6.7,

we plot the relative improvement in fault finding that occurs when using the maximum

oracle over the output-only oracle for randomly generated test suites of size 5 to 1,000.

We have again smoothed the plots using LOESS smoothing [43] with a bandwidth

factor of 0.1.

For each case example, we can see that the relative improvement when using a

maximum oracle starts fairly high, over 150% for the DWM 2 system and over 20%

for all other systems. As test suite size increases, however, the relative improvement

drops quickly as we approach 100 tests (very quickly for DWM 1 and Latctl Batch),
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Figure 6.8: Correlation of Oracle Size vs Fault Finding as Test Suite Size Varies

dropping below 10% for all case examples at 1,000 tests. This indicates that when

using small test suites, the choice of test oracle is potentially highly influential, but less

so when using larger test suites. This is in keeping with our observations concerning

coverage criteria from Section 6.3.2, in which we noted test suites satisfying stronger

coverage criteria are less influenced by the selection of the test oracle than tests suites

satisfying weaker coverage criteria (e.g., MCDC versus branch coverage).

6.4.3 Correlation of Oracle Size and Fault Finding

As we have shown, the improvements in testing effectiveness available from using

larger test oracles tend to diminish as test suite size increases. This can be further

illustrated by exploring the correlation between fault finding as oracle size for each

random test suite. In Figure 6.8, we plot the correlation of oracle size and fault find-

ing (again using Spearman’s rank correlation coefficient [43]) for each case example

using both the unconstrained and output-base oracle subtypes. For every calculated

coefficient, the p-value was less than 0.001 and thus statistically significant.

As shown, for both subtypes, correlation is very high for small test suite sizes

(as was the case for test suites generated to satisfy coverage criteria). However,
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as test suite size increases, correlation drops for each case example. Latctl Batch

aptly demonstrates this in both subtypes—even with relatively small test suite sizes

(10-20% of the largest test suite size) correlation drops to below 0.6. Other case

examples demonstrate less dramatic drops in fault finding, but nevertheless, we see

the effectiveness of larger test oracles drops as test suite size increases.

6.4.4 Relationship of Random Test Suite Size, Oracle Size, and Fault

Finding

In Figures 6.9 and 6.10, we present the relationship between test suite size, oracle

size and fault finding as a contour map for the unrestricted and output-base oracles,

respectively. For these figures, we chose to focus on smaller test suite sizes (< 250)

as the more interesting observations apply mostly to smaller test suite sizes. Oracle

sizes and fault finding measurements are given as a percentage of their respective

maximums.

As with several previous figures, these figures have been smoothed using LOESS

(with a smoothing factor of 0.20). In these figures, the light areas represent combi-

nations of test suites and oracles that reveal a relatively high number of faults, and

dark areas represent combinations of test suites and oracles that reveal a relatively

low number of faults. Each contour line represents a constant level of fault finding.

For example, we can see that for the DWM 1 system in Figure 6.10, 50 tests and

the output-only oracle reveals roughly the same number of faults as 25 tests and an

output-base oracle containing 60% of the possible variables (94% of the faults).

We make three observations concerning these figures. First, the tradeoffs implied

in previous results are easily seen here. We have now clearly illustrated how the

selection of test suite size and test oracle size influences the effectiveness of the testing

process. For example, for the DWM 2 system, we can see that in order to achieve
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Figure 6.9: Relationship of Test Suite Size, Oracle Size and Fault Finding, Unre-

stricted Subtype

96% fault finding when considering output-base oracles, we could use (1) a relatively

large test suite (> 225 tests) and the output-only test oracle, or (2) a relatively

small test suite (< 25 tests) and the maximum test oracle, or (3) some intermediate

combination.

Second, given a set cost function and finite resources, the most effective test suite

and oracle combination can vary depending on how test suite size and oracle size
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Figure 6.10: Relationship of Test Suite Size, Oracle Size and Fault Finding, Output-

base Subtype

jointly influence the number of faults revealed. In other words, the potential for a

tradeoff is determined by the relative power of the test suite and the test oracle.

For example, assume that our cost budget is such that we can use an output-base

oracle considering roughly 50% of the internal state while running a single test, or

use the output-only oracle while running 125 random tests, or some linearly related

combination thereof. We plot this cost function as a thick black line for each system
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in Figure 6.11. Note that these contour plots use output-base oracles.

Examining these lines, we can see that the most cost effective choice can vary

substantially depending on the specific system under consideration. For example, we

can see that for the Latctl Batch and DWM 1 systems, the best choice for our given

cost function is the output-only oracle with 125 tests, yielding 99% and 97% fault

finding, respectively. In contrast, for the Vertmax Batch system, the best choice is

an output-base oracle with roughly 30% of the internal state and roughly 75 tests,

yielding 90% fault finding. If we were to change our choice for Vertmax Batch—using

an output-only oracle with 125 tests—fault-finding would drop to less than 85%, a

reduction of 5% points.

Third, these figures highlight the importance of composition of test oracles, i.e.,

how outputs and internal state variables impact the effectiveness of the testing pro-

cess. This can be seen in the differences between Figures 6.9 and 6.10, representing

the unrestricted and output-only test oracles—specifically, the differences between

the DWM 1 and DWM 2 case examples across oracle subtypes. In the case of the

unrestricted oracle subtype, the contour maps for these case examples consist largely

of vertical lines, indicating that improvements in fault finding are primarily available

by increasing oracle size. Conversely, in the case of the output-base oracle subtype,

the contour maps for these case examples consist of more horizontal (though not

completely horizontal) lines, indicating that increased test suite size is (depending on

the cost function) more likely to lead to improvements in fault finding.

The difference here is the use of output variables in the oracle data. In the case

of the unrestricted oracle subtype, the use of outputs is not guaranteed and small

oracles tend to perform poorly. Therefore, regardless of the number of tests used,

fault finding will be on average low unless a sufficiently large oracle is used. When

using output-base oracles, however, we achieve good (if not ideal) fault finding merely
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Figure 6.11: Cost Function w/ Relationship of Test Suite Size, Oracle Size and Fault

Finding, Output-base Subtype

by the inclusion of outputs in the oracle data, and test suite size is generally more

important than oracle size with respect to effectiveness.
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6.4.5 Regression Modelling of Random Test Suite Size, Oracle Size, and

Fault Finding

The previous visualizations and analyses highlight the interrelationship between test

suite size and oracle size, and hint at the relationship between these two factors, but

their exact nature is unclear. Here we explore the use of linear regression to attempt

to model how random test suite size and oracle size jointly influence the effectiveness

of the testing process.

