
A Scalable Distributed Concolic Testing Approach: An Empirical Evaluation

Moonzoo Kim, Yunho Kim
Department of Computer Science

KAIST, South Korea
moonzoo@cs.kaist.ac.kr, kimyunho@kaist.ac.kr

Gregg Rothermel
Department of Computer Science and Engineering

University of Nebraska - Lincoln
grother@cse.unl.edu

Abstract—Although testing is a standard method for improv-
ing the quality of software, conventional testing methods often
fail to detect faults. Concolic testing attempts to remedy this by
automatically generating test cases to explore execution paths in
a program under test, helping testers achieve greater coverage
of program behavior in a more automated fashion. Concolic
testing, however, consumes a significant amount of computing
time to explore execution paths, which is an obstacle toward
its practical application. To address this limitation, we have
developed a scalable distributed concolic testing framework
that utilizes large numbers of computing nodes to generate
test cases in a scalable manner. In this paper, we present the
results of an empirical study that shows that the proposed
framework can achieve a several orders-of-magnitude increase
in test case generation speed compared to the original concolic
approach, and also demonstrates clear potential for scalability.

I. INTRODUCTION

Dynamic testing is a de-facto standard method for improv-
ing the quality of software in industry. Conventional testing
methods, however, often fail to detect faults in programs.
One reason for this is that a program can have an enormous
number of different execution paths due to conditional and
loop statements. Thus, it is practically infeasible for a test
engineer to manually create test cases sufficient to detect
subtle bugs in specific execution paths. In addition, it is a
technically challenging task to generate test cases that cover
different paths in an automated manner.

To address such limitations, concolic (CONCrete + sym-
bOLIC) testing [1] (also known as dynamic symbolic exe-
cution [2] and white-box fuzzing [3]) combines concrete dy-
namic analysis and static symbolic analysis to automatically
generate test cases to explore execution paths of a program,
to achieve full path coverage (or at least, coverage of paths
up to some bound). However, concolic testing may consume
a significant amount of time exploring execution paths, and
this is an obstacle toward its practical application [4].

To address this limitation, we have developed the Scalable
COncolic testing for REliable software (SCORE) frame-
work [5]. The SCORE framework employs a distributed con-
colic algorithm that can utilize a large number of computing
nodes in a scalable manner so as to achieve:
• a linear increase in the speed of test case generation as

the number of distributed nodes increases;
• low communication overhead among distributed nodes.

In this paper, we present the SCORE framework and the
results of an empirical study that shows that the SCORE
framework can achieve a several orders-of-magnitude in-
crease in test case generation speed compared to the original
concolic approach, and also demonstrates clear potential
for scalability. To investigate the effectiveness (with regard
to generation of test cases that cover different paths in a
given time) and scalability of the SCORE framework, we
conducted a controlled experiment in which we applied the
framework to six C programs in the SIR benchmark suite [6]
(three of them large real-world applications), using numbers
of Amazon EC2 nodes ranging up to 256. Our results show
that SCORE can greatly increase the effectiveness of test
case generation, and that it is scalable as the numbers of
nodes utilized increases.

The rest of the paper is organized as follows. Section II
describes related work. Section III describes the SCORE
framework. Section IV presents our empirical study, and
Section V discusses observations from the study. Section VI
concludes and discusses future work.

II. RELATED WORK

The core idea behind concolic testing is to obtain sym-
bolic path formulas from concrete executions and solve them
to generate test cases by using constraint solvers. Various
concolic testing tools have been implemented to realize this
core idea (see Pasareanu et al. [7] for a survey). Existing
tools can be classified in terms of the approach they use to
extract symbolic path formulas from concrete executions.

The first approach for extracting symbolic path formulas is
to use modified virtual machines. The concolic testing tools
that use this approach are implemented as modified virtual
machines on which target programs execute. An advantage
of this approach is that the tools can exploit all execution
information at run-time, since the virtual machine possesses
all necessary information. PEX [2] targets C# programs that
are compiled into Microsoft .Net binaries, KLEE [8] targets
LLVM [9] binaries, and jFuzz [10] targets Java bytecode on
top of Java PathFinder [11], [12].

The second approach for extracting symbolic path for-
mulas is to instrument the target source code to insert
probes that extract formulas from concrete executions at
run-time. Compared to the first approach, this approach is

more light-weight, because adding probes is simpler than
modifying virtual machines. Tools that use this approach
include CUTE [1], DART [13], and CREST [14], which
operate on C programs, and jCUTE [15], which operates on
Java programs. SCORE uses this approach.

Because concolic testing has been studied for a relatively
short period of time, there has been little research on
employing distributed platforms to improve the scalability
of concolic testing techniques. Staats et al. [16] propose
a static partitioning technique for parallelizing symbolic
execution that uses pre-conditions/prefixes of symbolic exe-
cutions to partition the symbolic execution tree. They have
implemented the technique on top of Java PathFinder [11]
using the Symbolic PathFinder extension [12]. A limitation
of this approach is that the resulting partitioned symbolic
execution trees are not well-balanced, because the technique
statically partitions a symbolic execution tree based only on
its prefixes. Thus, some nodes may finish exploring symbolic
execution paths quickly and become idle while other nodes
take long times to complete exploration, which degrades
overall performance.