In linear regression, we model the data as a linear equation y = β1x1 + β2x2 +

. . .+βpxp+ εi in which the variables xi correspond to factors (independent variables)

and the variable y denotes the dependent variable. The goal is to determine the

coefficients βi that best fit the data.

Following the approach used by Namin and Andrews for modeling effectiveness

in terms of test suite size and branch coverage [49], we fitted several linear models of

fault finding (FF ) to the collected data, with the goal of (1) determining if the mod-

els considering both test suite size (TS ) and oracle size (OS ) outperformed models

considering either factor alone and (2) determining which model transformation best

fit the data.

We explored several linear regression models, trying each possible combination of

TS, log(TS), OS, and log(OS) with respect to fault finding (FF ). We then computed

the adjusted R2 to determine the goodness of fit for each model. In Tables 6.5

and 6.6, we list the adjusted R2 values for all models explored for the unrestricted

and output-base subtypes, respectively.

Our results indicate that with respect to adjusted R2 and when considering only

output-base oracles, models of the form FF = β1·TS or FF = β1·log(TS) outperform

models of the form FF = β2 ·OS or FF = β2 ·logt(OS). Thus if we assume an output-

base oracle, test suite size is a better predictor of testing effectiveness than oracle size.
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DWM 1 DWM 2 Latctl Batch Vertmax Batch

TS 0.00 0.00 0.07 0.26
log(TS) 0.00 0.00 0.25 0.50

OS 0.72 0.63 0.01 0.17
log(OS) 0.76 0.90 0.02 0.28
TS + OS 0.72 0.63 0.09 0.43

TS + log(OS) 0.76 0.91 0.10 0.54
log(TS) + OS 0.72 0.63 0.27 0.67

log(TS) + log(OS) 0.77 0.91 0.28 0.78

Table 6.5: Adjusted R2 Goodness of Fit for Models of Fault Finding, Unrestricted
Subtype

TS = Test Suite Size, OS = Oracle Size

DWM 1 DWM 2 Latctl Batch Vertmax Batch

TS 0.09 0.14 0.07 0.32
log(TS) 0.33 0.32 0.28 0.62

OS 0.17 0.10 0.01 0.08
log(OS) 0.17 0.12 0.01 0.15
TS + OS 0.27 0.24 0.08 0.40

TS + log(OS) 0.27 0.27 0.09 0.47
log(TS) + OS 0.50 0.42 0.29 0.71

log(TS) + log(OS) 0.50 0.44 0.29 0.78

Table 6.6: Adjusted R2 Goodness of Fit for Models of Fault Finding, Output-base
Subtype

TS = Test Suite Size, OS = Oracle Size

For the unrestricted subtype, no consistent pattern for single factor models can be

seen—depending on the case example, the use of either oracle size or test suite size

may be a better predictor than the alternative.

However, for both oracle subtypes, we found models of the form FF = β1 ·

log(TS) + β2 · log(OS) performed better than or equal to all other models explored.

This provides additional evidence that both test suite size and oracle size influence

the effectiveness of the testing process. Note the R2 value observed for this model

varies considerably across all case examples, indicating in turn that the relationship
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(d) Latctl Batch

Figure 6.12: Fault Finding Effectiveness of Individual Variables for Each Coverage

Criterion

between test suite size, test oracles, and fault finding also varies across case examples.

This is in keeping with our observations from Section 6.4.4 (and indeed, throughout

this chapter).

6.5 Effectiveness of Individual Variables in Oracle Data

In previous sections, we have examined the effectiveness of test oracles of various

sizes. Also of interest (per Question 2) is how individual variables contribute to the

effectiveness of the testing process. We therefore examined the fault finding ability
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of each individual variable for every case example using every test suite, i.e., we

investigated the fault finding ability of every oracle of size 1.

Once we had computed these fault finding measurements, we then normalized

each measurement using the size of the test suite corresponding to the measurement.

In other words, we divided each effectiveness measurement by the size of the corre-

sponding test suite used. This was done to control for varying test suite sizes across

coverage criterion. In the absence of this normalization, a given variable will nearly

always detect more faults when using stronger coverage criteria (or larger random

test suites) simply because more test inputs have been run.

We plot these results for each case example in Figure 6.12. These boxplots are

similar to those in Figures 6.3 and 6.4 (except for the normalization). Also note that

for this analysis, we use both random test suites and test suites generated to satisfy

coverage criteria.

We make two observations concerning the effectiveness of individual variables.

First, we note that for each case example, the median normalized effectiveness of an

individual variable tends to be nearly the same, and very low—close to zero in all

case examples and coverage criteria. This indicates that in general, variables tend to

be marginally effective individually, with many variables finding few, if any faults,

irrespective of the coverage criterion used.

Second, we note that for each case example, there often exist a large number

of outlier variables finding far more faults than the median or average fault finding

for a variable. Coupled with previous observation, we can see that for each case

example, while many variables tend to be very ineffective as part of the oracle data,

some variables are exceptionally effective, finding several times (up to 10 times more)

faults per test on average. We term these variables critical-variables, and define them

to be variables whose fault finding is more than 2 standard deviations better than
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Branch Condition MCDC Naive Req Antecedent UFC Random
DWM 1 System

µ 0.57 0.83 0.61 0.18 0.19 0.04 0.18
σ 0.85 0.91 0.63 0.19 0.19 0.03 0.58

Median 0.14 0.55 0.56 0.11 0.16 0.03 0.05
Avg % Out <= 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Avg % In <= 0 4.86% 4.34% 6.08% 6.90% 6.53% 4.34% 4.34%

Avg % Out > µ+ σ 44.44% 44.44% 44.44% 66.66% 51.77% 66.66% 66.66%
Avg % In > µ+ σ 12.83% 17.28% 19.07% 23.09% 28.05% 28.57% 32.75%

Avg % Out > µ+ 2σ 37.77% 11.11% 2.0% 0.0% 0.0% 0.0% 0.05%
Avg % In > µ+ 2σ 8.17% 4.33% 1.21% 0.0% 0.0% 0.0% 0.0%

DWM 2 System
µ 0.04 0.06 0.03 0.09 0.09 0.04 0.00
σ 0.05 0.09 0.05 0.24 0.24 0.06 0.04

Median 0.02 0.03 0.01 0.0 0.0 0.02 0.00
Avg % Out <= 0 0.0% 0.0% 0.28% 100.0% 100.0% 0.0% 0.0%
Avg % In <= 0 37.97% 34.09% 36.73% 82.24% 82.24% 35.13% 32.17%

Avg % Out > µ+ σ 68.57% 95.42% 69.42% 0.0% 0.0% 100.0% 100.0%
Avg % In > µ+ σ 10.97% 11.72% 11.84% 17.75% 17.75% 10.65% 6.31%

Avg % Out > µ+ 2σ 33.42% 76.28% 59.42% 0.0% 0.0% 89.71% 99.85%
Avg % In > µ+ 2σ 6.17% 5.83% 6.19% 4.74% 4.74% 5.18% 2.94%

Latctl Batch System
µ 1.65 0.55 0.34 3.60 3.28 0.16 0.24
σ 2.05 0.81 0.45 5.05 4.08 0.18 0.82

Median 0.41 0.10 0.05 0.68 0.41 0.01 0.01
Avg % Out <= 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Avg % In <= 0 6.25% 6.25% 6.25% 7.68% 6.25% 6.25% 6.25%

Avg % Out > µ+ σ 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Avg % In > µ+ σ 25.0% 17.18% 15.62% 19.84% 26.70% 33.40% 37.62%

Avg % Out > µ+ 2σ 100.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%
Avg % In > µ+ 2σ 4.68% 8.73% 8.85% 5.95% 0.09% 0.0% 0.0%

Vertmax Batch System
µ 0.60 0.07 0.06 2.67 2.69 0.03 0.14
σ 0.70 0.08 0.07 4.49 4.51 0.02 0.36

Median 0.18 0.06 0.05 0.40 0.40 0.03 0.08
Avg % Out <= 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Avg % In <= 0 21.87% 14.21% 13.97% 22.55% 21.88% 13.97% 14.06%

Avg % Out > µ+ σ 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Avg % In > µ+ σ 14.93% 9.88% 10.60% 15.58% 15.81% 18.69% 15.19%

Avg % Out > µ+ 2σ 50.0% 0.0% 57.0% 97.0% 96.0% 0.0% 9.5%
Avg % In > µ+ 2σ 5.54% 7.18% 7.56% 10.60% 10.52% 0.0% 2.57%

Table 6.7: Fault Finding Effectiveness of Individual Variables by Coverage Criterion
Out = Output Variables, In = Internal State Variables

the median.

In Table 6.7, we quantify our observations, listing for each case example and

coverage criterion: (1) the number of variables which detect no faults on average (2)

the mean (µ) and standard deviation (σ) in fault finding effectiveness for individual

variables, and (3) the percentage of internal state (In) and output variables (Out)
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which find 1 or 2 standard deviations more faults than the mean on average. As

we can see, under our definition of a critical-variable, for these case examples up

to 100% of output variables and 10.6% of internal state variables, respectively, are

critical-variables for a given test suite (on average). For each case example, we can see

these critical-variables reveal roughly 3 times as many faults as the average variable,

though for some case example and coverage criterion combinations—random test

suites used in conjunction with the Latctl Batch system, for example—the mean

and standard deviation are such that critical-variables find far more faults than the

average variable,.

Note that many of these critical variables are output variables, which provides

evidence that current testing practice in the avionics domain—which relies on output-

only oracles—is reasonable. However, for each case example there exists several

internal state variables that are also critical variables. These variables represent an

opportunity to improve fault finding through methods of efficiently detecting these

variables and adding them to the oracle data.

6.6 Discussion

We now discuss the questions posed at the start of this chapter, and highlight the

implications of our results:

Question 1 (Q1): How does oracle size influence the effectiveness of the testing

process given a fixed test suite?

Question 2 (Q2): How much do individual variables in the oracle data contribute

to the effectiveness of the testing process?

Question 3 (Q3): In the case of tests generated to satisfy a coverage criterion, how
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does the coverage criterion used and oracle data chosen jointly influence the

effectiveness of the the testing process?

Question 4 (Q4): In the case of random testing, how does the size of the test

suite and oracle data chosen jointly influence the effectiveness of the the testing

process?

At this point, it is worth re-iterating that while we achieve consistent results across

case examples for some analyses, we are only using four models from a single domain

to explore these questions. Generalizability is thus limited to this domain.

6.6.1 Influence of Oracle Size Given a Fixed Test Suite

Our results indicate that given a fixed test suite, an increase in oracle size corresponds

to an increase in fault finding, often with very high correlation (> 0.9). This increase,

shown in Figures 6.1, 6.2, 6.5, and 6.6 can be characterized as logarithmic, with an

initial rapid increase in testing effectiveness as oracle size grows from smaller oracles

to larger oracles, followed by a more gradual climb in oracle effectiveness. This

relationship can be observed largely irrespective of the oracle subtype, with only

minor differences noted across subtypes (explored later in this section). Note that for

some coverage criteria and case example pairings, fault finding is initially very high

for small oracles; accordingly, fault finding cannot increase as oracle size increases,

and thus oracle size does not impact effectiveness.

While this relationship retains the same basic shape across coverage criteria and

case examples, we note that subtle differences are apparent depending on the case

example. For example, the relationship for the DWM 1 system is generally flatter,

with less of a rapid increase and “peaking” behavior, while the relationship for the

Vermatx Batch system is just the opposite, with an exceptionally sharp rise that

quickly flattens out.
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As previously noted, the use output-only oracles appears to be standard prac-

tice in industry, and we are thus interested in how the addition of internal state to

output-only oracles can impact the effectiveness of the testing process. Our results in

Table 6.1 indicate that for a fixed test suite, the relative improvement in considering

internal state varies substantially depending on the case example and coverage crite-

rion considered, with improvements as high as 370% for MCDC test suites and the

DWM 2 system, and as low as 0% when using very large randomly generated test

suites for all systems except Vertmax Batch. Thus, while the addition of internal state

to an output-only oracle can be a powerful method of improving the effectiveness of

the testing process, it may also provide little or no benefit.