In contrast, King [17], ParSym [18], and Cloud9 [19]
utilize dynamic partitioning of target program executions.
King’s master’s thesis [17] describes a distributed symbolic
execution framework for Java [20]. King populates a queue
of symbolic execution subtrees dynamically, but the resulting
speedup decreases as the number of nodes increases beyond
six. ParSym [18] uses a central server that collects test cases
generated from nodes and distributes the test cases to the
other nodes whose queues are empty. ParSym demonstrates
speedup on grep 2.2 and a binary tree program on up to
512 nodes, but does not achieve linear speedup. Cloud9 [19]
is a testing service framework based on parallel symbolic
execution techniques implemented on KLEE. Cloud9 uses
dynamic partitioning to ensure that the job queue lengths of
all nodes stay within a given range and shows linear speed-
up as the number of nodes increases up to 48. Similar to
these techniques, SCORE distributes test cases among multi-
ple nodes in a dynamic on-demand manner (Section III) and
achieves linear speed-up on up to 256 nodes (Section IV-E).
Note that Cloud9 and SCORE utilize different parallelization
techniques. In Cloud9, when an execution meets a branch
containing symbolic values, two parallel executions are
forked with a corresponding clone of the program state and
distributed to nodes to continue (Cloud9 can obtain parallel
executions since Cloud9 operates as a virtual machine).
In contrast, SCORE generates whole execution paths one
by one on distributed nodes in a systematic manner while
preventing redundant test cases (Algorithm 1).

III. THE SCORE FRAMEWORK

The goal of the SCORE framework is to address the
limitation of scalability problem in the original sequential
concolic testing framework by parallelization. We describe

the SCORE framework, beginning with a description of the
distributed concolic algorithm (Section III-A), followed by
details on communications between nodes (Section III-B).
Section III-C then discusses our implementation of the
framework.

A. Distributed Concolic Algorithm

Algorithm 1 [21] describes how the SCORE frame-
work generates test cases on each node n among a set
of distributed nodes. The algorithm controls each node n
to generate non-redundant test cases (i.e., test cases that
cover different paths) independently from the other nodes;
n communicates with another node n′ only when n cannot
generate test cases due to having an empty job queue. Note
that this independent generation of test cases on each node
is a key condition for achieving linear speedup of test case
generation with scalability.

We assume that there exists one startup node that runs
DstrConcolic(startup) with startup as true (line 1). This
startup node running DstrConcolic() generates and stores
a test case pair (tc,neg limit) in the test case pair queue
qtcp (lines 5-6), where neg limit is used to prevent the
algorithm from generating redundant test cases based on a
test case tc. For the startup node, tc is a randomly generated
test case and neg limit = 1. The other non-startup nodes
running DstrConcolic(false) wait until they receive test
case pairs from another node n′ (lines 8-9).1

Next, a node n generates further test case pairs (lines 20-
30) based on a (tc,neg limit) that is removed from qtcp
(line 14) and stores the generated test case pairs in qtcp
(line 26). Node n repeats this process until qtcp becomes
empty (lines 13-31).2 The detail of the process is as fol-
lows. First, the algorithm removes (tc,neg limit) from qtcp
(line 14) and obtains a symbolic path formula φ (line 18)
from the concrete execution on tc (line 16). Then, the
algorithm generates further symbolic path formulas ψs by
negating path conditions (i.e., c1, c2, ..., c|φ|) in φ one by
one from c|φ| to c|neg limit| in decreasing order through the
while loop (lines 20-30). Note that these ψs indicate new
execution paths to explore. Each ψ is solved by an SMT
solver (line 24) and the corresponding solution to ψ is stored
in qtcp as a new test case pair (tc, j + 1) (line 26).

If qtcp is empty (exiting the loop of lines 13-31) and
the qtcps of all distributed nodes are empty, the algorithm
terminates (line 37). Otherwise (i.e., there is another node n′′

1For the sake of simplicity, in Algorithm 1 the communication between
nodes is described abstractly or omitted. For example, at lines 8-9 of
Algorithm 1, n in fact sends a request to the central server. Then, the
server finds an appropriate n′ and asks n′ to send test case pairs to n.
Details of this communication are given in Section III-B.

2qtcp can be empty, because n may be unable to generate further test
case pairs from (tc, neg limit) such that neg limit >| φ | or none of the
negated symbolic path formula ψs generated from φ is satisfiable, where
φ is a symbolic path formula of an execution path on tc. However, qtcp
rarely becomes empty, since n usually generates multiple test case pairs
(lines 20-30) based on a test case pair in qtcp (line 14).

that has test case pairs), a current node n requests test case
pairs from n′′ (line 33) and receives test case pairs from
n′′ (line 34). The received test case pairs are then added
into qtcp (line 35) and the algorithm continues from line 13
again.

Note that Algorithm 1 traverses all possible execution
paths and does not generate redundant test cases (test cases
that cover the same path) with the assumption that φ truly
reflects path and Solve(ψ) can solve ψ.3 Complete details
on Algorithm 1, including a comparison with the original
concolic algorithm and the properties of the algorithm such
as traversal of all possible execution paths and its unique
test case generation, are provided in a [22].

B. Communication between Nodes

Figure 1 illustrates the communication among nodes in
the SCORE framework. SCORE operates on distributed
computing nodes where one node operates as a server and
the other nodes operate as clients. In addition, one client
is designated as a startup client, which initiates distributed
concolic testing (lines 4-6 in Algorithm 1).

Figure 1. Communication among clients and the server

We assume that all clients are connected to the server
properly and the network does not lose or corrupt its
messages or change message delivery order. There are six
different control packets sent between a server and clients
to coordinate distributed clients that generate test cases.
• An REQ_TC packet is sent to the server from a client
n that has no test case pair in its qtcp.

• An REQ packet is sent from the server to a client n′

that has test case pairs and that is not currently serving
any REQ packet.

• An ACK packet is sent from an n′ that received an
REQ packet and has transferred test case pairs to an n

3In practice, a program P may contain complex arithmetic or binary
library calls that cannot be reasoned about by SMT solvers. Thus, Algo-
rithm 1 generates symbolic path formulas without such conditions, and in
these cases this may result in redundant test cases.

Input:
startup: a flag to indicate whether a current node n
is a startup node or not.
Output:
TC: a set of test cases generated at a current node n
(i.e., tcs of line 24)

1 DstrConcolic(startup) {
2 qtcp = ∅; // a queue containing (tc, neg limit)s
3 TC = ∅; // a set of generated test cases
4 if startup then
5 tc = random value; // initial test case
6 Add (tc, 1) to qtcp;
7 else
8 Send a request for test cases to another node n′;
9 Receive (tc, neg limit)s from n′;

10 Add (tc, neg limit)s to qtcp;
11 end
12 while true do
13 while | qtcp |> 0 do
14 Remove (tc, neg limit) from qtcp;
15 // Execute target program on tc
16 path = an execution path on tc;
17 // Obtain a symbolic path formula φ
18 φ = a symbolic path formula of path (i.e.,

c1 ∧ c2 ∧ ... ∧ c|φ|) ;
19 j =| φ |;
20 while j >= neg limit do
21 // Generate ψ for the next input values
22 ψ = c1 ∧ ... ∧ cj−1 ∧ ¬cj ;
23 // Select the next input values
24 tc = Solve(ψ);
25 if tc is not NULL then
26 Add (tc, j + 1) to qtcp;
27 TC = TC ∪ {tc};
28 end
29 j = j − 1;
30 end
31 end
32 if there is a test case in another node n′′ then
33 Send a request for test cases to another node

n′′;
34 Receive (tc, neg limit)s from n′′;
35 Add (tc, neg limit)s to qtcp;
36 else
37 Halt; // no test cases exist in all nodes
38 end
39 end
40 }

Algorithm 1: Distributed concolic algorithm

that sent an REQ_TC packet to the server. In a similar
manner, an ACK packet is sent from an n that sent an

REQ_TC to the server after n receives test case pairs.
• A NACK packet is sent from an n′ that has received an
REQ packet and could not transfer test case pairs, since
|qtcp| ≤ 1.

• A HAS_MTC_AGAIN packet is sent from an n′ that
sent NACK but has |qtcp| > 1 now.

• A STOP packet is sent from the server to clients when
every client has no test case pair (i.e., the distributed
concolic testing process is completed).

To identify which client has test case pairs to transfer,
the server maintains a state table of all clients. From the
viewpoint of the server, the state of a client must be one of
the following four states:

1) EMPTY when | qtcp |= 0. EMPTY indicates that the
client has no test case pairs to execute.

2) HAS_1TC when | qtcp |= 1 and the client is not
serving a request from the server. HAS_1TC indicates
that the client cannot provide test case pairs to another
client.

3) HAS_MTC when | qtcp |> 1 and the client is not
serving a request from the server. HAS_MTC indicates
that the client is ready to provide test case pairs to
another client, since the client has multiple test cases.

4) SERVING_REQ when the client is serving a request
from the server. In other words, the client received
an REQ but has not yet sent an ACK or NACK to the
server. SERVING_REQ indicates that the client is not
currently able to send test case pairs to another client.

By tracking control messages between the server and the
client, the server knows the states of clients. If the server
receives an REQ_TC from a client n, then the state of n
is considered EMPTY. If the server receives an ACK from
a client n′ that sent test case pairs to n, then the server
considers the state of n′ to be HAS_MTC. In a similar
manner, if the server receives an ACK from a client n,
then the server considers the state of n to be HAS_MTC.
If the server receives a NACK from a client n′ whose state
is HAS_MTC, then the server considers the state of n′ to
be HAS_1TC. If the server receives an HAS_MTC_AGAIN
from a client n′, then the state of n′ is considered HAS_MTC.
If the server has sent an REQ to a client and has not yet
received an ACK or NACK, then the state of the client is
SERVING_REQ.

Figure 1 illustrates the following scenario. When the
server receives an REQ_TC from a client n, it searches
the client status table and finds a client n′ whose status
is HAS_MTC. Then, it sends an REQ to n′ with destination
n. If n′ has m test case pairs (i.e., | qtcp |= m), it sends
bm/2c test case pairs to n and then sends an ACK to the
server. Client n also sends an ACK to the server after it
receives test case pairs. If client n′ has one or zero test
case pairs, it sends NACK to the server. Then, the server

tries another client whose status is HAS_MTC in a round-
robin manner. If client n′ that sent NACK has more than
one test case pair now, n′ sends HAS_MTC_AGAIN to the
server and the server updates the state of n′ as HAS_MTC.
If no client is in HAS_MTC state, the server waits until at
least one client enters the HAS_MTC state. If all clients are
EMPTY, the server sends a STOP message to the clients, and
the distributed concolic algorithm terminates. When clients
receive a STOP from the server, the clients transfer generated
test cases, covered path/branch information, and statistics on
testing activities to the server.

Note that communication between clients n and n′ occurs
only when qtcp of n is empty. Because qtcp is non-empty for
most of the testing time, the number of communications is
small compared to the number of test cases generated (Ta-
ble V). Furthermore, test case pairs are directly transferred
between clients without causing heavy load on the server.
Otherwise, the server would become a bottleneck. This
efficient communication protocol is another key condition
for achieving linear speedup with scalability.