Nevertheless, these results provide strong evidence that, in practice, larger oracle

size often leads to improvements in fault finding effectiveness, supporting the the-

oretical results from Chapter 3. These results imply that, given a set of tests, we

can often improve the effectiveness of our testing process by increasing oracle size.

Furthermore, the logarithmic shape of the relationship between oracle size and fault

finding indicates that, in general, smaller oracle sizes may be more cost effective than

larger oracle size (assuming cost scales linearly with the size of the oracle data), thus

providing a general guideline for oracle selection: use smaller oracles, as larger oracles

are often only marginally more effective. Given the variation in the results, however,

it is clear more sophisticated methods of selecting test oracles are needed.

6.6.2 Impact of Individual Variables of Effectiveness of Oracle Data

For all case examples, the median fault finding effectiveness for an oracle of size 1 (i.e.,

for an individual variable) was uniformly low, with a fault finding effectiveness of less

than 1.0 per test case. In other words, at least half of variables, when paired with an

arbitrary test suite, average less than 1 fault detected per test run. Furthermore, a
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significant percentage of variables find no faults at all—in particular, internal state

variables perform poorly individually, with 4.34% to up to 82.24% finding no faults

(depending on the case example and coverage criterion). Thus, our analysis indicates

that many variables are of only marginal use in the oracle data.

However, for each system, we also noted outlier variables which find far more

faults than the average variable. We termed such variables critical-variables, and

define them to be variables finding greater than two standard deviations more faults

than the average variable. For each case example, the critical-variables comprise only

a small percentage of the overall set of variables, tend to be output variables rather

than internal state variables, and find between 3 to 10 times as many variables as the

average variables.

Clearly, the inclusion—or exclusion—of these critical-variables has a potentially

significant impact on the effectiveness of the test oracle. If it were possible to select

these critical-variables quickly (i.e., without conducting a large scale empirical study

such as this one) this might lead to a method of constructing small—but highly

effective—oracle data for expected value oracles. Such a method might allow us to

obtain most of the benefits of large oracles, without the considerable expense.

6.6.3 Joint Influence of Coverage Criteria and Oracle Data

As the coverage criteria varies, the influence of the oracle data, with few exceptions,

remains fairly consistent. The relationship between oracle size remains largely log-

arithmic, the correlation remains high (excepting those cases in which small oracles

are very effective), and relative improvement in using the output-base and maximum

oracle remains high (again, excepting when small oracles are very effective).

However, there do exist subtle changes in how oracle selection influences effec-

tiveness as the coverage criteria varies. First, as the rigor of the coverage criterion
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increases, the potential relative improvement in considering internal state (i.e., the

difference between the output-base and maximum oracle) decreases. This can be seen

by considering the progression of rigor for the structural and requirements coverage

metrics, e.g., branch → MCDC and naive requirements coverage → UFC—as more

rigorous coverage criterion are employed, the relative improvement universally drops.

This drop can likely be attributed at least in part to the effectiveness of test suites

satisfying more rigorous coverage criteria. When using the output-only oracle, fault

finding is higher for test suites satisfying, for example, MCDC versus those satisfying

branch coverage; consequently, the potential increase when using the maximum oracle

is lessened. It is also possible that the increased rigor plays a part—stronger test

inputs leave less room for larger oracles to influence effectiveness.

In either case, we can see that when using test suites satisfying more rigorous

coverage criterion, the potential benefits of careful oracle selection is reduced. The

implications of this are twofold. First, it implies that when testing, testers may be

able to place less effort in oracle selection provided a rigorous coverage criteria is

used. Second, it highlights the importance of considering multiple factors in software

engineering studies—had we conducted this study using only one type of coverage

criterion (for example, UFC or branch coverage), our results might have led us to

conclude that the influence of test oracles on testing effectiveness is very weak or

strong, when it is in fact quite variable.

Potential Tradeoffs in Oracle Size / Test Suite Power

The interaction between test suites and test oracles is best illustrated in Figures 6.3

and 6.4, which plot the fault finding effectiveness of all test suites using all test oracles.

Here we can see the significant overlap between coverage criteria, with similar levels

of fault finding achievable across different coverage criteria. These results indicate a
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potential tradeoff in testing—we can achieve similar levels of fault finding using test

suites satisfying strong coverage criteria with small oracles, or large oracles with test

suites satisfying weaker coverage criteria, or some intermediate combination.

Thus, depending on the testing resources available, we can select the most cost

effective combination of test inputs and test oracle from several potential options. For

example, if the large test oracles were viewed as cheap the use (as might occur when

a model suitable for use as a test oracle and hardware facilitating efficient monitoring

during testing were both available), we might opt to use a weaker, cheaper coverage

criterion. In a different scenario in which test oracle size was capped at relatively

small size (as might occur when testing embedded systems), we might opt to use a

stronger coverage criterion. We further discuss these potential tradeoffs later in this

section.

Differences in Structural and Requirements Coverage Criteria

As illustrated in Figure 6.2 and detailed in Table 6.1, the potential benefit of consid-

ering internal state is less when using test suites generated to satisfy a requirements

coverage criterion as compared to when using test suites generated to satisfy struc-

tural coverage criteria. This can be seen by comparing the relative improvements

across structural and requirements coverage metrics for each case example. Even

when fault finding effectiveness is similar for two structural and requirements cov-

erage criteria–for example, for naive requirements and branch for the Latctl Batch

system, and naive requirements and MCDC for the DWM 1 system—the relative

improvement is always less for the requirements coverage metric.

This can be attributed to the nature of these different types of coverage criteria.

Tests satisfying structural coverage criteria are focused on exercising syntactic ele-

ments of the source code, and, accordingly, consist of short tests covering some branch



145

or combination of conditions. These test inputs may be effective at uncovering faults,

but may not be effective—due to length and their focus on internal expressions—at

propagating these errors to the outputs. Consequently the use of internal state can

significantly improve their effectiveness.

In contrast, tests satisfying requirements coverage criteria are formulated in terms

of LTL requirements, which in turn tend to relate input variables to output variables.

These tests tend to be longer, as they must cause changes in the output to occur.