C. The SCORE Implementation

The SCORE framework is implemented to operate on
distributed computers connected through TCP/IP networks.
Thus, SCORE can operate on a large number of com-
puting nodes such as on a cloud computing platform or
any computers connected through the internet. The SCORE
framework uses an extended version of CREST with bit-
vector (BV) support. The original CREST [14] supports
only linear-integer arithmetic (LIA) formulas so that non-
linear arithmetic operations in a target program cannot be
analyzed symbolically. To overcome this limitation, we have
developed CREST-BV based on CREST 0.1.1 to support bit-
vector symbolic path formulas by using the Z3 2.19 SMT
solver [23]. SCORE is written in C/C++ and contains 7600
lines of code with 24 classes and 265 functions [5].

For m clients, the server creates m threads, each of which
communicates with one client. To minimize communica-
tion overhead, each client is implemented as two separate
threads. One thread generates and consumes test case pairs
in qtcp as described in Algorithm 1 while the other thread
handles communication with other nodes such as receiving
test case pairs into qtcp or sending test case pairs from qtcp to
another node per request. All communications in the SCORE
framework are implemented using TCP sockets, since the
framework may be deployed on a large scale computing
platform where communication might not be reliable. In
addition to the communication between clients and the server
described in Section III-B, as logs, clients periodically report
to the server the current status of testing activities such as
the number of test cases generated, the size of qtcp, the
number of test cases received from another node, and so
forth. Each client stores testing outcomes such as test cases
generated, covered branches, and covered execution paths on

the local hard disk. When the testing process terminates or
a user sends a command to stop the concolic testing, these
outcomes are collected by the server automatically.

IV. EMPIRICAL STUDY

There are two overall methodologies that we could use to
empirically study the SCORE framework. The first method-
ology involves empirically comparing SCORE to other ap-
proaches for parallelizing dynamic symbolic execution such
as those of Staats et al. [16], King [17], ParSym [18]
and Cloud9 [19], discussed in Section II. At this time,
however, such a comparison would be difficult, because
Staats’ approach is implemented only for Java, and the other
approaches were not available in implemented form at the
time of the study. Moreover, comparisons of implemen-
tations created in different contexts pose many threats to
internal validity in terms of ensuring the comparability of
techniques.

The second methodology we can use to assess SCORE
involves comparing the framework to baseline approaches
that allow direct assessment of the benefits of SCORE’s
distributed aspects. For example, we can compare SCORE to
the original concolic testing approach applied on distributed
nodes. If this comparison does not show that SCORE is
effective and scalable, then the results obviate the need to
perform expensive implementations of other techniques. We
thus chose this approach.

The SCORE framework is meant to increase the effective-
ness of concolic testing at generating potentially useful test
inputs by distributing workload over large numbers of client
nodes. However, the efficiency of distributed algorithms
tends to decrease as the number of client nodes increases due
to redundant computations, overhead related to increasing
communications, and unbalanced workloads. These issues
impact the scalability of these algorithms. The degree to
which the framework can achieve these attributes on real
workloads, however, must be assessed empirically.

To provide such an assessment, we designed an empirical
study addressing the following research questions:
• RQ1: To what extent does the SCORE framework

increase the effectiveness of test case generation?
• RQ2: To what extent does the SCORE framework

achieve scalability?

A. Target Benchmark Programs

As objects of study, we selected six programs (see Table I)
from the SIR repository [6], including three of the Siemens
programs [24], and three non-trivial real-world programs
(grep 2.0, sed 1.17, and vim 5.0). We selected these
programs because they were written in C and thus can be
processed by our tools, and because they do not utilize
intensive numbers of floating point arithmetic statements that
cannot be analyzed by bit-vector SMT solvers.

Table I
EXPERIMENT OBJECTS

Program Functions LOC Branches Test cases
grep 126 12562 3768 808
ptok1 19 725 284 4140
ptok2 24 569 168 4140
repl 2 563 210 5543
sed 70 8678 2690 389
vim 3049 111227 33486 975

To perform concolic testing on these programs, we needed
to decide what sizes of inputs to utilize for symbolic
variables. To make a realistic decision, we reviewed all of the
test cases provided for each program in the SIR repository.
We selected symbolic input sizes as the maximum size of
the 90% of the smallest test cases in the SIR repository,
since there is often a large gap between that size and the
sizes of the remaining 10% of the test cases. Table II shows
the sizes of symbolic inputs chosen for each program.

Table II
SIZE OF SYMBOLIC INPUTS (BYTES)

grep ptok1 ptok2 repl sed vim
pattern target target from to target com- script

text text text mand
21 82 82 23 28 64 148 76

We provided two symbolic options for grep, because
grep uses three different algorithms for pattern matching
based on a given option. Also, 90% of the test cases for
grep in the SIR repository contain two or fewer options;
for an option with an argument, we assigned one symbolic
character as a corresponding argument. Finally, for grep
and sed, we chose to use target text files provided in the
SIR repository as concrete inputs rather than to generate file
contents symbolically, because meaningful files are too large
(greater than 100k) to treat as symbolic input.

B. Variables and Measures

To address our research questions, our experiment manip-
ulated two independent variables:
IV1: Test case generation technique

To investigate RQ1 we study two techniques: the
distributed algorithm implemented in the SCORE
framework, and the non-distributed concolic testing
algorithm [14]. Further, to facilitate comparisons we
apply the non-distributed (baseline) algorithm in two
ways: (1) running a single instance of the algorithm
on a single node, and (2) running multiple instances,
one on each client node, with different random seeds,
and aggregating results from each node in the end.
The former approach lets us assess the effectiveness of
SCORE relative to current practice, while the latter lets
us assess whether the particular parallelization solution

used by SCORE is more effective than the naive
approach of simply running the original algorithm on
the same number of nodes.