In turn, they are more likely to allow faults to propagate to the outputs. While

their construction is not foolproof—faults may still occur and not propagate to the

output—the effectiveness of internal state is diminished in relation to tests satisfying

structural coverage criteria.

We now have evidence that, as we have previously suspected, test suites designed

to propagate changes to the output—like those satisfying these requirements coverage

metrics—are less impacted by the presence of masking and are more likely to propa-

gate faults to the outputs, resulting in less improvements when using the maximum

oracle over the output-only oracle. Testers using requirements coverage metrics may

therefore spend less resources on oracle selection, as the potential improvements are

less than, for example, when using branch coverage.

6.6.4 Joint Influence of Random Test Suite Size and Oracle Data

As random test suite size increases, the potential influence of oracle size rapidly

decreases for each case example. This is clearly illustrated in the drop in the relative

improvement of the maximum oracle over the output-only oracle (Figure 6.7 shows

a drop from over 20-150% to less than 10% for all case examples) and the drop in

correlation of oracle size and fault finding (Figure 6.8 shows a drop of over 0.9 to

0.8-0.0 depending on case example and oracle subtype). Thus, as the power of the
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test suite increases, the influence of the test oracle decreases (and vice-versa).

This highlights the same essential tradeoff in testing we previously highlighted

when discussing test suites satisfying coverage criteria: we can achieve similar levels

of fault finding in several ways. We further explore this tradeoff in Section 6.4.4,

where we show that depending on the cost function for the testing process (e.g.,

the cost of running a test input, the cost of large oracles versus small oracles), we

may select different combinations of test suites and oracles. In particular, our results

indicate given the same cost function across different case examples, we may select

very different combinations. This is illustrated in Figure 6.11, in which—for the cost

function given—the Latctl Batch and DWM 1 systems favor relatively larger test

suites with small oracles, while the opposite is true for the Vertmax Batch system.

(Interestingly, the DWM 2 system is effectively indifferent to the selection of test

suite size and test oracle—all combinations along our cost function line perform nearly

identically.)

These results, along with those related to coverage criteria, demonstrate the po-

tential effectiveness of complete adequacy criteria, defined in Chapter 3 as:

TOC ⊆ P × S × 2T ×O

Clearly, the interaction between test suites and oracles implies that we must con-

sider one artifact when selecting the other. Indeed, we have already identified how

the following factors influence the effectiveness of the test oracle: rigor of coverage

criteria; requirements coverage versus structural coverage; large test suites versus

small test suites; case example. Accordingly, it seems likely that we may be able to

improve the effectiveness of the testing process by developing methods of selecting

both the test inputs and the test oracle simultaneously. To the best of our knowledge,

no such methods exist; we therefore believe this is a suitable task for future work.
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Modeling Effectiveness of Testing Process

In addition to illustrating the joint influence of random test suite size and oracle data

size, we also attempted to create a regression model for this relationship. Our analysis

indicated that models of the form FF = β1 · log(TS) + β2 · log(OS) provide the best

model relative to other permutations of TS and OS, thus providing further evidence

of the joint relationship between test suite size and oracle size and indicating the

general logarithmic behavior informally noted previously is indeed present. However,

the adjusted R2 goodness of fit varies considerably across case examples, with a low of

0.28 (Latctl Batch) and a high of 0.91 (DWM 2 ) for the unrestricted oracle subtype

and a low of 0.29 (Latctl Batch) and a high of 0.78 (Vertmax Batch) for the output-

base subtype. In general, the adjusted R2 was high for the unconstrained subtype.

Given this consistency across case examples, we believe that while this model

clearly requires refinement, our results are encouraging. This, along with results

from Namin and Andrews [49], indicates that modeling the effectiveness of testing as

factors warrants future study.

6.7 Chapter Conclusion and Future Work

In this chapter, we have explored how the selection of oracle data influence the ef-

fectiveness of the testing process. Our results indicate that within the domain of

avionics system, oracle selection has a strong and practically significant effect on

testing effectiveness. Selected results of interest include:

• Oracle size corresponds to fault finding ability with high, positive correlation.

• As the power of the test suite increases (either due to test suite size or the use

of more rigorous coverage criteria), potential gains from improved test oracles

diminish.
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• In general, the effectiveness of the testing process is more strongly influenced

by test oracle selection when using tests suites satisfying structural coverage

criteria rather than requirements coverage criteria.

• Depending on the case example and cost function, it may be advisable to direct

some finite testing resources towards improving the test oracle, rather than the

test suite.

• The effectiveness of individual variables varies, with many variables finding very

few faults and some variables—which we term critical-variables—finding 3-10

times more faults than the average variable.

These results indicate that while oracle selection is a key component in deter-

mining testing effectiveness, and that test oracles other than the industry standard

output-only oracle may yield significant improvements in fault finding effectiveness.

However, the variability between case examples, test coverage criteria, and test suite

size indicates that general, cost-effective guidelines for oracle selection are elusive.

Accordingly, we believe this work highlights the need for future work concerning

methods of test oracle selection. We therefore propose the following challenges for

future work:

• For a given test suite, how can we efficiently determine the most effective oracle

for a given system? In particular, what methods can efficiently identify critical-

variables, and can knowledge of the critical variables be used to generate small,

effective oracles?

• For a given system, how can we efficiently determine the most effective combi-

nation of test suite and oracle for a given system?
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• What are the limitations of oracle selection? Can we gain most, or all, of the

benefits of the maximum oracle without incurring the overhead from monitoring

such a large number of variables?

• What existing conclusions concerning the relative effectiveness of testing ap-

proaches are strongly dependent on the test oracle selected? In other words,

how much of our current understanding of testing effectiveness is flawed due to

implicit assumptions concerning the test oracle?



Chapter 7

Impact of Limited Observability on the Influence

of Internal State on Testing Effectiveness

In this chapter, we explore how the structure of the program impacts the influence of

the test oracle, specifically with respect to the influence of internal state information.

This chapter is structured similarly to previous empirical chapters.

7.1 Motivation

Recall from Chapter 4 that the observability of a program is linked to our abil-

ity to monitor the program’s behavior, i.e., our ability to determine the program’s

state. The observability of the program is a limiting factor in the construction of

oracles—if we cannot observe some aspect of the program, this information cannot

be incorporated into our oracle. Thus, for a set of programs p, p′, p′′ . . . which are

semantically—but not observationally—equivalent, it is possible the set of potential

oracles O we can use in testing varies.