IV2: Client number level
To investigate scalability issues such as those posed by
RQ2, as well as to examine technique effectiveness
over a wide range of distribution settings, we need
to apply techniques using different numbers of client
nodes. We chose to use client number levels 1, 64,
128, 192, and 256.

To measure effectiveness and scalability we selected five
dependent variables. The first variable tracks effectiveness
in terms of numbers of test cases that can be generated in
a given time. An issue that arises in this context, however,
concerns redundancy. As explained earlier, in the context
of concolic testing, where test cases are generated to cover
paths, test cases that cover the same paths are redundant.
In theory, neither the SCORE algorithm nor the original
concolic algorithm can generate redundant test cases [22].
However, limitations in concolic algorithms or limitations
in symbolic execution engines can lead in practice to cases
where redundancy does occur. Since the different techniques
that we compare may differ in terms of the number of
redundant test cases that they create, a fair comparison of
their effectiveness must exclude redundant test cases. Thus,
our first dependent variable focuses on creation of non-
redundant test cases.

DV1: Number of non-redundant test cases generated in
time τ
We chose τ = 5 minutes, because exploratory studies
with smaller and larger times suggested that increases
beyond 5 minutes had negligible effects on results.

To track scalability we use four variables, each of which
represents a different important aspect of performance in the
context of distributed algorithms.

DV2: Number of communicated messages
We measured the total number of messages communi-
cated between nodes (both server and client).

DV3: Communication overhead in terms of waiting time
We measured the elapsed waiting time between lines
33 and 35 of Algorithm 1 due to empty qtc, for each
client node.

DV4: Workload assigned to each client
We measured the number of test cases generated by
each client node.

DV5: Efficiency of the SCORE framework
We measured the efficiency of the framework by cal-
culating its effectiveness ratios (i.e., # of test cases
generated by SCORE over # of test cases generated by
the non-distributed concolic algorithm) over the number
of clients, effectiveness ratio

of clients nodes .

C. Experiment Operation

For each target program, we executed the non-distributed
CREST-BV algorithm and the distributed SCORE algorithm
on each of the five client number levels. To control for po-
tential differences in runs due to the randomization inherent
in the techniques, we repeated this process 30 times.

To count the non-redundant test cases in a generated
test suite, we stored the sequence of branch IDs Bi =
[bi1 , bi2 , ...bin] that were executed on each test case tci.
Then, because the total number and sizes of the Bis are
large (e.g., we had more than 0.2 million Bis consuming
500 gigabytes for VIM on 256 nodes (see Table III)) we
applied the SHA1 algorithm [25] to each (Bi) to obtain a
representative hash value for each Bi. In our experiment
runs, the number of hash collisions was negligible. As a
sample, we compared all Bis directly in one entire set of
technique runs on 256 nodes, and found no hash value
collisions. Finally, we compared SHA1(Bi) values with each
other to remove redundant test cases, keeping exactly one
test case from each set of test cases that execute identical
paths.

All experiments were performed on the Amazon EC2
cloud computing platform. The server of the SCORE frame-
work ran on a virtual node that had seven gigabytes of
memory and eight CPU cores of 20 ECU computing power
in total (1 ECU is equivalent to a 1Ghz Xeon processor).
Each client ran on a virtual node that was equipped with
1.7 gigabytes of memory and one CPU core of 1 ECU in
total. The server and clients ran on Fedora Core Linux 8. All
virtual nodes are connected through a 1 gigabps Ethernet.

D. Threats to Validity

The primary threat to external validity for our study
involves the representativeness of our object programs, since
we have examined only six C programs (although three
of them are real-world applications). Furthermore, we have
chosen programs that are amenable to concolic testing, and
thus, do not reveal cases in which program characteristics
might hinder that approach. As a second threat, we have
employed only the CREST-BV tool as an example of an
original concolic algorithm implementation; results obtained
with other implementations may differ. A third threat to
validity is the limited power of the underlying symbolic
execution engine used in SCORE. For example, SCORE
does not analyze floating point arithmetic operations, since
most SMT solvers do not support them. Also, external binary
libraries used by a target program cannot be analyzed. We
believe, however, that the use of a more powerful SMT
solver in the future would not affect assessments of the scal-
ability of SCORE, because SCORE’s scalability is affected
primarily by the distribution of independent workloads and
communication cost, and SCORE’s communication protocol
is independent of the SMT solver (see Section III-B).

The primary threat to internal validity is possible faults
in the implementation of our algorithms and in tools we
use to collect metrics. We controlled for this threat through
extensive functional testing of our tools. A second threat
pertains to differences in the implementations compared; we
limited this threat by using the same underlying concolic test
case generation tool in all cases.