Of concern in this chapter is how program structure impacts observability, and

how this variation in observability impacts the influence of the test oracle. If we

assume that the observability of the program is linked to the number of internal

variables—as is often the case in practice, and as we assumed in Chapter 4—the

structure of the program may impact its observability. Recall that when inlining a

program, we remove internal state variables; consequently, inlining a program has a

150
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negative impact on observability. This represents a potential problem for testers—

depending on how the program is structured, the influence of the test oracle may be

lesser or greater, thus complicating the issue of oracle selection. We therefore wish to

better understand how program structure impacts the influence of oracles on testing

effectiveness.

Note that while the potential for program structure to impact the influence of

test oracles represents a potential problem, it also represents a potential opportunity.

Clearly, restrictions on our ability to construct test oracles is an undesired limitation.

However, this is a problem that can be overcome through engineering—if desired, we

could develop tools, virtual machines (for languages such as Java) and/or compilers

(for languages such as C) to allow us to observe computed values not assigned to

internal state variables. Nevertheless, building such a tool is a non-trivial task, and

there currently does not exist any evidence that such a tool would provide any po-

tential benefits. By improving our understanding of how program structure and test

oracles interact, we may provide such evidence.

7.2 Research Questions

We began by asking the following question:

Question 1 (Q1): How does the variation in observability, as caused by changes

in program structure, impact the influence of internal state information in the

oracle data?

For this question, we are only interested in the output-base oracle subtype, as

changes here best showcase how change in the number of internal state variables

impacts oracle effectiveness. As we will see, the reduction in observability that results

from inlining a program has a strong negative impact on the influence of oracle
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for all coverage criteria. However, we found in Chapter 5 that this inlining has a

strong positive impact on the effectiveness of test suites satisfying structural coverage

criteria. We therefore asked the following question:

Question 2 (Q2): With respect to structural coverage criteria and the maximum

test oracle, is the reduction in the power of the maximum oracle (due to de-

creased observability) counterbalanced by the increased effectiveness of test

suites satisfying structural coverage criteria? In other words, assuming we use

a maximum oracle and a set of tests generated to satisfy a structural coverage

criteria with a fixed program structure, which yields higher fault finding: the

inlined or noninlined program?

We explore the following factors in this chapter:

Program Structure: We examine programs that are inlined and noninlined.

Test Inputs: We examine test inputs derived to satisfy all coverage criteria, though

per Question 2 we have specific interest in the branch, condition, and MCDC

coverage criteria.

Recall that the test inputs generated to satisfy structural coverage criteria dif-

fer depending on program structure. Therefore, for several analyses, we will

use only random test inputs, which remain the same across inlined/noninlined

program structures.

Test Oracle: We explore the effectiveness of oracles from the output-base subtype,

varying the size of the oracle data. Of particular interest, per Question 2, are

the output-only and maximum oracles. Unrestricted oracles are not used.
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(b) DWM 2 Output-base, Random Test Suites

Figure 7.1: Oracle Size vs Fault Finding Examples for Noninlined Programs

7.3 Impact of Program Structure on Influence of Internal

State Information

To answer Question 1, we could simply repeat our all the analyses performed in

Chapter 6 over the inlined program structure. However, it becomes quickly apparent

that the program structure has a strong, negative impact on the influence of oracle

data; exhaustive repetition is unnecessary to demonstrate this. We therefore focus

on (1) how relationship between oracle size and fault finding changes when using

an inlined program, (2) the reduction in relative improvement of using a maximum

oracle over an output-only, and (3) how the relationship between random test suite

size, oracle size, and fault finding changes.

7.3.1 Influence of Oracle Size Given Fixed Test Data

In Chapter 6, we saw the relationship between oracle size and fault finding can be

characterized as logarithmic. This relationship generally holds for both oracle sub-

types and across methods of test input, as shown in Figure 7.1. We would like to

determine if this relationship still holds for inlined programs when using output-base
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Figure 7.2: Oracle Size vs Fault Finding, Output-base oracles, Test Suites Satisfying

Coverage Criteria

oracles. We therefore visualized this relationship, as shown in Figure 7.2 and 7.3

for test suites satisfying coverage criteria and randomly generated test suites, respec-

tively.

As we can see, the relationship between oracle size and fault finding has changed

considerably; for each case example, coverage criterion, and set of randomly generated

tests, the relationship now appears to be largely linear. This indicates that, unlike

when testing the noninlined programs, the set of faults detected by each internal state

variable does not overlap—each variable detects different faults.
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Figure 7.3: Oracle Size vs Fault Finding, Output-base oracles, Randomly Generated

Test Suites

Upon examination of the inlined systems, we saw that internal state variables

rarely reference one another. Therefore, errors in the computation of an expression

can often only be detected by observing either an output or the internal state vari-

able the expression result is assigned to. This likely accounts for linear nature of the

relationship between fault finding and oracle size—outputs are always observed in

output-base oracles, and as each internal state variable detects different faults, and

adding an internal state variable to an existing output-base oracle increases the effec-

tiveness of fault finding, irrespective of the number of internal state variables already
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DWM 1 System
Naive Req Antecedent UFC

Noninlined % FF Imp 10.22% 6.74% 2.33%
Inlined % FF Imp 5.83% 3.38% 2.93%

DWM 2 System
Noninlined % FF Imp ∞ ∞ 320.66%
Inlined % FF Imp 400.0% 400.0% 33.05%

Latctl Batch System
Noninlined % FF Imp 135.26% 53.45% 1.28%
Inlined % FF Imp 39.61% 14.92% 0.55%

Vertmax Batch System
Noninlined % FF Imp 120.07% 117.41% 1.96%
Inlined % FF Imp 44.80% 42.95% 1.54%

Table 7.1: Fault Finding Effectiveness, Output-Only vs Maximum Oracle, Noninlined
Versus Inlined Programs

FF = Fault Finding

present.

7.3.2 Relative Improvement using Maximum Oracle

In addition to the shift towards a linear relationship, we can also see that in several

instances the relative improvement between the output-only and maximum oracle

is smaller than previously seen. We quantify these differences for both test suites

satisfying requirements coverage criteria and randomly generated test suites. In Ta-

ble 7.1, we list the relative improvement when using the maximum oracle over the

output-base oracle for test suites satisfying requirements coverage. In Figure 7.4 we

plot the relative improvement versus test suite size for randomly generated tests, for

both the inlined and noninlined programs. (Recall that unlike randomly generated

test suites or test suites satisfying requirements coverage, test suites satisfying struc-

tural coverage criteria are generated and run separately for inlined and noninlined

programs. A direct comparison of these tests suites is therefore unfair.)
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Figure 7.4: Relative Improvement of Maximum Oracle over Output-only Oracle,

Randomly Generated Test Suites

As we can see, the relative improvement when using both randomly generated

test suites and test suites generated to satisfy requirements coverage criteria is of-

ten considerably less when using the inlined systems as compared to the noninlined

systems. In the case of requirements coverage metrics, the relative improvement is

lower across case examples, with the relative improvement for inlined systems being

often less than half that of the improvements observed for noninlined systems. The

exception to this occurs for UFC coverage, in which the already very low relative

improvements leave little room for further reductions.

In the case of the randomly generated tests, we see roughly the same pattern is

present when considering how test suite size influences the potential relative improve-

ment. However, the relative improvements for the inlined systems are considerably

smaller than those for the noninlined systems, beginning at just over 20% and drop-

ping quickly to below 5% by 35 tests, as compared to 150% to 75% for the noninlined

systems.



158

7.3.3 Relationship of Random Test Suite Size, Oracle Size, and Fault

Finding

In Section 6.4.4, we explored the relationship between test suite size, oracle size, and

fault finding effectiveness. These results illustrated that a potential tradeoff exists—

we can achieve the same level of fault finding using different approaches, e.g., by using

a large test suite with a small oracle, or a small test suite with a large oracle. Thus,

depending on the case example and the cost function, we may wish to use different

approaches when testing different systems.

In Figure 7.5, we plot contour maps illustrating the fault finding effectiveness

of variously sized random test suites and test oracles for the inlined systems, using

oracles of the output-base subtype. As we can see, the potential tradeoffs observed

for noninlined systems are very slight, if present at all. For each case example, the

contour maps consist of nearly horizontal lines, implying that in general, it is easier

to improve fault finding by increasing the size of our test suite.

7.4 Power of Inlined Structural Coverage Criteria Versus

Power of Noninlined Maximum Oracle

Based on the results to Question 1, we can see that the reduced observability due

to program structure has a strong negative impact on the influence of internal state,

at least with respect to randomly generated tests and tests satisfying requirements

coverage metrics. These results lead to an interesting dichotomy: inlining a program

has a positive impact on the effectiveness of structural coverage criteria, and a neg-

ative impact on the effectiveness of the maximum oracle. This led to the following

question:

Question 2 (Q2): Assuming we use a maximum oracle and a set of tests generated
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Figure 7.5: Relationship of Test Suite Size, Oracle Size and Fault Finding, Output-

base Subtype

to satisfy a structural coverage criterion with a fixed program structure, which

yields higher fault finding: the inlined or noninlined program?

To answer this question, we compare the fault finding of test suites satisfying each

structural coverage across the inlined and noninlined programs using the maximum

oracle. These results are listed for each case example in Table 7.2.
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DWM 1 System
Branch Condition MCDC

Noninlined MX % FF 83.17% 94.52% 96.17%
Inlined MX % FF 56.19% 91.16% 94.20%

DWM 2 System
Noninlined MX % FF 82.65% 93.09% 88.99%
Inlined MX % FF 92.74% 87.73% 93.33%

Latctl Batch System
Noninlined MX % FF 89.30% 93.60% 96.70%
Inlined MX % FF 61.25% 62.17% 84.16%

Vertmax Batch System
Noninlined MX % FF 85.16% 100.0% 100.0%
Inlined MX % FF 51.6% 54.79% 93.08%

Table 7.2: Fault Finding Effectiveness Using Maximum Oracle, Inlined vs Noninlined
Program Structure

MX = Maximum, FF = Fault Finding

As shown, the results lean heavily towards favoring the noninlined program. For

three of the four case examples (Latctl Batch, DWM 1 and Vertmax Batch), the

artifacts generated for the noninlined program outperform the artifacts generated for

the inlined program for every structural coverage criterion. For one case example, the

DWM 2 system, the results are mixed—for branch and MCDC coverage, the artifacts

generated from the inlined program outperform those generated from the noninlined

program, while for condition coverage the opposite is true. Recall, however, that

the results in Chapter 6 indicated that tests generated to satisfy structural coverage

criteria performed exceptionally poorly over the noninlined version DWM 2 relative

to tests generated using the inlined version, with improvements of 336.18% to 556.70%

observed when moving from the noninlined to the inlined program structure.

The results therefore indicate that, if required to choose, the noninlined program

structure generally yields better results when using the maximum oracle paired with

test suites generated to satisfy a structural coverage criteria (barring exceptional im-
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provements in test suite effectiveness when moving from the noninlined to inlined

system). In short, the improved effectiveness resulting from better observability out-

weighs the improved effectiveness resulting from better test suites.

7.5 Discussion

Our results clearly indicate that variation in observability, as caused by changes in

program structure, has a strong, negative impact on the potential effectiveness of

internal state. This is evidenced by the consistent reduction in relative improvement

when testing the inlined systems versus the noninlined systems. This reduction was

observed across coverage criteria and case examples, with relative improvements for

inlined systems often dropping to half that (or less) of the corresponding improve-

ments for the noninlined systems. Exceptions to this pattern of reduction occur only

for case examples and coverage criteria pairings in which the relative improvement

was already very low (< 3%).

Unsurprisingly, we see in Figure 7.5 that as a result, the relationship between test

suite size and oracle size has changed substantially. Namely, the potential tradeoffs

highlighted in Chapter 6—for example, the ability to achieve similar levels of fault

finding when selecting a strong test suite with a weak oracle, or a weak test suite

with a strong oracle—is only marginally present when testing the inlined systems.