Where construct validity is concerned, there are other met-
rics that could be pertinent to the effects studied. In partic-
ular, as an effectiveness measure we consider only numbers
of non-redundant test cases generated (which correlates with
path coverage achieved). In contrast, studies of Cloud9 [19]
relied on statement coverage as an effectiveness measure.
We believe, however, that our effectiveness measure is more
appropriate for assessing concolic testing, since concolic
testing targets path coverage, not statement or branch cover-
age. As another potential metric for assessing effectiveness,
numbers of faults detected could also be considered. Further,
as another potential metric for assessing scalability to mea-
sure scalability, the time required to reach a fixed level of
statement/branch coverage or the time consumed to explore
an execution subtree in a k-depth bound completely could
be considered. These metrics, however, have weaknesses.
First, concolic testing may not be able to generate test
cases to reach a given fixed level of coverage. In addition,
it is difficult to accurately estimate the time required to
reach a fixed level of coverage in advance, causing difficulty
for experiment design. Yet another metric for scalability in
terms of workload distribution, also employed in [19], is to
measure the number of target program instructions executed
per node. This might be a valid performance indicator for
parallel algorithms in general, but when the goal of such
algorithms is test case generation, we believe that it is not
the best measure.

E. Results and Analysis

We now present and analyze our results.
1) RQ1: To what extent does SCORE increase the ef-

fectiveness of concolic testing?: We begin by comparing
SCORE to the non-distributed algorithm run on a single
node. Table III displays the mean total numbers of non-
redundant test cases generated by both the non-distributed
and distributed algorithms, for each of the object programs,
per client number level, across all 30 runs of the algorithm
at that level. As the table shows, the number of test cases
generated by SCORE increased substantially as the number
of client nodes increased.

Figure 2 illustrates the effectiveness (i.e., number of
non-redundant test cases generated) increase achieved by
SCORE as the client number level increased, in a manner
that compares the two algorithms. The figure compares
effectiveness results obtained by the distributed algorithm
at all five client number levels to the results obtained by the
non-distributed algorithm on a single node, per program, in

Table III
TOTAL # OF NON-REDUNDANT TESTS GENERATED PER CLIENT

NUMBER LEVEL, NON-DISTRIBUTED AND DISTRIBUTED ALGORITHMS

CREST-BV SCORE
1 1 64 128 192 256

grep 441 474 21684 51485 85707 128337
ptok1 354 356 31566 76794 106332 127667
ptok2 3350 3377 243330 509142 759004 959633
repl 5310 5505 384588 742251 1156691 1547508
sed 1189 1201 92165 191845 303615 377621
vim 886 817 60276 116448 177964 217460

terms of the ratio of numbers of test cases generated by
each. Effectiveness appears to increase linearly with client
number level, but the rate of increase does vary per program.

Figure 2. Ratio of effectiveness between non-distributed and distributed
algorithms, per client number level

To assess whether the observed differences in perfor-
mance were statistically significantly different, we applied
Wilcoxon tests [26] to the effectiveness data achieved at each
client number level, per program, by SCORE and the non-
distributed algorithm, with α = 0.05 as confidence level. In
every case above client number level 1 the differences were
statistically significant.

It is worth noting that the effectiveness ratios for all the
target programs except vim at client number level 256 are
greater than the number of client nodes. We believe that the
reason for this is that the average length of the symbolic
path formulas analyzed to generate test cases by one client
node using the non-distributed algorithm was larger than
the average length of the symbolic path formulas analyzed
to generate the test cases by 256 client nodes using the
distributed algorithm. The relatively low effectiveness ratio
(i.e., 245.4 = 217460/886) for vim at client number level
256 can be explained similarly.

Note also that the numbers of test cases generated by the
non-distributed algorithm and SCORE did differ when the
algorithms were each run on one node (see the second and
third columns of Table III), because the test cases generated
by the algorithms on any given run can differ. However,

the magnitude of the difference in performance is relatively
small, ranging from 0.6% (on ptok1) to 7.8% (on vim).

We next compare SCORE to the use of the non-distributed
algorithm on the same numbers of client nodes. Table IV
shows the mean numbers of non-redundant test cases gener-
ated by SCORE (S) and multiple runs of CREST-BV (MC)
across the 30 runs performed in each case, as well as the
ratios between those means.

Table IV
NUMBERS OF NON-REDUNDANT TEST CASES

of grep ptok1 ptok2 repl sed vim
nodes

64 S 21684 31566 243330 384588 92165 60276
MC 1937 9244 208843 111384 141264 1383

S/MC 11.19 3.41 1.17 3.45 0.65 43.58
128 S 51485 76794 509142 742251 191845 116448

MC 3952 17504 331865 178262 273359 1514
S/MC 13.03 4.39 1.53 4.16 0.70 76.91

192 S 85707 106332 759004 1156691 303615 177964
MC 5807 25182 475168 237711 400194 1524

S/MC 14.76 4.22 1.60 4.87 0.76 116.77
256 S 128337 127667 959633 1547508 377621 217460

MC 7626 26891 590085 305025 487802 1560
S/MC 16.83 4.75 1.63 5.07 0.77 139.40

As the data shows, the number of test cases generated by
SCORE ranged from 17% (ptok2 on 64 nodes) to 13840%
(vim on 256 nodes) more than the number generated by
multiple CREST-BV runs, except sed. In addition, the
S/MC ratios have a tendency to increase over the number of
nodes utilized. For example, for ptok1, the ratios increase
from 3.41 on 64 nodes to 4.75 on 256 nodes. (The only case
in which the ratios do not increase involves ptok1, going
from 128 to 192). We conjecture that the reason for this
S/MC increase over increasing number of client nodes is that
uncontrolled multiple runs of CREST-BV will generate more
redundant test cases as more test cases are generated (i.e., the
probability of generating redundant test cases among 1000
test cases is higher than among 10 test cases).

Again, Wilcoxon tests applied to the effectiveness data
achieved at each client number level, per program, by
SCORE and by the non-distributed algorithm, using α =
0.05 as the confidence level, showed that in every case
the differences were statistically significant. SCORE thus
increased effectiveness more than running multiple instances
of the non-distributed concolic algorithm.

2) RQ2: To what extent does the SCORE framework
achieve scalability?: Table V shows the number of com-
municated messages (left) and the communication overhead
(right) for the distributed algorithm, for each object program,
for client number levels greater than 1. The number of com-
munications is small compared to the number of generated
non-redundant test cases. For example, using 64 client nodes
on grep resulted in 362 messages being communicated
between client nodes and server, which is equivalent to 5.7
(362/64) messages per client node. In other words, each
client node communicates 5.7 messages while generating
339 (21684/64) test cases.

Table V
STATISTICS ON COMMUNICATION

of total messages and Comm. overhead (%)
the ratios of # of msgs/# of TCs
64 128 192 256 64 128 192 256

grep 362 846 1070 1984 0.55 0.51 0.71 0.90
(1.67%) (1.64%) (1.25%) (1.55%)

ptok1 412 930 1314 1692 0.16 0.26 0.33 0.30
(1.31%) (1.21%) (1.24%) (1.33%)

ptok2 362 664 998 1310 0.09 0.18 0.16 0.19
(0.15%) (0.13%) (0.13%) (0.14%)

repl 322 618 960 1234 0.15 0.21 0.20 0.16
(0.08%) (0.08%) (0.08%) (0.08%)

sed 347 692 1014 1357 0.12 0.20 0.23 0.19
(0.38%) (0.36%) (0.33%) (0.36%)

vim 344 690 1028 1364 0.45 0.77 0.56 0.63
(0.57%) (0.59%) (0.58%) (0.63%)

As shown on the right side of the table, total commu-
nication overhead was less than 0.9% of total execution
time. Since generating a new test case (including concolic
execution and solving symbolic path formulas) takes much
more time than communication, the overhead of waiting time
including communication time is negligible.

Figure 3 presents boxplots showing workload distributions
for all six object programs. The horizontal axes indicate
client number levels, and the vertical axes indicate workload
(number of test cases generated per client node). The central
50% of the data points (those denoted by boxes) exhibit
relatively small variance, and results do not vary widely as
client number levels increase. This provides further evidence
of scalability.

Finally, Table VI depicts the efficiency (i.e.,
effectiveness ratio

of clients) of the SCORE framework across different
client number levels, per program. The efficiency of the
distributed algorithm does not decrease, but remains almost
constant over different client number levels. For example,
the efficiencies for repl are 1.13, 1.09, 1.13, and 1.14 for
64, 128, 192, and 256 clients, respectively.

Table VI
EFFICIENCY OF CLIENTS AT GENERATING TEST CASES

effectiveness ratio
of clients

64 128 192 256

grep 0.82 0.98 1.08 1.22
ptok1 1.39 1.69 1.56 1.41
ptok2 1.13 1.19 1.18 1.12
repl 1.13 1.09 1.13 1.14
sed 1.21 1.26 1.33 1.24
vim 1.06 1.03 1.05 0.96

V. DISCUSSION

Concolic Testing for Branch Coverage : In our experiment
we generated test cases for path coverage, because path
coverage is the target coverage of concolic testing. However,
since branch coverage is more common in industrial practice,
we also measured the percentages of branches covered in our
study; we report these in Table VII. The branch coverages
achieved did not increase much (and in four cases, each of
which on grep, repl, sed, and vim they decreased) as

Figure 3. Distribution of numbers of test cases generated at each client node for the six object programs

Table VII
BRANCH COVERAGE ACHIEVED (%)

1 64 128 192 256 SIR
grep 31.1 35.4 33.8 37.9 38.0 50.3
ptok1 41.5 41.5 41.5 41.5 41.5 93.6
ptok2 62.5 62.5 62.5 62.5 62.5 98.2
repl 51.0 65.4 62.4 67.1 75.5 93.9
sed 19.0 23.2 22.4 23.3 24.1 47.3
vim 9.2 9.7 11.9 11.5 11.9 35.8

the number of clients used increased. We believe that this
is a result of the concolic testing approach’s focus on path
coverage, which allow it to continue to explore new paths
even though they do not cover new branches.

Note also that the branch coverages achieved in our
experiment are lower than those achieved by the manually
generated test cases in the SIR repository (rightmost column
of the table). We believe that this too is related to the focus
of the concolic approach on path coverage, though it may
also be due to difficulties in solving constraints related to
paths that reach particular branches. Nonetheless, given that
the test cases for grep, sed, and vim found in the SIR
repository were built over several weeks by students, and
that the test cases for the other subjects were built from
large pools of tests provided by the authors of Hutchins et
al. [24], the mechanically achieved branch coverage attained
by running SCORE for five minutes has value.

Limitations of Concolic Testing in Practice: As discussed
earlier, concolic testing tools suffer from the limitations
related to unavailability of library code, and the limitations
of symbolic execution engines. Thus, in practice, concolic
testing may not achieve full path coverage and may generate
redundant test cases. To help examine this issue, Figure 4
shows the ratios of non-redundant test cases to total test
cases generated for SCORE (S) (left) and multiple CREST-
BV runs (MC) (right).

The ratios of non-redundant test cases for SCORE are
almost one (except sed). In contrast, the ratios for mul-
tiple CREST-BV runs are lower than those for SCORE.
In addition, the ratios decrease over increasing numbers of

Figure 4. Ratios of non-redundant TCs over generated TCs

nodes. For example, on sed the ratios decrease from 0.45
(64 nodes) to 0.39 (256 nodes).