This implies that when testing systems with low observability, the primary method

of improving testing performance, given some test suite and an output-base oracle,

will be to improve the test suite (e.g., use a stronger coverage criterion or a larger

test suite). Only in scenarios in which using a large test oracle is free or nearly free

would considering internal state be justifiable.

The implications of these results are twofold. First, we can see the results from

Chapter 6 are not completely generalizable—it is possible to construct a system such
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that our observations concerning the impact of oracle selection, and the relationship

between test input and oracle selection, do not generalize. In the case of reduced

observability, the impact of considering internal state in oracle data matters con-

siderably less; potentially, in the case of increased observability, the impact may be

considerably more. This highlights the lack of strong general guidelines available for

selecting oracle data, and reinforces the need (per Chapter 6 conclusions) of develop-

ing methods of determining, for an arbitrary case example, what combination of test

inputs and oracle data is the most cost-effective.

Second, as we discussed when motivating this chapter, a lack of observability

is a problem that can be solved through engineering. However, to the best of our

knowledge, tools specifically designed to improve observability during testing do not

exist, and constructing such tools is a non-trivial task. By demonstrating how the lack

of observability can negatively impact the influence of test oracles, we have provided

motivation for the construction of such tools. If we could easily and cheaply use

all computed values as part of the oracle data—not just internal state and output

variables—the effect of program structure on observability could be mitigated, and

the effectiveness of testing could potentially be improved as a result.

The results for Question 2 do not necessarily have any direct implications for

testing practice. However, we feel the results—highlighting how the factors of test

suite selection via structural coverage criteria, program structure, and oracle selection

all interact—make a fitting ending to this dissertation, and answer a question that

that long gone unanswered in the CriSys lab at the University of Minnesota.

7.6 Chapter Conclusion and Future Work

In this chapter, we have explored how program structure, and its influence on observ-

ability, impacts the influence of test oracle selection on the effectiveness on the testing
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process. Our results indicate that the influence of test oracle selection is strongly im-

pacted by program structure; in particular, the ability of internal state to improve the

effectiveness of output-base oracles is reduced when testing an inlined program (with

many internal variables inlined) as compared to when testing a noninlined program.

These results raise several questions for future work, including:

• Can we objectively determine if a program is sufficiently testable? In other

words, can we determine if a program’s structure allows for the construction of

effective test oracles?

• How can we design programs to maximize the testability, while avoiding un-

necessary costs? In other words, how can we structure programs such that the

maximum oracle will be very effective without assigning every computed value

to an internal state variable?



Chapter 8

Conclusions and Final Thoughts

In this dissertation, we have explored the influence of multiple artifacts on the effec-

tiveness of software testing. We began by presenting two formalisms for discussing

testing: a functional formalism by Gourlay, extended to better represent testing in

practice, and a computational formalism based on Kripke structures. We then used

these formalisms to define several properties of interest in testing, and explored the

implications of our extended formalism on previous theoretical work. We also per-

formed a large scale empirical study using four real-world avionics systems, and ex-

plored how program structure, test oracle selection, and test input selection interact

to influence the effectiveness of software testing. We have concluded each chapter

Program
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Figure 8.1: Observed Relationships Between Testing Artifacts
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with a short discussion of the implications of our findings, along with questions for

future work. Rather than repeat these discussions, we conclude this dissertation with

a short overview of its larger implications.

In the context of our long-term objective, we believe this dissertation represents an

important step in improving the effectiveness of testing through better understand-

ing of how testing artifacts interact. We have highlighted, both in both theory and

practice, how testing artifacts can interact in significant ways to influence the effec-

tiveness of software testing. Broad example interactions observed in this dissertation

are shown in Figure 8.1.

These results highlight both opportunity and danger in testing research. With

respect to opportunity, we noted in the introduction that existing research in the

testing community has largely ignored how artifacts other than testing inputs im-

pact the effectiveness of testing. This work, by quantifying the potential benefits of

considering other artifacts—notably, test oracles—provides evidence that this focus

is misplaced, and that exploring other avenues of testing research (or at least explor-

ing the same avenues while considering other artifacts) may lead to improvements in

testing effectiveness. We highlight questions raised in this dissertation in Figure 8.2.

The opportunities found in this work are perhaps best exemplified by Chapter 6,

in which we found there exists a tradeoffs when selecting test oracles and test inputs.

Previous work in software testing has focused almost exclusively on how test inputs

alone, or (less commonly) oracles alone can impact testing cost and effectiveness. By

exploring both artifacts together, we have demonstrated that, in some scenarios, we

may be able to do better job selecting test inputs and test oracles. Such insights point

towards new directions in testing research that we have recently begun to explore.

With respect to danger, this work demonstrates how factors apart from test inputs

can impact testing effectiveness, and thus aptly illustrates how an uncontrolled or
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Figure 8.2: Questions Raised Concerning Relationships Between Testing Artifacts

undiscussed factor—for example, the program structure, or the test oracle used—

may impact the conclusions reached in an empirical study. Accordingly, we believe

these results provide strong motivation to consider how such artifacts may influence

results in an empirical study, and we hope to see this acknowledged by other testing

researchers in the design of their studies.

The potential for danger in testing studies is illustrated by an example developed

across this dissertation. In Chapter 5, we explored how program structure influenced

the effectiveness of structural coverage criteria, finding that this factor has a strong

influence on the effectiveness structural coverage criteria. These results indicate that

we can potentially improve testing effectiveness when using structural coverage crite-

ria by restructuring our program. Coupled with results from Chapter 6, in which we

find that a maximum test oracle outperforms the output-only oracle, we can make

two recommendations for maximizing testing effectiveness: use the inlined program

when using structural coverage criteria, and use the maximum oracle.

However, as we found in Chapter 7, these recommendations are, in fact, incom-
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patible. When using an inlined program structure, we greatly reduced the power of

the maximum oracle—the structural test inputs improve, but the maximum oracle

becomes weaker. Therefore, when using the maximum oracle and a test suite satisfy-

ing a structural coverage criteria, if forced to select a single program structure, we are

best served by selecting the noninlined program. This drives home the importance

of controlling for factors, and the danger of failing to do so.

Moving forward, we hope that this work, by highlighting the interaction between

testing artifacts, will encourage others in testing research to adopt a more holistic

view of the testing process, and that this view will lead to improvements in the

effectiveness of the testing process.
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