An additional limitation involves test oracles. Generating
enormous numbers of test cases carries with it the com-
plication that oracles are required for these test cases. In
cases where oracles must be generated on a per test-case
basis (e.g., creating “expected outputs” for each test case),
this may involve excessive effort. Note that this problem
arises with any large-scale automated test case generation
effort. Therefore, to utilize automated test case generation
frameworks to generate large numbers of test cases, we need
to use oracle approaches whose cost is not proportional to
the number of test cases. For example, we can utilize oracles
that can be automated such as detecting system crashes and
exceptional behavior or monitoring behavior for violations of
user-given assert statements, which succeed in detecting
many faults [3], [8], [13].

VI. CONCLUSION AND FUTURE WORK

We have developed the SCORE framework to enable
distributed nodes to generate test cases independently. The
resulting framework achieves linear speedup with large
scalability. We demonstrated the increased effectiveness of
the framework, as well as its scalability, through an empirical
study on six C programs from the SIR repository, including
three real-world applications. In the empirical study, SCORE
demonstrated a several orders-of-magnitude increase in test

case generation speed compared to the original concolic ap-
proach, and also demonstrated clear potential for scalability.
As future work, we intend to apply SCORE to additional
applications, to analyze advantages and weakness of the
framework in practice. In addition, we plan to conduct a
comparative study on SCORE and Cloud9, since they have
several common characteristics, but with different symbolic
execution models. Finally, we plan to add fault-tolerant
capability to SCORE.

ACKNOWLEDGEMENTS

This research was supported by the Engineering Re-
search Center of Excellence Program of Korea Ministry
of Education, Science and Technology / National Research
Foundation of Korea (Grant 2011-0000978), and Basic
Science Research Program through the National Research
Foundation of Korea funded by the Ministry of Education,
Science and Technology (2010-0005498).

REFERENCES

[1] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit
testing engine for C,” in European Software Engineering
Conference/Foundations of Software Engineering, 2005.

[2] N. Tillmann and W. Schulte, “Parameterized unit tests,” in
European Software Engineering Conference/Foundations of
Software Engineering, 2005.

[3] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated
whitebox fuzz testing,” in Network and Distributed Systems
Security, 2008.

[4] M. Kim and Y. Kim, “Concolic testing of the multi-sector
read operation for flash memory file system,” in Brazilian
Symposium on Formal Methods, 2009.

[5] Y. Kim and M. Kim, “SCORE: a scalable concolic testing
tool for reliable embedded software,” in European Software
Engineering Conference/Foundations of Software Engineer-
ing, Szeged, Hungary, September 5-9 2011, pp. 420–423, tool
demonstration track.

[6] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact.” Empirical Software Engineering
Journal, vol. 10, no. 4, pp. 405–435, 2005.

[7] C. Pasareanu and W. Visser, “A survey of new trends in sym-
bolic execution for software testing and analysis,” Software
Tools for Technology Transfer, vol. 11, no. 4, pp. 339–353,
2009.

[8] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs,” in Operating System Design and Imple-
mentation, 2008.

[9] C. Lattner and V. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in Intl. Symp.
on Code Generation and Optimization, 2004.

[10] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun,
“jFuzz: A concolic whitebox fuzzer for Java,” in NASA
Formal Methods Symposium, 2009.

[11] W. Visser, K. Havelund, G. Brat, and S. Park, “Model
checking programs,” in Automated Software Engineering,
Sep. 2000.

[12] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level
symbolic execution and system-level concrete execution for
testing nasa software,” in International Symposium on Soft-
ware Testing and Analysis, 2008.

[13] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed au-
tomated random testing,” in Programming Language Design
and Implementation, 2005.

[14] J. Burnim and K. Sen, “Heuristics for scalable dynamic
test generation,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2008-123, Sep 2008.

[15] K. Sen and G. Agha, “CUTE and jCUTE : Concolic unit
testing and explicit path model-checking tools,” in Computer
Aided Verification, 2006.

[16] M. Staats and C. Pasareanu, “Parallel symbolic execution
for structural test generation,” in International Symposium on
Software Testing and Analysis, 2010.

[17] A. King, “Distributed parallel symbolic execution,” Kansas
State University, Tech. Rep., 2009, MS thesis.

[18] J. H. Siddiqui and S. Khurshid, “ParSym: Parallel Symbolic
Execution,” in International Conference on Software Technol-
ogy and Engineering, 2010.

[19] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel sym-
bolic execution for automated real-world software testing,” in
6th ACM SIGOPS/EuroSys, 2011.

[20] X. Deng, J. Lee, and Robby, “Bogor/kiasan: A k-bounded
symbolic execution for checking strong heap properties of
open systems,” in Automated Software Engineering, 2006.

[21] Y. Kim, M. Kim, and N. Dang, “Scalable distributed concolic
testing: a case study on a flash storage platform,” in Intl. Conf.
on Theoretical Aspects of Computing, 2010.

[22] M. Kim, Y. Kim, and G. Rothermel, “Distributed con-
colic algorithm of the SCORE framework,” KAIST,
Tech. Rep., 2011, http://pswlab.kaist.ac.kr/publications/2012/
whitepaper-score.pdf.

[23] L. Moura and N. Bjorner, “Z3: An efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of
Systems, 2008.

[24] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Ex-
periments of the effectiveness of dataflow- and controlflow-
based test adequacy criteria,” in International Conference on
Software Engineering, 1994, pp. 191–200.

[25] National Security Agency (NSA), “FIPS 180-3: Secure hash
standard (SHS),” 2008.

[26] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

